scholarly journals Metabolism of Acute Myeloid Leukemia Cell Lines Alters with Passage in 2D Culture and Remains Stable in 3D

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2787-2787
Author(s):  
Sophia Zemenides ◽  
Joana Dos Santos ◽  
Louise Enfield ◽  
Athanasios Mantalaris ◽  
Nicki Panoskaltsis

Abstract Acute Myeloid Leukemia (AML) is a heterogeneous and complex malignancy of the blood and bone marrow (BM). Current treatment options only cure 40% of patients under the age of 65 years and, over the age of 65 years only 10% will be cured. Hence, there is great urgency to further understand pathogenesis, optimize treatment and identify markers for diagnosis, prognosis and targets for novel therapies. It is increasingly evident that metabolism and BM microenvironment are key factors in AML pathogenesis and progression - entities that cannot be accurately investigated within current in vitro methods of two-dimensional (2D) culture. The metabolome is the final downstream product of gene transcription that also responds dynamically to its environment. Metabolomics is an established technique to identify biomarkers with prognostic relevance, such as 2-hydroxygluterate, an onco-metabolite derived from IDH mutations in AML. Targeting metabolic pathways such as oxidative phosphorylation, glycolysis and specific mutations that affect metabolism such as isocitrate dehydrogenase are currently being assessed in clinical trials. An in vitro system that could more accurately represent the in vivo BM may help optimise these metabolically-targeted regimens. Here we show that a previously established three-dimensional (3D) culture within our laboratory recapitulates elements of BM structure enabling long-term culture of AML cell lines without disrupting metabolism, as is the case with serial passage in 2D culture. Metabolism was assessed using gas chromatography-mass spectrometry (GC-MS) metabolomics analysis which reflects the phenotype of the leukemic cell lines. Porous polyurethane scaffolds were fabricated using dioxin by thermally induced phase separation as previously described; scaffolds have a pore size of 100-250µm and a porosity of 90-95% cut to 0.5cm3, coated with type I collagen and seeded with 0.5x106cells of either K562 (erythroleukemia) or HL-60 (promyelocytic leukemia) cells, after expansion in 2D culture. In parallel, 2D cultures of the same cell lines were maintained using passage every 2 days. K562 and HL-60 cells were cultured in IMDM, 1% penicillin and streptomycin and 20% or 10% foetal bovine serum, respectively. Serial sampling occurred at 4 time points over 21 days from 10 scaffolds of each condition. Cells were extracted from the 3D scaffolds using two techniques - needle extraction or TrypLE express (Thermo Fisher Scientific) to assess whether these physical or chemical extraction methods disrupt the metabolome. Once cells were extracted, they were suspended in methanol at 1x106cells/mL cold methanol for metabolite quenching; metabolites were subsequently extracted with methanol/water and derivatised with Methoxamine and N-Methyl-N-(trimethylsilyl)trifluoroacetamide. Metabolomics analysis was then performed using a Shimadzu QP2010 Ultra GC-MS machine detecting 138 metabolites including those of pertinent pathways: glycolysis, tricarboxylic acid, pentose phosphate, urea, glutaminolysis and amino acids. Bioinformatics analysis was performed with MeV TM4(http://mev.tm4.org). Using unsupervised clustering techniques, including hierarchical clustering and principal component analysis, we identified that the metabolome of TrypLE express and needle-extracted cells from 3D scaffolds have a similar metabolic signature and group closely with each other as well as with the metabolome of the seeded cells (day 0); they do not vary significantly over the 21 days of culture. Conversely, with each passage, the metabolomes of the 2D-cultured cells differ to those of day 0 and vary to each other over the same 21-day period. These results highlight limitations in the use of 2D cultures to address AML biology as metabolic changes with passage reflect change in phenotype. Based on these findings, we conclude that 3D cultures provide a more stable environment for leukemic cell culture and assessment of leukemia biology, irrespective of method of cell extraction. The 3D culture platform is more suited than standard 2D in vitro cultures to investigate metabolism, microenvironment and drug targets in AML. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4063-4063 ◽  
Author(s):  
Shiva Bamezai ◽  
Jing He ◽  
Deniz Sahin ◽  
Fabian Mohr ◽  
Fabio Ciccarone ◽  
...  

