scholarly journals Activation of Hottip lncrna Perturbs HSC Function Leading to AML like Disease in Mice

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3877-3877
Author(s):  
Huacheng Luo ◽  
Ganqian Zhu ◽  
Jie Zha ◽  
Bowen Yan ◽  
Ying Guo ◽  
...  

Abstract Several HOX loci associated long noncoding RNAs (lncRNAs) have been shown to regulate transcription of HOX genes through influencing epigenetic landscape. Especially, the posterior HOXA domain associated lncRNA HOTTIP acts as an epigenetic regulator that recruits WDR5/MLL complex to coordinate active chromatin modifications and HOXA genes expression in the development of animal digits. Despite HOX genes, especially HOXA genes, are highly expressed in many acute myeloid leukemia (AML) patients, it remains largely unknown whether and how HOTTIP lncRNA regulates hematopoietic stem cell (HSC) function and contributes to leukemogenesis. We showed previously that disruption of the CTCF boundary located between HOXA7 and HOXA9 genes (CBS7/9) resulted in reduced lncRNA HOTTIP and HOXA genes expression in MLL rearranged AML suggesting that HOTTIP may play a role in ectopic expression of the posterior HOXA gene. We employed a pooled CRISPR-Cas9 KO library to specifically screen lncRNAs in four HOX gene loci and identify HOTTIP as acritical regulator in controlling oncogenic HOX chromatin signature and associated gene expression patterns in AML by collaborating with posterior HOXA chromatin boundary. HOTTIP is upregulated in AML patients with MLL-rearrangement or NPM1 mutation. AML patients with high HOTTIP expression exhibits a significantly shortened survival compared to low HOTTIP expressing patients. To test whether HOTTIP acts to coordinate posterior chromatin domain and HOXA genes activation in AML, we manipulated HOTTIP lncRNA expression levels in the MLL-AF9 rearranged MOLM13 by loss-of-function KO and gain-of function rescue, as well as carried out genome wide chromatin and transcriptomic analysis to intterrogate the role of HOTTIP in control of AML specific posterior HOXA chromatin domain. We found that knock-out of HOTTIP lncRNA led to a loss of active chromatin structure and invasion of repressive H3K27me3 mark over the posterior HOXA domain. HOTTIP KO attenuated progression of AML in the transplanted AML mouse model resembling the effect of CBS7/9 boundary disruption, while transcriptional activation of HOTTIP lncRNA in the CBS7/9 boundary-disrupted AML cells restored HOXA locus chromatin signature and gene expression as well as reversed the CBS7/9-mediated anti-leukemic effects. To further determine the role of HOTTIP lncRNA in regulating HSC function and leukemogenesis, we generated transgenic mice that expresses Hottip lncRNA under the control of the hematopoietic specific Vav1 enhancer and promoter. The Hottip transgenic (Tg) mice exhibited increased WBC and neutrophil counts and developed splenomegaly indicating that enforced expression of Hottip lncRNA resulted in perturbation of hematopoiesis. Furthermore, overexpression of Hottip lncRNA in mice bone marrow hematopoietic compartment strongly perturbed hematopoietic stem and progenitor cell (HSC/HPC) function by altering self-renewal and differentiation property of HSC/HPCs through affecting homeotic gene associated oncogenic transcription program. Approximately 20% of Hottip lncRNA transgenic mice developed abnormal hematopoietic phenotypes resembling AML-like disease. RNA-seq and ATAC-seq analysis indicated that overexpression of Hottip enhanced promoter chromatin accessibility and stimulates transcription of genes and pathways involved in HSC function and leukemogenesis, including WNT signaling, hematopoietic cell lineage, cell cycle, Hoxa9, Hoxa13, and Meis1, Runx1, and Twist1 genes. Thus, Hottip lncRNA overexpression acts as an oncogenic event to promote HSC self-renewal and HPC proliferation by reprograming leukemic associated chromatin signature and transcription programs. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 876-876
Author(s):  
Katerina Rejlova ◽  
Karolina Kramarzova ◽  
Meritxell Alberich-Jorda ◽  
Karel Fiser ◽  
Marketa Zaliova ◽  
...  

