scholarly journals The prolyl isomerase Pin1 acts as a novel molecular switch for TNF-α–induced priming of the NADPH oxidase in human neutrophils

Blood ◽  
2010 ◽  
Vol 116 (26) ◽  
pp. 5795-5802 ◽  
Author(s):  
Tarek Boussetta ◽  
Marie-Anne Gougerot-Pocidalo ◽  
Gilles Hayem ◽  
Silvia Ciappelloni ◽  
Houssam Raad ◽  
...  

Abstract Neutrophils play a key role in host defense by releasing reactive oxygen species (ROS). However, excessive ROS production by neutrophil nicotinamide adenine dinucleotide phosphate (NADPH) oxidase can damage bystander tissues, thereby contributing to inflammatory diseases. Tumor necrosis factor-α (TNF-α), a major mediator of inflammation, does not activate NADPH oxidase but induces a state of hyperresponsiveness to subsequent stimuli, an action known as priming. The molecular mechanisms by which TNF-α primes the NADPH oxidase are unknown. Here we show that Pin1, a unique cis-trans prolyl isomerase, is a previously unrecognized regulator of TNF-α–induced NADPH oxidase hyperactivation. We first showed that Pin1 is expressed in neutrophil cytosol and that its activity is markedly enhanced by TNF-α. Inhibition of Pin1 activity with juglone or with a specific peptide inhibitor abrogated TNF-α–induced priming of neutrophil ROS production induced by N-formyl-methionyl-leucyl-phenylalanine peptide (fMLF). TNF-α enhanced fMLF-induced Pin1 and p47phox translocation to the membranes and juglone inhibited this process. Pin1 binds to p47phox via phosphorylated Ser345, thereby inducing conformational changes that facilitate p47phox phosphorylation on other sites by protein kinase C. These findings indicate that Pin1 is critical for TNF-α–induced priming of NADPH oxidase and for excessive ROS production. Pin1 inhibition could potentially represent a novel anti-inflammatory strategy.

2007 ◽  
Vol 293 (3) ◽  
pp. H1847-H1852 ◽  
Author(s):  
Shuzhuang Li ◽  
Xiangying Jiao ◽  
Ling Tao ◽  
Huirong Liu ◽  
Yue Cao ◽  
...  

Mechanical traumatic injury causes cardiomyocyte apoptosis and cardiac dysfunction. However, the signaling mechanisms leading to posttraumatic cardiomyocyte apoptosis remains unclear. The present study attempted to identify the molecular mechanisms responsible for cardiomyocyte apoptosis induced by trauma. Normal cardiomyocytes (NC) or traumatic cardiomyocytes (TC; isolated immediately after trauma) were cultured with normal plasma (NP) or traumatic plasma (TP; isolated 1.5 h after trauma) for 12 h, and apoptosis was determined by caspase-3 activation. Exposure of TC to NP failed to induce significant cardiomyocyte apoptosis. In contrast, exposure of NC to TP resulted in a greater than twofold increase in caspase-3 activation ( P < 0.01). Incubation of cardiomyocytes with cytomix (a mixture of TNF-α, IL-1β, and IFN-γ) or TNF-α alone, but not with IL-1β or IFN-γ alone, caused significant caspase-3 activation ( P < 0.01). TP-induced caspase-3 activation was virtually abolished by an anti-TNF-α antibody, and TP isolated from TNF-α−/− mice failed to induce caspase-3 activation. Moreover, incubation of cardiomyocytes with TP upregulated inducible nitric oxide (NO) synthase (iNOS)/NADPH oxidase expression, increased NO/superoxide production, and increased cardiomyocyte protein nitration (measured by nitrotyrosine content). These oxidative/nitrative stresses and the resultant cardiomyocyte caspase-3 activation can be blocked by neutralization of TNF-α (anti-TNF-α antibody), inhibition of iNOS (1400W), or NADPH oxidase (apocynin) and scavenging of peroxynitrite (FP15) ( P < 0.01). Taken together, our study demonstrated that there exists a TNF-α-initiated, cardiomyocyte iNOS/NADPH oxidase-dependent, peroxynitrite-mediated signaling pathway that contributes to posttraumatic myocardial apoptosis. Therapeutic interventions that block this signaling cascade may attenuate posttraumatic cardiac injury and reduce the incidence of secondary organ dysfunction after trauma.