Abstract DNA methylation patterns are highly deregulated in human acute myeloid leukemia (AML) cases and stratify AML patient samples into different subgroup. AML1-ETO is the most commonly occurring fusion gene in AML and these AML cases exhibit an aberrant and distinct methylation pattern. So far, the underlying mechanisms for this are only poorly understood. The TET1 dioxygenase has recently emerged as an important epigenetic modifier: by catalyzing the conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) TET1 plays an important role in active demethylation, thereby regulating a variety of biological processes. It was linked to tumorigenesis based on the observation that its expression is frequently deregulated in solid cancer. However, the role of TET1 in AML1-ETO+ (AE+)human AML cases is yet unexplored. Using quantitative real time (qRT)- PCR we now show that AE+ AML is characterized by high and aberrant expression of TET1: the gene was significantly higher expressed in the majority of AE+ patients (n=7, p<0.01) compared to other AML subtypes such as inv(16) (n=11), PML-RARα+ (n=31), cytogenetically normal (CN)-AML patients (n=33) and CD34+ normal BM cells (n=4). This observation was consistent with published cDNA microarray data on large patient cohorts (Haferlach et al., JCO 2010, p<0.008 t-test, p<0.01 Anova) and recently published transcriptome data (TCGA) of AML patients. In contrast to TET1, TET2 and TET3 did not show significant higher expression in AE+ patients compared to other AML subtypes. In line with patient data, TET1 was highest expressed in the AE+ AML cell line KASUMI-1 and SKNO-1 compared to other AML cell lines (p<0.05 and n=3). Compared to normal CD34+ and myeloid (CD33+, CD15+ and CD14+) cells (n=3), TET1 was 10-fold and 16-fold higher expressed in AE+ patient samples (n= 7). Aberrant expression of TET1 in AE+ leukemic cells was associated with hypomethylation of its promoter and enrichment for H3K4me3 euchromatic marks at its promoter as determined by LC/MS and ChIP-qPCR respectively. Knockdown (KD) of TET1 mRNA using two short hairpin RNAs (shRNAs) in AE+ AML cell lines impaired their cell growth and clonogenicity by over 50% in vitro (n=3 and p<0.01). shRNA mediated depletion of TET1 did not impact the cell growth and clonogenicity of the TET1 negative cell line RAJI, ruling out off target effects of the shRNAs (n=3). In mice, KD of Tet1 in leukemic bone marrow cells expressing the truncated leukemogenic AML1-ETO9a (AE9a) fusion, dramatically inhibited cell growth (>60% compared to scrambled, n=3, p<0.01), clonogenicity (>50-70% reduction in primary CFCs, p<0.01, n=3) and importantly delayed onset of leukemia in vivo (median survival 35 days for scr vs 80 days for shRNA mice, n=4/arm, p<0.03). Tet1-knock-out c-kit+ hematopoietic stem and progenitor cells (HSPCs) transduced with AE9a showed reduced primary colony formation and impaired serial replanting capacity in vitro compared to AE9a transduced Tet1-wild-type HSPCs (>50% and >70%, respectively; p<0.001, n=3). Global analysis of 5hmC and 5mC levels using hMeDIP/MeDIP-seq performed on TET1 depleted KASUMI-1 cells revealed lower global 5hmC levels and increase in 5mC as compared to cells transduced with scrambled control (n=2). 3324 promoter regions lost 5hmC and gained 5mC upon TET1 depletion (-5kTSS, Fold enrichment cut off <2-fold, q-value<1e5). Recent studies have shown that PARP activity induces TET1 expression by regulating its promoter epigenetically. We could show that aberrant TET1 expression could be antagonized by the PARP inhibitor olaparib in AE+ leukemic cell lines. Furthermore, olaparib treatment decreased 5hmC levels and reduced cell growth and clonogenicity of human AE+ cell lines and of the murine AE9a+ leukemic cell line in vitro (n=3, p<0.01). In conclusion, our data indicates that aberrant TET1 expression contributes to the growth of AE+ AML by maintaining the 5-hydroxymethylome and that the PARP inhibitor olaparib can at least partially antagonize the oncogenic effect of TET in AML. Disclosures Mulaw: NuGEN: Honoraria. Buske:Celltrion, Inc.: Consultancy, Honoraria.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 938-938
Author(s):  
Michael Fiegl ◽  
Ismael J. Samudio ◽  
Karen Clise Dwyer ◽  
Jared Burks ◽  
Herbert Fritsche ◽  
...  