Abstract Homeobox genes (HOX) encode transcription factors that are frequently deregulated in leukemias. Our previous findings described that HOX gene expression differs among genetically characterized subtypes of pediatric AML with PML-RARa+ patients having the lowest overall HOX gene expression. We observed that HOX gene expression positively correlated with expression of histone 3 lysine 27 (H3K27) demethylases JMJD3 and UTX and negatively with DNA methyltransferase DNMT3b. Interestingly, it has been shown that JMJD3 is a direct target of PML-RARa protein (Martens, JH et al, 2010, Cancer Cell). These findings led us to postulate the hypothesis that reduced levels of HOX genes in PML-RARa+ AML can be caused by the suppressed expression of histone demethylases, such as JMJD3 and UTX, resulting in increased H3K27 methylation and transcription inhibition. We chose PML-RARa+ NB4 cell line to study the role of PML-RARa fusion gene in the regulation of HOX gene expression. To inhibit the effect of PML-RARa we used all-trans retinoic acid (ATRA; 1 uM, 10 uM) which was described to release the block caused by this fusion protein. Expression of particular HOX genes (e.g., HOXA1, HOXA3, HOXA5, HOXA7) together with that of JMJD3 and UTX assessed by qPCR was significantly elevated after ATRA treatment, while gene expression of DNMT3b was decreased. To test whether the reduction in HOX gene expression is directly related to the levels of JMJD3 and UTX, we cultured NB4 cells with a specific inhibitor of these histone demethylases, GSK-J4 (1 uM, 10 uM), in combination with ATRA. This co-treatment led to inhibition of JMJD3 and UTX proteins, followed by significant reduction of HOX genes expression (e.g., HOXA1, HOXA3, HOXA5, HOXA7). This result supports our hypothesis that HOX genes expression is directly related to JMJD3/UTX activity. To determine the effect of ATRA and GSK-J4 on histone marks we have isolated histones by acid extraction and detected the levels of histones by western blot in NB4 ATRA or GSK-J4/ATRA treated cells. We observed that the level of repressive histone methylation mark (trimethylated H3K27; H3K27me3) was decreased after ATRA treatment (activation of JMJD3/UTX) and increased after GSK-J4/ATRA co-treatment (inhibition of JMJD3/UTX). The opposite effect was observed in active histone methylation marks where di- and tri-methylated H3K4 (H3K4me2, H3K4me3) increased after ATRA treatment and decreased after GSK-J4/ATRA co-treatment. H3K9 dimethylated (another repressive histone methylation mark) levels did not change. Next, to investigate the histone code directly in particular HOX genes regions we performed chromatin immunoprecipitation (ChIP) assays. We studied the presence of H3K27me3 and H3K4me2 in 5´UTR genomic region of particular HOX genes (HOXA1, HOXA2, HOXA3, HOXA5, HOXA7) in cells treated with ATRA alone or in the combination with GSK-J4. Preliminary results showed reduction in repressive marks (H3K27me3) upon ATRA treatment, whereas addition of GSK-J4 prevented this decrease. Accordingly, we observed that ATRA/GSK-J4 co-treatment reduced active histone mark H3K4me2. To evaluate the role of DNA methylation in observed expression changes after ATRA treatment we performed bisulfite sequencing of particular promoter sites of HOX genes (e.g., HOXA7, HOXA5). Although we detected decreased DNMT3b gene expression after ATRA treatment there was no change in DNA methylation of CpGs in studied regions. Our results demonstrate that changes in chromatin activity correspond with changes in HOX gene expression. Moreover, ChIP data show direct binding of the modified histones and HOX 5´UTR sites. Our data implicate histone demethylases in regulation of HOX gene expression in PML-RARa+ leukemic blasts. DNA methylation in these particular HOX genes is not involved in the regulation. Elucidating the mechanism of regulation of HOX genes expression can help to understand their role in the leukemogenic process. Supported by GACR P304/12/2214 and GAUK 568213. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2473-2473
Author(s):  
Rebecca Murdaugh ◽  
Kevin Hoegenauer ◽  
Xiangguo Shi ◽  
Ayumi Kitano ◽  
Richard Chapple ◽  
...  