2019 ◽  
Vol 19 (3) ◽  
pp. 247-258 ◽  
Author(s):  
Mahsa Hatami ◽  
Mina Abdolahi ◽  
Neda Soveyd ◽  
Mahmoud Djalali ◽  
Mansoureh Togha ◽  
...  

Objective: Neuroinflammatory disease is a general term used to denote the progressive loss of neuronal function or structure. Many neuroinflammatory diseases, including Alzheimer’s, Parkinson’s, and multiple sclerosis (MS), occur due to neuroinflammation. Neuroinflammation increases nuclear factor-κB (NF-κB) levels, cyclooxygenase-2 enzymes and inducible nitric oxide synthase, resulting in the release of inflammatory cytokines, such as interleukin-6 (IL-6), interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). It could also lead to cellular deterioration and symptoms of neuroinflammatory diseases. Recent studies have suggested that curcumin (the active ingredient in turmeric) could alleviate the process of neuroinflammatory disease. Thus, the present mini-review was conducted to summarize studies regarding cellular and molecular targets of curcumin relevant to neuroinflammatory disorders. Methods: A literature search strategy was conducted for all English-language literature. Studies that assessed the various properties of curcuminoids in respect of neuroinflammatory disorders were included in this review. Results: The studies have suggested that curcuminoids have significant anti- neuroinflammatory, antioxidant and neuroprotective properties that could attenuate the development and symptom of neuroinflammatory disorders. Curcumin can alleviate neurodegeneration and neuroinflammation through multiple mechanisms, by reducing inflammatory mediators (such as TNF-α, IL-1β, nitric oxide and NF-κB gene expression), and affect mitochondrial dynamics and even epigenetic changes. Conclusion: It is a promising subject of study in the prevention and management of the neuroinflammatory disease. However, controlled, randomized clinical trials are needed to fully evaluate its clinical potential.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Wioletta Ratajczak-Wrona ◽  
Marzena Garley ◽  
Malgorzata Rusak ◽  
Karolina Nowak ◽  
Jan Czerniecki ◽  
...  

Abstract Background In the present study, we aimed to investigate selected functions of human neutrophils exposed to bisphenol A (BPA) under in vitro conditions. As BPA is classified among xenoestrogens, we compared its action and effects with those of 17β-estradiol (E2). Methods Chemotaxis of neutrophils was examined using the Boyden chamber. Their phagocytosis and nicotinamide adenine dinucleotide phosphate hydrogen (NADPH) oxidase activity were assessed via Park’s method with latex beads and Park’s test with nitroblue tetrazolium. To assess the total concentration of nitric oxide (NO), the Griess reaction was utilized. Flow cytometry was used to assess the expression of cluster of differentiation (CD) antigens. The formation of neutrophil extracellular traps (NETs) was analyzed using a microscope (IN Cell Analyzer 2200 system). Expression of the investigated proteins was determined using Western blot. Results The analysis of results obtained for both sexes demonstrated that after exposure to BPA, the chemotactic capacity of neutrophils was reduced. In the presence of BPA, the phagocytic activity was found to be elevated in the cells obtained from women and reduced in the cells from men. Following exposure to BPA, the percentage of neutrophils with CD14 and CD284 (TLR4) expression, as well as the percentage of cells forming NETs, was increased in the cells from both sexes. The stimulatory role of BPA and E2 in the activation of NADPH oxidase was observed only in female cells. On the other hand, no influence of E2 on the expression of CD14 and CD284, chemotaxis, phagocytosis, and the amount of NET-positive neutrophils was found for both sexes. The study further showed that BPA intensified NO production and iNOS expression in the cells of both sexes. In addition, intensified expression of all tested PI3K-Akt pathway proteins was observed in male neutrophils. Conclusions The study demonstrated the influence of BPA on neutrophil functions associated with locomotion and pathogen elimination, which in turn may disturb the immune response of these cells in both women and men. Analysis of the obtained data showed that the effect of this xenoestrogen on the human neutrophils was more pronounced than E2.


