A novel loss-of-function mutation in the proton-coupled folate transporter from a patient with hereditary folate malabsorption reveals that Arg 113 is crucial for function

Blood ◽  
2008 ◽  
Vol 112 (5) ◽  
pp. 2055-2061 ◽  
Author(s):  
Inbal Lasry ◽  
Bluma Berman ◽  
Rachel Straussberg ◽  
Yael Sofer ◽  
Hanna Bessler ◽  
...  

Abstract Hereditary folate malabsorption (HFM) patients harbor inactivating mutations including R113S in the proton-coupled folate transporter (PCFT), an intestinal folate transporter with optimal activity at acidic pH. Here we identified and characterized a novel R113C mutation residing in the highly conserved first intracellular loop of PCFT. Stable transfectants overexpressing a Myc-tagged wild-type (WT) and mutant R113C PCFT displayed similar transporter targeting to the plasma membrane. However, whereas WT PCFT transfectants showed a 22-fold increase in [3H]folic acid influx at pH 5.5, R113C or mock transfectants showed no increase. Moreover, WT PCFT transfectants displayed a 50% folic acid growth requirement concentration of 7 nM, whereas mock and R113C transfectants revealed 24- to 27-fold higher values. Consistently, upon fluorescein-methotrexate labeling, WT PCFT transfectants displayed a 50% methotrexate displacement concentration of 50 nM, whereas mock and R113C transfectants exhibited 12- to 14-fold higher values. Based on the crystal structure of the homologous Escherichia coli glycerol-3-phosphate transporter, we propose that the cationic R113 residue of PCFT is embedded in a hydrophobic pocket formed by several transmembrane helices that may be part of a folate translocation pore. These findings establish a novel loss of function mutation in HFM residing in an intracellular loop of PCFT crucial for folate transport.

Blood ◽  
2010 ◽  
Vol 116 (24) ◽  
pp. 5162-5169 ◽  
Author(s):  
Daniel Sanghoon Shin ◽  
Sang Hee Min ◽  
Laura Russell ◽  
Rongbao Zhao ◽  
Andras Fiser ◽  
...  

Abstract The proton-coupled folate transporter (PCFT; SLC46A1) mediates folate transport into enterocytes in the proximal small intestine; pcft loss-of-function mutations are the basis for hereditary folate malabsorption. The current study explored the roles of Asp residues in PCFT function. A novel, homozygous, loss-of-function mutation, D156Y, was identified in a child of Pakistani origin with hereditary folate malabsorption. Of the 6 other conserved Asp residues, only one, D109, is shown to be required for function. D156Y, along with a variety of other substitutions at this site (Trp, Phe, Val, Asn, or Lys), lacked function due to instability of the PCFT protein. Substantial function was preserved with Glu, Gly, and, to a lesser extent, with Ser, Thr, and Ala substitutions. This correlated with PCFT bio-tinylated at the cell surface. In contrast, all D109 mutants, including D109E, lacked function irrespective of pH (4.5, 5.5, and 7.4) or substrate concentration (0.5-100μM), despite surface expression comparable to wild-type PCFT. Hence, D156 plays a critical role in PCFT protein stability, and D109, located in the first intracellular loop between the second and third transmembrane domains, is absolutely required for PCFT function.


1998 ◽  
Vol 274 (1) ◽  
pp. C289-C294 ◽  
Author(s):  
Chandira K. Kumar ◽  
Toai T. Nguyen ◽  
Francis B. Gonzales ◽  
Hamid M. Said