The adult hematopoietic system is sustained by a balance of self-renewal and differentiation in a small pool of stem and progenitor cells. This balance must be maintained to ensure a continuous supply of blood cells throughout life and prevent malignancy from arising. There are many facets of epigenetic regulation that are well known to be key components of healthy and diseased hematopoiesis, such as DNA methylation and histone post-translational modifications. However, the role of histone variant incorporation in hematopoiesis remains relatively unexplored. In this study, we explore the role of histone variant H3.3 regulation in the hematopoietic system by assessing the function of the histone H3.3 chaperone, Hira. Toward this goal, we use inducible and early developmental conditional knockout (cKO) mouse models to assess the role of Hira within the hematopoietic system. Following Hira cKO early in hematopoietic development (Vav-iCre; Hirafl/fl), we find that HSPCs are unaffected in the fetal liver but deplete quickly after homing to the bone marrow. Using polyinosinic-polycytidylic (pIpC) inducible Hira cKO mice (Mx1-Cre; Hirafl/fl), we find a similarly severe depletion of HSPCs in adult mice within 1 month after Hira loss. In contrast, differentiated cells remain largely unaffected following Hira cKO, demonstrating that Hira is especially important in the hematopoietic stem and progenitor compartment. Since Hira is known to incorporate H3.3 throughout the cell cycle and not just during S-phase like H3.1/2, we hypothesized that adult HSPCs are more dependent upon Hira to regulate histone H3 dynamics since they are slowly dividing. The loss of Hira-mediated H3.3 deposition would also be particularly detrimental to the function of these cells given its association with actively transcribed and bivalent genes. To test the role of Hira in maintaining gene expression patterns, we performed bulk RNA-seq on adult HSPCs and found that hematopoietic differentiation genes are dysregulated after Hira cKO with increased erythroid lineage and decreased lymphoid lineage gene expression. We then assessed gene expression changes in Hira cKO HSPCs in a doxycycline-inducible H2B-GFP background (Mx1-Cre; Hirafl/fl; R26-M2rtTa; TetOP-H2B-GFP) to distinguish between the gene expression changes caused by Hira loss before and after cell division. In the absence of Hira-mediated H3.3 incorporation, we expect some highly expressed genes in slowly dividing adult HSPCs to be affected by Hira loss prior to cell division due to nucleosome turnover in the wake of RNA Polymerase II. At other loci, like bivalent promoters, H3.3 would be diluted after cell division by H3.1/2 during S-phase in Hira cKO HSPCs. In support of this hypothesis, we found that increased expression of the erythroid differentiation gene Klf1 in Hira cKO MPPs after cell division (H2B-GFPLow) relative to Hira cKO MPPs before division (H2B-GFPHigh) and WT MPPs that have divided (H2B-GFPLow). The findings from both of these transcriptome analyses point toward a role of Hira in regulating HSPC differentiation genes and are supported by our in vitro and in vivo data showing increased differentiation of Hira cKO HSPCs and decreased self-renewal. In order to more fully understand the H3.3-dependent gene expression changes after Hira cKO in HSPCs, we correlated H3.3 enrichment patterns from chromatin-immunoprecipitation and sequencing (ChIP-seq) with our data from assay for transposase-accessible chromatin and sequencing (ATAC-seq). Our results demonstrate that Hira cKO HSPCs have more open chromatin and fewer H3.3 peaks, suggesting that loss of Hira-mediated H3.3 deposition increases DNA accessibility. This study identifies a novel epigenetic mechanism required for adult HSPC maintenance and elucidates a previously unappreciated regulator of normal hematopoietic homeostasis. Further understanding how Hira-mediated H3.3 regulation maintains adult HSPCs will provide greater depth to our current understanding of the epigenetic regulators essential for hematopoiesis. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 642-642
Author(s):  
Zanshe Thompson ◽  
Vera Binder ◽  
Michelle Ammerman ◽  
Ellen Durand ◽  
Leonard I. Zon ◽  
...  