Blood ◽  
2006 ◽  
Vol 109 (7) ◽  
pp. 3084-3087 ◽  
Author(s):  
Lars C. Jacobsen ◽  
Kim Theilgaard-Mönch ◽  
Erik I. Christensen ◽  
Niels Borregaard

Abstract Arginase 1 (ARG1) metabolizes arginine, thus reducing the availability of arginine as a substrate for nitric oxide synthase (NOS). The decreased production of nitric oxide (NO) by NOS and the production of ornithine by ARG1 affect immune responses and tissue regeneration at sites of infection, respectively. We here demonstrate that ARG1 is synthesized in myelocytes/metamyelocytes and is stored in gelatinase granules. In accordance with this, activated neutrophils coreleased ARG1 and gelatinase to the extracellular environment on stimulation with phorbol-12-myristate 13-acetate (PMA), formyl-methionyl-leucyl-phenylalanine (fMLP), or tumor necrosis factor α (TNF-α). Overall, these findings define ARG1 as a genuine gelatinase granule protein and support a model in which activated neutrophils release ARG1 at sites of infection to modulate immune responses and promote tissue regeneration.


Antioxidants ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 530 ◽  
Author(s):  
Eugenie Mussard ◽  
Sundy Jousselin ◽  
Annabelle Cesaro ◽  
Brigitte Legrain ◽  
Eric Lespessailles ◽  
...  

Andrographis paniculata was widely used in traditional herbal medicine to treat various diseases. This study explored the potential anti-aging activity of Andrographis paniculata in cutaneous cells. Human, adult, low calcium, high temperature (HaCaT) cells were treated with methanolic extract (ME), andrographolide (ANDRO), neoandrographolide (NEO), 14-deoxyandrographolide (14DAP) and 14-deoxy-11,12-didehydroandrographolide (14DAP11-12). Oxidative stress and inflammation were induced by hydrogen peroxide and lipopolysaccharide/TNF-α, respectively. Reactive oxygen species (ROS) production was measured by fluorescence using a 2′,7′-dichlorofluorescein diacetate (DCFH-DA) probe and cytokines were quantified by ELISA for interleukin-8 (IL-8) or reverse transcription-quantitative polymerase chain reaction (RT-qPCR) for tumor necrosis factor-α (TNF-α). Hyaluronic acid (HA) secretion was determined by an ELISA. Our results show a decrease in ROS production and TNF-α expression by ME (5 µg/mL) in HaCaT under pro-oxidant and pro-inflammatory conditions, respectively. ME protected HaCaT against oxidative stress and inflammation. Our findings confirm that ME can be used for the development of bioactive compounds against epidermal damage.


Antioxidants ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 171 ◽  
Author(s):  
Anne D. Hafstad ◽  
Synne S. Hansen ◽  
Jim Lund ◽  
Celio X. C. Santos ◽  
Neoma T. Boardman ◽  
...  

Obesity and diabetes are independent risk factors for cardiovascular diseases, and they are associated with the development of a specific cardiomyopathy with elevated myocardial oxygen consumption (MVO2) and impaired cardiac efficiency. Although the pathophysiology of this cardiomyopathy is multifactorial and complex, reactive oxygen species (ROS) may play an important role. One of the major ROS-generating enzymes in the cardiomyocytes is nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2), and many potential systemic activators of NOX2 are elevated in obesity and diabetes. We hypothesized that NOX2 activity would influence cardiac energetics and/or the progression of ventricular dysfunction following obesity. Myocardial ROS content and mechanoenergetics were measured in the hearts from diet-induced-obese wild type (DIOWT) and global NOK2 knock-out mice (DIOKO) and in diet-induced obese C57BL/6J mice given normal water (DIO) or water supplemented with the NOX2-inhibitor apocynin (DIOAPO). Mitochondrial function and ROS production were also assessed in DIO and DIOAPO mice. This study demonstrated that ablation and pharmacological inhibition of NOX2 both improved mechanical efficiency and reduced MVO2 for non-mechanical cardiac work. Mitochondrial ROS production was also reduced following NOX2 inhibition, while cardiac mitochondrial function was not markedly altered by apocynin-treatment. Therefore, these results indicate a link between obesity-induced myocardial oxygen wasting, NOX2 activation, and mitochondrial ROS.