We recently identified a cDNA clone from mouse small intestine, which appears to be involved in folate transport when expressed in Xenopus oocytes. The open reading frame of this clone is identical to that of the reduced folate carrier (RFC) (K. H. Dixon, B. C. Lanpher, J. Chiu, K. Kelley, and K. H. Cowan. J. Biol. Chem. 269: 17–20, 1994). The characteristics of this cDNA clone [previously referred to as intestinal folate carrier 1 (IFC-1)] expressed in Xenopus oocytes, however, were found to be different from the characteristics of folate transport in native small intestinal epithelial cells. To further study these differences, we determined the characteristics of RFC when expressed in an intestinal epithelial cell line, IEC-6, and compared the findings to its characteristics when expressed in Xenopus oocytes. RFC was stably transfected into IEC-6 cells by electroporation; its cRNA was microinjected into Xenopus oocytes. Northern blot analysis of poly(A)+RNA from IEC-6 cells stably transfected with RFC cDNA (IEC-6/RFC) showed a twofold increase in RFC mRNA levels over controls. Similarly, uptake of folic acid and 5-methyltetrahydrofolate (5-MTHF) by IEC-6/RFC was found to be fourfold higher than uptake in control sublines. This increase in folic acid and 5-MTHF uptake was inhibited by treating IEC-6/RFC cells with cholesterol-modified antisense DNA oligonucleotides. The increase in uptake was found to be mainly mediated through an increase in the maximal velocity ( V max) of the uptake process [the apparent Michaelis-Menten constant ( K m) also changed (range was 0.31 to 1.56 μM), but no specific trend was seen]. In both IEC-6/RFC and control sublines, the uptake of both folic acid and 5-MTHF displayed 1) pH dependency, with a higher uptake at acidic pH 5.5 compared with pH 7.5, and 2) inhibition to the same extent by both reduced and oxidized folate derivatives. These characteristics are very similar to those seen in native intestinal epithelial cells. In contrast, RFC expressed in Xenopus oocytes showed 1) higher uptake at neutral and alkaline pH 7.5 compared with acidic pH 5.5 and 2) higher sensitivity to reduced compared with oxidized folate derivatives. Results of these studies demonstrate that the characteristics of RFC vary depending on the cell system in which it is expressed. Furthermore, the results may suggest the involvement of cell- or tissue-specific posttranslational modification(s) and/or the existence of an auxiliary protein that may account for the differences in the characteristics of the intestinal RFC when expressed in Xenopus oocytes compared with when expressed in intestinal epithelial cells.


2018 ◽  
Vol 19 (10) ◽  
pp. 3099 ◽  
Author(s):  
Anna Malekkou ◽  
Maura Samarani ◽  
Anthi Drousiotou ◽  
Christina Votsi ◽  
Sandro Sonnino ◽  
...  

The GBA2 gene encodes the non-lysosomal glucosylceramidase (NLGase), an enzyme that catalyzes the conversion of glucosylceramide (GlcCer) to ceramide and glucose. Mutations in GBA2 have been associated with the development of neurological disorders such as autosomal recessive cerebellar ataxia, hereditary spastic paraplegia, and Marinesco-Sjogren-Like Syndrome. Our group has previously identified the GBA2 c.1780G>C [p.Asp594His] missense mutation, in a Cypriot consanguineous family with spastic ataxia. In this study, we carried out a biochemical characterization of lymphoblastoid cell lines (LCLs) derived from three patients of this family. We found that the mutation strongly reduce NLGase activity both intracellularly and at the plasma membrane level. Additionally, we observed a two-fold increase of GlcCer content in LCLs derived from patients compared to controls, with the C16 lipid being the most abundant GlcCer species. Moreover, we showed that there is an apparent compensatory effect between NLGase and the lysosomal glucosylceramidase (GCase), since we found that the activity of GCase was three-fold higher in LCLs derived from patients compared to controls. We conclude that the c.1780G>C mutation results in NLGase loss of function with abolishment of the enzymatic activity and accumulation of GlcCer accompanied by a compensatory increase in GCase.