Abstract Hematopoiesis is tightly regulated by a network of transcription factors and complexes that are required for the maintenance and development of HSCs. In a screen for epigenetic regulators of hematopoiesis in zebrafish, we identified a requirement of the tumor suppressor protein, Ing4, in hematopoietic stem and progenitor cell (HSPC) specification. Though the Ing4 mechanism of action remains poorly characterized, it has been shown to promote stem-like cell characteristics in malignant cells. This activity is, in part, due to the inhibitory role of Ing4 in the NF-kB signaling pathway. In the absence of Ing4, there is a significant increase in NF-kB target gene expression. As in the zebrafish, we have identified a requirement for Ing4 in murine hematopoiesis, where Ing4 deficiency impairs hematopoietic stem cell (HSC) function, but enhances multipotent progenitor cell (MPP) regenerative capacity. Given the role of Ing4 in both normal hematopoiesis and cancer, this gene likely has a critical role in regulation of stem cell self-renewal and maintenance. To define the role of Ing4 in zebrafish HSPCs, we designed an anti-sense morpholino oligo against Ing4 and injected into zebrafish embryos at the single cell stage. Embryos were screened using in situ hybridizations for c-myb and runx1 expression, which are highly expressed in the aorta, gonad, mesonephros (AGM) region in the developing zebrafish embryo. We found that Ing4-deficient zebrafish embryos lose >90% of runx1+/c-myb+ cells in the AGM, demonstrating a lack of HSPC specification. Analysis of ephrinB2 expression showed normal specification of the aorta in Ing4 morphant embryos, signifying that the step of HSPC specification is affected in the absence of Ing4. Overexpression of human Ing4 in zebrafish embryos resulted in increased HSPC marker staining suggesting that normal expression levels of Ing4 are required for HSC specification. As Ing4 is an epigenetic regulator that binds specific gene loci, we examined the chromatin occupancy of Ing4 in human peripheral blood CD34+ progenitor cells. Using ChIP-seq for Ing4 in CD34+ cells, we show that Ing4 binds to many regulators of blood development including MYB, LMO2, RUNX1, and IKAROS, and several NF-kB target genes. In other tissues, Ing4 negatively regulates NF-kB, so accordingly, loss of Ing4 results in an overabundance of NF-kB signaling. To address NF-kB target gene expression in Ing4-deficient zebrafish embryos, we performed qPCR analysis at 36hpf. These assays showed an increase in the expression of a subset of NF-kB target genes (IKBKE, IL-19, IL-1b, IL-20R). Simultaneous knockdown of both Ing4 and RelA, through combined morpholino injections against both factors, resulted in the rescue of HSC marker expression in the aorta. These results suggest that NF-kB inhibition could remediate the loss of Ing4. A mouse model for Ing4 deficiency was generated to further evaluate the role of Ing4 in differentiated immune cells. These mice are developmentally normal but are hypersensitive to stimulation with LPS. Interestingly, we found that Ing4-/- mice showed skewed hematopoiesis resulting in an increase in the number of short term-HSCs (ST-HSCs) (11.4% vs 31.7%) and a dramatic decrease in multipotent progenitor cells (MPPs) (47.9% vs 19.3%) along with concurrent modest increase in the population of long-term HSCs (LT-HSCs) (2.4% vs 5.5%). Additionally, there were alterations in stress hematopoiesis following hematopoietic stem cell transplant. Sorted LT-HSCs fail to engraft, suggesting an evolutionarily conserved requirement for Ing4 in HSCs. Surprisingly, competitive transplantation assay with Ing4-defecient MPPs versus wild-type showed dramatic increase in peripheral blood multilineage chimerism up to 9 months post-transplantation (19% vs. 59%). This lends to the hypothesis that Ing4 deficient MPPs gain self-renewal capabilities. Based on these exciting findings, we hypothesize that Ing4 normally functions as a critical suppressor for genes required for self-renewal and developmental potency in MPPs. Overall, our findings suggest that Ing4 plays a crucial role in the regulation of hematopoiesis and provides key tools for further identification and characterization of Ing4 pathways and functions. Disclosures No relevant conflicts of interest to declare.


Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 667
Author(s):  
Meera Krishnan ◽  
Sahil Kumar ◽  
Luis Johnson Kangale ◽  
Eric Ghigo ◽  
Prasad Abnave

Adult stem cells (ASCs) are the undifferentiated cells that possess self-renewal and differentiation abilities. They are present in all major organ systems of the body and are uniquely reserved there during development for tissue maintenance during homeostasis, injury, and infection. They do so by promptly modulating the dynamics of proliferation, differentiation, survival, and migration. Any imbalance in these processes may result in regeneration failure or developing cancer. Hence, the dynamics of these various behaviors of ASCs need to always be precisely controlled. Several genetic and epigenetic factors have been demonstrated to be involved in tightly regulating the proliferation, differentiation, and self-renewal of ASCs. Understanding these mechanisms is of great importance, given the role of stem cells in regenerative medicine. Investigations on various animal models have played a significant part in enriching our knowledge and giving In Vivo in-sight into such ASCs regulatory mechanisms. In this review, we have discussed the recent In Vivo studies demonstrating the role of various genetic factors in regulating dynamics of different ASCs viz. intestinal stem cells (ISCs), neural stem cells (NSCs), hematopoietic stem cells (HSCs), and epidermal stem cells (Ep-SCs).