2007 ◽  
Vol 19 (1) ◽  
pp. 208
Author(s):  
N. W. K. Karja ◽  
K. Kikuchi ◽  
M. Ozawa ◽  
M. Fahrudin ◽  
T. Somfai ◽  
...  

Nicotinamide adenine dinucleotide phosphate-oxidase (NADPH oxidase), an enzyme required to catalyze the oxidation of NADPH to NADP during the metabolism of glucose via the pentose phosphate pathway (PPP), was considered as contributing to intracellular reactive oxygen species (ROS) production. Production of superoxide anion and H2O2 via NADPH oxidase has been reported on a rabbit blastocyst surface (Manes and Lai 1995 J. Reprod. Fertil. 104, 69–75). The objective of this study was to examine the effects on in vitro development and intracellular ROS content after the addition of diphenyleneiodonium (DPI), an inhibitor of NADPH oxidase, or dehydroepiandrosterone (DHEA), an inhibitor of glucose-6-phosphate dehydrogenase (G6PDH), to culture medium during the early embryonic development of in vitro-produced (IVP) porcine embryos. To confirm that these inhibitors lead to reduction in NADPH concentration in the embryo and hence likely to be inhibiting the PPP, a brilliant cresyl blue (BCB) test was performed on Day 2 (the day of insemination = Day 0) of culture. Porcine cumulus–oocyte complexes were matured and fertilized in vitro as described previously (Kikuchi et al. 2002 Biol. Reprod. 66, 1033–1041). Prezumptive zygotes were then cultured in NCSU-37 supplemented with 5.5 mM glucose and DPI at concentrations of 0.5 or 1 nM or DHEA at concentrations of 10 or 100 �M (DPI-0.5, DPI-1, DHEA-10 and DHEA-100 groups, respectively) from Day 0 to Day 2 of culture. All of the embryos were cultured subsequently until Day 6 in NCSU-37 supplemented with only 5.5 mM glucose. Data were analyzed by ANOVA. On Day 6, the development to the blastocyst stage of embryos in DPI-0.5, DPI-1, DHEA-10, and DHEA-100 groups were 16.1, 17.6, 16.1, and 19.5%, respectively, which were not significantly different from that of the control group (17.5%) (n d 165 per group, 5 replicates). However, the mean cell number in blastocysts derived from DPI-1, DHEA-10, and DHEA-100 groups (40.8 � 2.3, 39.3 � 1.7, and 42.5 � 2.7, respectively) was significantly higher (P &lt; 0.01) than those in the control (33.4 � 1.6) and DPI-0.5 (32.7 � 1.6) groups. At 20 min after an exposure to BCB, the percentage of BCB+ embryos in DPI-1, DHEA-10, and DHEA-100 groups (73.8, 79.9, and 77.8%, respectively) were significantly higher (P &lt; 0.01) than those in the control and DPI-0.5 groups (42% and 53.9%, respectively) (n = 81-92 per group, 6 replicates), indicating that these two inhibitors effectively induce the reduction of NADPH concentration in the embryos. Moreover, the addition of DPI at 1 nM or DHEA at 10 or 100 �M significantly decreased the H2O2 content of Day 2 embryos as compared with control embryos (n = 48-53 per group, 7 replicates). These results suggest that the addition of either DPI or DHEA to the medium during the first 2 days of culture did not impair the development of the embryos to the blastocyst stage. Decrease of cellular ROS production in Day 2 embryos in this study is interpreted as a result of inhibition of the NADPH oxidase by DPI or of the G6PDH by DHEA.