1965 ◽  
Vol 43 (8) ◽  
pp. 1367-1374 ◽  
Author(s):  
P. L. McGeer ◽  
N. P. Sen ◽  
D. A. Grant

The excretion of 4(5)-amino-5(4)-imidazolecarboxamide (AIC) in the urines of normal rats, rats raised on a folic acid deficient diet, and rats raised on a vitamin B12 deficient diet was measured. The AIC excretion was elevated 3-fold above normal in the B12 deficient group and 1.5-fold above normal in the folic acid deficient group.No evidence could be found that the raised AIC excretion was associated with a block in the conversion of AIC to purines. The recovery of radioactive AIC in the urine after an intraperitoneal dose of 2 μmoles AIC per kg was not increased over normal in any of the deficient groups, and was significantly less than normal in the B12-deficient group. Most of the urinary radioactivity in all groups was in allantoin, uric acid, and purines.When a load of 220 μmoles of AIC per kg was administered there was no difference between the vitamin B12 deficient and the normal groups in AIC recovery in the urine. When a load of 220 μmoles of urocanic acid per kg was administered, however, the B12-deficient group had an 18-fold increase over normal in Figlu excretion, and the folic acid deficient group a 17-fold increase. Thus, a substantial block in formimino-L-glutamic acid (Figlu) metabolism, but not in AIC metabolism, existed in the vitamin-deficient groups.Feeding a B12-deficient group a 2% methionine supplement reduced the Figlu excretion after a urocanic acid load to less than half that observed in B12-deficient groups without methionine supplementation, but had no influence on the AIC excretion.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Chisato Katoh ◽  
Hirofumi Tomita ◽  
Norifumi Metoki ◽  
Genta Saitoh ◽  
Tomohiro Osanai ◽  
...  

The plasma brain natriuretic peptide (BNP) level is increased in the acute phase of human stroke, but its source and function are unclear. Recently, we showed that the BNP level was higher in atherothrombotic cerebral infarction (69.1±9.4 pg/ml) than in control subjects (31.1±5.4 pg/ml), and that the BNP level in ischemic stroke was positively correlated with the NIH Stroke Scale (r=0.41, p<0.05) and infarct volume (r=0.34, p<0.05). Astrocytes provide metabolic and trophic support to neurons and modulate synaptic activities. At the early stage of brain ischemia, astrocytes are swollen, and their damage may compromise postischemic neuronal survival. We tested the hypothesis that human astrocytes produce BNP under hypoxia, and this endogenous BNP protects against apoptosis in an autocrine fashion. The human astrocyte cell line, U373MG, was exposed to hypoxia (O 2 ≤1%) for 24 hours. The ratio of BNP to GAPDH mRNA was increased by 7.7±.0 fold after 12-hour hypoxia and further increased by 8.6±1.6 fold after 24-hour hypoxia compared with that in 3-hour normoxia (both, p<0.01). The protein expression assessed by Western blot was increased by 2.0±0.4 fold at 24 hours (n=5, p<0.05). Tyrosine phosphorylation of c-Src was observed by 2.0±0.2-fold increase at 30 minutes. These responses to hypoxia were all blocked by pretreatment with PP1 at 50μM, an inhibitor of c-Src. Apoptosis was measured by detecting caspase activation by flow cytometry, and it was increased by 2.5±0.1 fold after 24-hour hypoxia compared with that in normoxia. To investigate the role of up-regulated BNP in apoptosis, we performed the loss of function test by transfecting a specific siRNA for NPPB that suppressed BNP by more than 80%. The activity of caspases in the BNP knockdown cells was increased by 3.2±0.2 fold after 24-hour hypoxia compared with that in normoxia (n=5, p<0.001), and it was greater than that in the cells transfected with non-targeting siRNA. These results indicate that hypoxia increases BNP gene expression through the c-Src-dependent signaling cascade in the human astrocytes. Endogenous BNP shows brain protection via the anti-apoptotic effect. BNP may be useful in the treatment of ischemic brain diseases.