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 104-105
Author(s):  
Shihuan Kuang ◽  
Feng Yue ◽  
Stephanie Oprescu

Abstract Single Cell RNA-sequencing (scRNA-seq) is a powerful technique to deconvolute gene expression of various subset of cells intermingled within a complex tissue, such as the skeletal muscle. We first used scRNA-seq to understand dynamics of cell populations and their gene expression during muscle regeneration in murine limb muscles. This leads to the identification of a subset of satellite cells (the resident stem cells of skeletal muscles) with immune gene signatures in regenerating muscles. Next, we used scRNA-seq to examine gene expression dynamics of satellite cells at various status: quiescence, activation, proliferation, differentiation and self-renewal. This analysis uncovers stage-dependent changes in expression of genes related to lipid metabolism. Further analyses lead to the discovery of previously unappreciated dynamics of lipid droplets in satellite cells; and demonstrate that the abundance of the lipid droplets in newly divided satellite daughter cells is linked to cell fate segregation into differentiation versus self-renewal. Perturbation of lipid droplet dynamics through blocking lipolysis disrupts cell fate homeostasis and impairs muscle regeneration. Finally, we show that lipid metabolism regulates the function of satellite cells through two mechanisms. On one hand, lipid metabolism functions as an energy source through fatty acid oxidation (FAO), and blockage of FAO reduces energy production that is critical for satellite cell function. On the other hand, lipid metabolism generates bioactive molecules that influence signaling transduction and gene expression. In this scenario, lipid metabolism and FAO regulate the intracellular levels of acetyl-coA and selective acetylation of PAX7, a pivotal transcriptional factor underlying function of satellite cells. These results together reveal for the first time a critical role of lipid metabolism and lipid droplet dynamics in muscle satellite cell fate determination and regenerative function; and underscore a potential role of dietary fatty acids in satellite cell-dependent muscle development, growth and regeneration.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3921-3921
Author(s):  
Katerina Rejlova ◽  
Alena Musilova ◽  
Martina Slamova ◽  
Karel Fiser ◽  
Karolina Skvarova Kramarzova ◽  
...  

Abstract Homeobox genes (HOX) encode transcription factors that are frequently deregulated in leukemias. Our previous results showed that HOX gene expression differs among genetically characterized subtypes of pediatric acute myeloid leukemia (AML). Specifically, PML-RARa positive AML patients have overall lowest HOX gene expression which positively correlates with expression of histone 3 lysine 27 (H3K27) demethylases - JMJD3 and UTX and negatively with the expression of DNA methyltransferases - DNMT3a and DNMT3b. Interestingly, JMJD3 was already shown to be a direct target of PML-RARa protein (Martens, JH et al, 2010, Cancer Cell). From these findings we postulated a hypothesis that reduced levels of HOX genes in PML-RARa positive AML are a consequence of suppressed expression of histone demethylases resulting in increased H3K27 methylation and/or of elevated levels of DNMTs leading to de novoDNA methylation. We studied the role of histone demethylases and DNMTs in the regulation of HOX gene expression and the effect of treatment in PML-RARa positive cell lines (NB4 and ATRA-resistant clones NB4-LR2 and NB4-MR2). We treated NB4 cell line by all-trans retinoic acid (ATRA; 1uM), which was described to release the differentiation block caused by the presence of PML-RARa and to degrade the fusion protein. We observed that expression of particular HOX genes (HOXA1, HOXA3, HOXA4, HOXA5, HOXA7, HOXB4, HOXB6) measured by qPCR was significantly increased after ATRA treatment. While the level of JMJD3 was significantly increased upon ATRA treatment as well, the expression of UTX did not change. Furthermore, we detected significantly reduced expression of DNMT3b gene. To exclude a non-specific effect of ATRA, independent of PML-RARa, we used resistant clones LR2 and MR2 bearing mutations in retinoic acid-binding domain. HOX gene expression together with JMJD3, UTX and DNMT3b expression did not change upon ATRA treatment. These results confirm the PML-RARa-dependent regulation of HOX genes. To test the role of JMJD3 in the HOX gene expression regulation, we cultured NB4 cells with a specific inhibitor of histone demethylases, GSK-J4 (1 uM, 10 uM), in the presence of ATRA. The co-treatment caused significant decrease in the expression of studied HOX genes (HOXA1, HOXA3, HOXA5, HOXA7, HOXA10, HOXB4, HOXB6) in comparison to ATRA alone which supports the role of JMJD3 in the transcription regulation. Further, we performed chromatin immunoprecipitation (ChIP) to investigate if the changes of HOX gene expression upon ATRA and GSK-J4 treatment would correspond with changes of histone code on HOX gene promoter regions. ATRA treatment caused reduction of repressive histone mark (H3K27me3) on particular HOX gene promoters (HOXA1, HOXA3, HOXA5, HOXA7), by contrast, combinational treatment of ATRA and GSK-J4 reversed this effect. Accordingly, we detected that ATRA/GSK-J4 co-treatment reduced active histone mark H3K4me2. Next we were interested if JMJD3 inhibition would interfere with the differentiation effect of ATRA. As shown previously, ATRA treatment alone caused differentiation of NB4 cell line whereas the combination with GSK-J4 did not reduce the effect. Interestingly, in addition to differentiation it led cells to apoptosis. Combination of drugs (ATRA - 1uM, GSK-J4 - 1, 2, 5uM) increased significantly the percentage of dead cells in comparison to ATRA or GSK treatment alone (GSK-J4 alone vs in combination with ATRA, 1uM - 1.8 fold, 2uM - 2.2 fold, 5 uM - 2.3 fold increase). Next we measured apoptosis in resistant clones LR2 and MR2. In both cases the highest concentration used of GSK-J4 (5uM) in combination with ATRA caused significant increase of dead cells as well (LR2 - 2.1 fold, MR2 - 2.0 fold increase). Our results indicate that JMJD3 is responsible for the regulation of HOX gene expression in PML-RARa positive leukemia since changes of HOX gene expression correspond with histone modifications on the regions of HOX gene promoters. We assume that DNA methylation driven by DNMT3b can also participate in this process. Moreover, our findings demonstrate potential therapeutic implications of GSK-J4 inhibitor in combination with ATRA in patients with acute promyelocytic leukemia who are not responsive to ATRA monotherapy. Supported by P304/12/2214 and GAUK 196616 Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1204-1204
Author(s):  
Xi Jin ◽  
Tingting Qin ◽  
Nathanael G Bailey ◽  
Meiling Zhao ◽  
Kevin B Yang ◽  
...  