Abstract CXCR4, the receptor for bone marrow stroma derived SDF-1, has recently been studied in normal hematopoiesis and hematologic malignancies. Increased expression of CXCR4 by leukemic blasts has been reported by us and others (Konoplev S. et al, Cancer 2007) to be associated with poor prognosis in acute myeloid leukemia (AML). However, all in-vitro studies are usually carried out under unphysiological, i.e. normoxic (21% O2) conditions. We hypothesized that the pO2 in vitro has major impact on the expression of CXCR4, a key receptor for cell migration and intracellular signalling. Thus, pO2 of bone marrow aspirates was measured using the i-STAT Portable Clinical Analyzer and a hypoxic workstation was used providing constant low oxygen content. Surface and total CXCR4 expression was examined in leukemic cell lines and patient samples by flow cytometry, confocal microscopy and Western blotting (WB). In 19 patients, the median pO2 of the bone marrow was determined as 46.1±12.8 mmHg (6.1±1.7%) with no significant difference between patients with AML (n=7, pO2 41.3±11.2 mmHg) and patients in CR (n=12, pO2 48.3±15.9 mmHg). This level of hypoxia significantly increases surface and total expression of CXCR4 in the leukemic cell lines U937 and OCI-AML3 as well as in samples from patients with AML, as compared to normoxic conditions (~2.8fold increase). This increase happened mainly within the first 2–8 hours of hypoxia and was unrelated to increased CXCR4 transcription, as shown by PCR. Re-oxygenation of leukemic cells resulted in a statistical significant degradation of CXCR4 (~3fold decrease) in all examined cell lines and patient samples (n=10). This loss of CXCR4 is very rapid (within 5 minutes of re-oxygenation) and was detected by flow cytometry, confocal microscopy and WB. This phenomenon was independent of proteasome activity and ATP. Detailed analysis of membraneous lipid rafts by sucrose density separation, cholesterol depletion and flow cytometry analysis for GM1 gangliosides showed structural (distinct re-distribution of Lck in lipid rafts) and quantitative changes (loss of cholesterol and CXCR4) during re-oxygenation. Moreover, part of the loss of CXCR4 can be attributed to sequestration of microparticles into the extracellular environment as shown by WB of supernatant of re-oxygenated cells and by a significant increase (~1.5fold) in the amount of microparticles released by cells (cell lines U937 and OCI-AML3 and additional patient samples) during the process of re-oxygenation, as measured by flow cytometry. In summary, this study determined the oxygen content of CR and leukemic bone marrow samples as 6.1±1.7%. This pO2 is associated with an increase in CXCR4 expression on AML cells, while re-oxygenation leads to a rapid decrease of CXCR4, perhaps in part by shedding of CXCR4- containing microparticles. These studies point to the importance of studying leukemic blasts under physiologic, i.e. hypoxic conditions.