1986 ◽  
Vol 251 (2) ◽  
pp. G218-G222 ◽  
Author(s):  
J. Zimmerman ◽  
J. Selhub ◽  
I. H. Rosenberg

The effect of sodium on folate transport across the intestinal luminal membrane was analyzed using two techniques: the "influx" chamber and isolated brush-border membrane vesicles. Preincubation of tissue in Na+-free medium did not have a consistent effect on folic acid influx provided that Na+ was present in the test solution. Replacement of Na+ in the test solution by choline+ resulted in a significant reduction of folic acid influx. However, when intestinal sheets that had been equilibrated in Na+-free solution were exposed to test solution containing either Na+, Li+, K+, Rb+, Cs+, Tris+, or guanidinium+ as main cations, folic acid influx was not significantly decreased. Concentration-dependence studies showed that replacement of Na+ by Rb+ did not affect the saturable mechanism of folate transport. Rather, a decrease in nonsaturable folic acid uptake accounted for the slightly reduced influx observed in the presence of Rb+. Experiments with brush-border membrane vesicles revealed that methotrexate uptake was significantly higher in the presence of external Na+ than in the presence of K+, but was not different from uptake in the presence of K+ plus valinomycin. These data suggest that the saturable component of folate transport is not Na+ dependent, and nonsaturable transport of folic acid across the luminal membrane occurs in part through a conductive pathway that involves a negatively charged species of folate and a cation whose membrane permeability affects the rate of folate transport. The importance of Na+ in this process in vivo derives from the fact that Na+ is the most permeant cation available at the absorptive site in the small intestine.


Antioxidants ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 434 ◽  
Author(s):  
Izak Patrik Miller ◽  
Ivan Pavlović ◽  
Borut Poljšak ◽  
Dušan Šuput ◽  
Irina Milisav

High levels of reactive oxygen species (ROS) can lead to impairment of cell structure, biomolecules’ loss of function and cell death and are associated with liver diseases. Cells that survive increased ROS often undergo malignant transformation. Many cancer cells tolerate high levels of ROS. Here we report a transiently increased production of H2O2 and concomitant upregulation of antioxidative enzymes triggered by hepatocyte isolation; the H2O2 levels revert in about two days in culture. Three-day survival rate of the isolated cells in the presence of 2.5-fold increase of H2O2 is almost 80%. Apoptosis activation through the mitochondrial pathway is meanwhile reduced by inhibition of caspase-9 triggering. This reduction depends on the amount of H2O2 production, as decreased production of H2O2 in the presence of an antioxidant results in increased apoptosis triggering. These stress adaptations do not influence urea production, which is unchanged throughout the normal and stress adapted phases. We conclude that hepatocytes’ stress adaptation is mediated by increased ROS production. In this case, high ROS improve cell survival.


2010 ◽  
Vol 105 (6) ◽  
pp. 827-835 ◽  
Author(s):  
Som Dev ◽  
Nissar Ahmad Wani ◽  
Jyotdeep Kaur

Folic acid is essential for numerous biological functions, ranging from nucleotide biosynthesis to the remethylation of homocysteine. Folic acid is unable to cross the biological membranes by simple diffusion, so there exists a well-developed epithelial folate transport system for the regulation of normal folate homeostasis in the intestine. Any perturbances in the folate uptake system might lead to a state of folate deficiency, which in turn is strongly associated with the risk of various cancers, birth defects and CVD. Countries with obligatory folate fortification of food (USA and Canada) have documented a significant decrease in neural tube defects in newborns. However, the effect of folate oversupplementation on the intestinal absorption of folic acid has not been studied. We studied the process of folate transport and the expression of folate transporters in the rat intestine after folate oversupplementation. Rats were oversupplemented with tenfold the normal requirement of folic acid for periods of 10 and 60 d. Folate uptake in intestinal brush-border membrane vesicles followed saturable kinetics with pH optimum at 5·5. Acute, but not chronic, folate oversupplementation led to a significant down-regulation in intestinal folate uptake at acidic pH optima and was associated with a decrease in Vmax without any significant change in the Km of the folate uptake process. The decrease in folate uptake was also associated with the down-regulation in the protein levels of major folate transporters, proton-coupled folate transporter (PCFT) and reduced folate carrier (RFC), without altering their mRNA levels. Hence, it was concluded that acute folate oversupplementation results in a significant decrease in intestinal folate uptake by down-regulating the expressions of RFC and PCFT, via some post-transcriptional or translational mechanisms.