Abstract Activating mutations in RAS and somatic loss-of-function mutations in the ten-eleven translocation 2 (TET2) are frequently detected in hematologic malignancies. Global genomic sequencing revealed the co-occurrence of RAS and TET2 mutations in chronic myelomonocytic leukemias (CMMLs) and acute myeloid leukemias (AMLs), suggesting that the two mutations collaborate to induce malignant transformation. However, how the two mutations interact with each other, and the effects of co-existing RAS and TET2 mutations on hematopoietic stem cell (HSC) function and leukemogenesis, remains unknown. In this study, we generated conditional Mx1-Cre+;NrasLSL-G12D/+;Tet2fl/+mice (double mutant) and activated the expression of mutant Nras and Tet2 in hematopoietic tissues with poly(I:C) injections. Double mutant mice had significantly reduced survival compared to mice expressing only NrasG12D/+ or Tet2+/-(single mutants). Hematopathology and flow-cytometry analyses showed that these mice developed accelerated CMML-like phenotypes with higher myeloid cell infiltrations in the bone marrow and spleen as compared to single mutants. However, no cases of AML occurred. Given that CMML is driven by dys-regulated HSC function, we examined stem cell competitiveness, self-renewal and proliferation in double mutant mice at the pre-leukemic stage. The absolute numbers of HSCs in 10-week old double mutant mice were comparable to that observed in wild type (WT) and single mutant mice. However, double mutant HSCsdisplayed significantly enhanced self-renewal potential in colony forming (CFU) replating assays. In vivo competitive serial transplantation assays using either whole bone marrow cells or 15 purified SLAM (CD150+CD48-Lin-Sca1+cKit+) HSCs showed that while single mutant HSCs have increased competitiveness and self-renewal compared to WT HSCs, double mutants have further enhanced HSC competitiveness and self-renewal in primary and secondary transplant recipients. Furthermore, in vivo BrdU incorporation demonstrated that while Nras mutant HSCs had increased proliferation rate, Tet2 mutation significantly reduced the level of HSC proliferation in double mutants. Consistent with this, in vivo H2B-GFP label-retention assays (Liet. al. Nature 2013) in the Col1A1-H2B-GFP;Rosa26-M2-rtTA transgenic mice revealed significantly higher levels of H2B-GFP in Tet2 mutant HSCs, suggesting that Tet2 haploinsufficiency reduced overall HSC cycling. Overall, these findings suggest that hyperactive Nras signaling and Tet2 haploinsufficiency collaborate to enhance HSC competitiveness through distinct functions: N-RasG12D increases HSC self-renewal, proliferation and differentiation, while Tet2 haploinsufficiency reduces HSC proliferation to maintain HSCs in a more quiescent state. Consistent with this, gene expression profiling with RNA sequencing on purified SLAM HSCs indicated thatN-RasG12D and Tet2haploinsufficiencyinduce different yet complementary cellular programs to collaborate in HSC dys-regulation. To fully understand how N-RasG12D and Tet2dose reduction synergistically modulate HSC properties, we examined HSC response to cytokines important for HSC functions. We found that when HSCs were cultured in the presence of low dose stem cell factor (SCF) and thrombopoietin (TPO), only Nras single mutant and Nras/Tet2 double mutant HSCs expanded, but not WT or Tet2 single mutant HSCs. In the presence of TPO and absence of SCF, HSC expansion was only detected in the double mutants. These results suggest that HSCs harboring single mutation of Nras are hypersensitive to cytokine signaling, yet the addition of Tet2 mutation allows for further cytokine independency. Thus, N-RasG12D and Tet2 dose reduction collaborate to promote cytokine signaling. Together, our data demonstrate that hyperactive Nras and Tet2 haploinsufficiency collaborate to alter global HSC gene expression and sensitivity to stem cell cytokines. These events lead to enhanced HSC competitiveness and self-renewal, thus promoting transition toward advanced myeloid malignancy. This model provides a novel platform to delineate how mutations of signaling molecules and epigenetic modifiers collaborate in leukemogenesis, and may identify opportunities for new therapeutic interventions. Disclosures No relevant conflicts of interest to declare.