2019 ◽  
Vol 60 (1-2) ◽  
pp. 53-62
Author(s):  
Feifei Du ◽  
Yongzhi Wang ◽  
Zhiyi Ding ◽  
Matthias W. Laschke ◽  
Henrik Thorlacius

Background: Polyphosphates (PolyPs) have been reported to exert pro-inflammatory effects. However, the molecular mechanisms regulating PolyP-provoked tissue accumulation of leukocytes are not known. The aim of the present investigation was to determine the role of specific adhesion molecules in PolyP-mediated leukocyte recruitment. Methods: PolyPs and TNF-α were intrascrotally administered, and anti-P-selectin, anti-E-selectin, anti-P-selectin glycoprotein ligand-1 (PSGL-1), anti-membrane-activated complex-1 (Mac-1), anti-lymphocyte function antigen-1 (LFA-1), and neutrophil depletion antibodies were injected intravenously or intraperitoneally. Intravital microscopy of the mouse cremaster microcirculation was used to examine leukocyte-endothelium interactions and recruitment in vivo. Results: Intrascrotal injection of PolyPs increased leukocyte accumulation. Depletion of neutrophils abolished PolyP-induced leukocyte-endothelium interactions, indicating that neutrophils were the main leukocyte subtype responding to PolyP challenge. Immunoneutralization of P-selectin and PSGL-1 abolished PolyP-provoked neutrophil rolling, adhesion, and emigration. Moreover, immunoneutralization of Mac-1 and LFA-1 had no impact on neutrophil rolling but markedly reduced neutrophil adhesion and emigration evoked by PolyPs. Conclusion: These results suggest that P-selectin and PSGL-1 exert important roles in PolyP-induced inflammatory cell recruitment by mediating neutrophil rolling. In addition, our data show that Mac-1 and LFA-1 are necessary for supporting PolyP-triggered firm adhesion of neutrophils to microvascular endothelium. These novel findings define specific molecules as potential targets for pharmacological intervention in PolyP-dependent inflammatory diseases.


2019 ◽  
Vol 10 ◽  
Author(s):  
Min Liu ◽  
Samia Bedouhene ◽  
Margarita Hurtado-Nedelec ◽  
Coralie Pintard ◽  
Pham My-chan Dang ◽  
...  

2017 ◽  
Vol 43 (6) ◽  
pp. 2170-2184 ◽  
Author(s):  
Jie Ma ◽  
Erich Gulbins ◽  
Michael J. Edwards ◽  
Charles C. Caldwell ◽  
Martin Fraunholz ◽  
...  

Background/Aims: Staphylococcus aureus (S. aureus) infections are a major clinical problem and range from mild skin and soft-tissue infections to severe and even lethal infections such as pneumonia, endocarditis, sepsis, osteomyelitis, and toxic shock syndrome. Toxins that are released from S. aureus mediate many of these effects. Here, we aimed to identify molecular mechanisms how α-toxin, a major S. aureus toxin, induces inflammation. Methods: Macrophages were isolated from the bone marrow of wildtype and acid sphingomyelinase-deficient mice, stimulated with S. aureus α-toxin and activation of the acid sphingomyelinase was quantified. The subcellular formation of ceramides was determined by confocal microscopy. Release of cathepsins from lysosomes, activation of inflammasome proteins and formation of Interleukin-1β (IL-1β) and Tumor Necrosis Factor-α (TNF-α) were analyzed by western blotting, confocal microscopy and ELISA. Results: We demonstrate that S. aureus α-toxin activates the acid sphingomyelinase in ex vivo macrophages and triggers a release of ceramides. Ceramides induced by S. aureus α-toxin localize to lysosomes and mediate a release of cathepsin B and D from lysosomes into the cytoplasm. Cytosolic cathepsin B forms a complex with Nlrc4. Treatment of macrophages with α-toxin induces the formation of IL-1β and TNF-α. These events are reduced or abrogated, respectively, in cells lacking the acid sphingomyelinase and upon treatment of macrophages with amitriptyline, a functional inhibitor of acid sphingomyelinase. Pharmacological inhibition of cathepsin B prevented activation of the inflammasome measured as release of IL-1β, while the formation of TNF-α was independent of cathepsin B. Conclusion: We demonstrate a novel mechanism how bacterial toxins activate the inflammasome and mediate the formation and release of cytokines: S. aureus α-toxin triggers an activation of the acid sphingomyelinase and a release of ceramides resulting in the release of lysosomal cathepsin B and formation of pro-inflammatory cytokines.


Sign in / Sign up

Export Citation Format

Share Document