Blood ◽  
2008 ◽  
Vol 112 (5) ◽  
pp. 2081-2088 ◽  
Author(s):  
Belinda K. Singleton ◽  
Nicholas M. Burton ◽  
Carole Green ◽  
R. Leo Brady ◽  
David J. Anstee

Abstract Comparison of normal erythroblasts and erythroblasts from persons with the rare In(Lu) type of Lu(a-b-) blood group phenotype showed increased transcription levels for 314 genes and reduced levels for 354 genes in In(Lu) cells. Many erythroid-specific genes (including ALAS2, SLC4A1) had reduced transcript levels, suggesting the phenotype resulted from a transcription factor abnormality. A search for mutations in erythroid transcription factors showed mutations in the promoter or coding sequence of EKLF in 21 of 24 persons with the In(Lu) phenotype. In all cases the mutant EKLF allele occurred in the presence of a normal EKLF allele. Nine different loss-of-function mutations were identified. One mutation abolished a GATA1 binding site in the EKLF promoter (−124T>C). Two mutations (Leu127X; Lys292X) resulted in premature termination codons, 2 (Pro190LeufsX47; Arg319GlufsX34) in frameshifts, and 4 in amino acid substitution of conserved residues in zinc finger domain 1 (His299Tyr) or domain 2 (Arg328Leu; Arg328His; Arg331Gly). Persons with the In(Lu) phenotype have no reported pathology, indicating that one functional EKLF allele is sufficient to sustain human erythropoiesis. These data provide the first description of inactivating mutations in human EKLF and the first demonstration of a blood group phenotype resulting from mutations in a transcription factor.


2021 ◽  
Author(s):  
Stella Prins ◽  
Valentina Corradi ◽  
David N. Sheppard ◽  
D. Peter Tieleman ◽  
Paola Vergani

AbstractDeletion of phenylalanine 508 (F508del), in the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel, is the most common cause of cystic fibrosis (CF). F508 is located on nucleotide-binding domain 1 (NBD1) in contact with cytosolic extensions of transmembrane helices, in particular intracellular loop 4 (ICL4). We carried out a mutagenesis scan of ICL4 by introducing five or six second-site mutations at eleven positions in cis with F508del, and quantifying changes in membrane proximity and ion-channel function of CFTR. The scan strongly validated the effectiveness of R1070W at rescuing F508del defects. Molecular dynamics simulations highlighted two features characterizing the ICL4/NBD1 interface of F508del/R1070W-CFTR: flexibility, with frequent transient formation of interdomain hydrogen bonds, and loosely stacked aromatic sidechains, (F1068, R1070W, and F1074, mimicking F1068, F508 and F1074 in wild-type CFTR). F508del-CFTR had a distorted aromatic stack, with F1068 displaced towards space vacated by F508. In F508del/R1070F-CFTR, which largely retained F508del defects, R1070F could not form hydrogen bonds, and the interface was less flexible. Other ICL4 second-site mutations which partially rescued F508del-CFTR are F1068M and F1074M. Methionine side chains allow hydrophobic interactions without the steric rigidity of aromatic rings, possibly conferring flexibility to accommodate the absence of F508 and retain a dynamic interface. Finally, two mutations identified in a yeast scan (A141S and R1097T, on adjacent transmembrane helices linked to ICL1 and ICL4) also partially rescued F508del-CFTR function. These studies highlight the importance of hydrophobic interactions and conformational flexibility at the ICL4/NBD1 interface, advancing understanding of the structural underpinning of F508del dysfunction.


Sign in / Sign up

Export Citation Format

Share Document