Author(s):  
Mays Abuhantash ◽  
Emma M. Collins ◽  
Alexander Thompson

Hematopoiesis, the process of blood formation, is controlled by a complex developmental program that involves intrinsic and extrinsic regulators. Blood formation is critical to normal embryonic development and during embryogenesis distinct waves of hematopoiesis have been defined that represent the emergence of hematopoietic stem or progenitor cells. The Class I family of homeobox (HOX) genes are also critical for normal embryonic development, whereby mutations are associated with malformations and deformity. Recently, members of the HOXA cluster (comprising 11 genes and non-coding RNA elements) have been associated with the emergence and maintenance of long-term repopulating HSCs. Previous studies identified a gradient of HOXA expression from high in HSCs to low in circulating peripheral cells, indicating their importance in maintaining blood cell numbers and differentiation state. Indeed, dysregulation of HOXA genes either directly or by genetic lesions of upstream regulators correlates with a malignant phenotype. This review discusses the role of the HOXA cluster in both HSC emergence and blood cancer formation highlighting the need for further research to identify specific roles of these master regulators in normal and malignant hematopoiesis.


2008 ◽  
Vol 28 (21) ◽  
pp. 6668-6680 ◽  
Author(s):  
Albertus T. J. Wierenga ◽  
Edo Vellenga ◽  
Jan Jacob Schuringa

ABSTRACT The level of transcription factor activity critically regulates cell fate decisions, such as hematopoietic stem cell (HSC) self-renewal and differentiation. We introduced STAT5A transcriptional activity into human HSCs/progenitor cells in a dose-dependent manner by overexpression of a tamoxifen-inducible STAT5A(1*6)-estrogen receptor fusion protein. Induction of STAT5A activity in CD34+ cells resulted in impaired myelopoiesis and induction of erythropoiesis, which was most pronounced at the highest STAT5A transactivation levels. In contrast, intermediate STAT5A activity levels resulted in the most pronounced proliferative advantage of CD34+ cells. This coincided with increased cobblestone area-forming cell and long-term-culture-initiating cell frequencies, which were predominantly elevated at intermediate STAT5A activity levels but not at high STAT5A levels. Self-renewal of progenitors was addressed by serial replating of CFU, and only progenitors containing intermediate STAT5A activity levels contained self-renewal capacity. By extensive gene expression profiling we could identify gene expression patterns of STAT5 target genes that predominantly associated with a self-renewal and long-term expansion phenotype versus those that identified a predominant differentiation phenotype.


Sign in / Sign up

Export Citation Format

Share Document