Author(s):  
Yudi Miao ◽  
Behnam Mahdavi ◽  
Mohammad Zangeneh

IntroductionThe present study investigated the anti-acute myeloid leukemia effects of Ziziphora clinopodides Lam leaf aqueous extract conjugated cadmium nanoparticles.Material and methodsTo synthesize CdNPs, Z. clinopodides aqueous extract was mixed with Cd(NO3)2 .4H2O. The characterization of the biosynthesized cadmium nanoparticles was carried out using many various techniques such as UV-Vis. and FT-IR spectroscopy, XRD, FE-SEM, and EDS.ResultsThe uniform spherical morphology of NPs was proved by FE-SEM images with NPs the average size of 26.78cnm. For investigating the antioxidant properties of Cd(NO3)2, Z. clinopodides, CdNPs, and Daunorubicin, the DPPH test was used. The cadmium nanoparticles inhibited half of the DPPH molecules in a concentration of 196 µg/mL. To survey the cytotoxicity and anti-acute myeloid leukemia effects of Cd(NO3)2, Z. clinopodides, CdNPs, and Daunorubicin, MTT assay was used on the human acute myeloid leukemia cell lines i.e., Murine C1498, 32D-FLT3-ITD, and Human HL-60/vcr. The IC50 of the cadmium nanoparticles was 168, 205, and 210 µg/mL against Murine C1498, 32D-FLT3-ITD, and Human HL-60/vcr cell lines, respectively. In the part of in vivo study, DMBA was used for inducing acute myeloid leukemia in mice. CdNPs similar to daunorubicin ameliorated significantly (p≤0.01) the biochemical, inflammatory, RBC, WBC, platelet, stereological, histopathological, and cellular-molecular parameters compared to the other groups.ConclusionsAs mentioned, the cadmium nanoparticles had significant anti-acute myeloid leukemia effects. After approving the above results in the clinical trial studies, these cadmium nanoparticles can be used as a chemotherapeutic drug to treat acute myeloid leukemia in humans.


2019 ◽  
Author(s):  
Yusuke Tarumoto ◽  
Shan Lin ◽  
Jinhua Wang ◽  
Joseph P. Milazzo ◽  
Yali Xu ◽  
...  

AbstractLineage-defining transcription factors (TFs) are compelling targets for leukemia therapy, yet they are among the most challenging proteins to modulate directly with small molecules. We previously used CRISPR screening to identify a Salt-Inducible Kinase 3 (SIK3) requirement for the growth of acute myeloid leukemia (AML) cell lines that overexpress the lineage TF MEF2C. In this context, SIK3 maintains MEF2C function by directly phosphorylating histone deacetylase 4 (HDAC4), a repressive cofactor of MEF2C. Here, we evaluated whether inhibition of SIK3 with the tool compound YKL-05-099 can suppress MEF2C function and attenuate disease progression in animal models of AML. Genetic targeting of SIK3 or MEF2C selectively suppressed the growth of transformed hematopoietic cells underin vitroandin vivoconditions. Similar phenotypes were obtained when exposing cells to YKL-05-099, which caused cell cycle arrest and apoptosis in MEF2C-expressing AML cell lines. An epigenomic analysis revealed that YKL-05-099 rapidly suppressed MEF2C function by altering the phosphorylation state and nuclear localization of HDAC4. Using a gatekeeper allele ofSIK3, we found that the anti-proliferative effects of YKL-05-099 occurred through on-target inhibition of SIK3 kinase activity. Based on these findings, we treated two different mouse models of MLL-AF9 AML with YKL-05-099, which attenuated disease progressionin vivoand extended animal survival at well-tolerated doses. These findings validate SIK3 as a therapeutic target in MEF2C-positive AML and provide a rationale for developing drug-like inhibitors of SIK3 for definitive pre-clinical investigation and for studies in human patients with leukemia.Key PointsAML cells are uniquely sensitive to genetic or chemical inhibition of Salt-Inducible Kinase 3in vitroandin vivo.A SIK inhibitor YKL-05-099 suppresses MEF2C function and AMLin vivo.


Nutrients ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2808 ◽  
Author(s):  
Ghanem ◽  
Zouein ◽  
Mohamad ◽  
Hodroj ◽  
Haykal ◽  
...  

Acute myeloid leukemia (AML) is a blood cancer characterized by the formation of faulty defective myelogenous cells with morphological heterogeneity and cytogenic aberrations leading to a loss of their function. In an attempt to find an effective and safe AML treatment, vitamin E derivatives, including tocopherols were considered as potential anti-tumor compounds. Recently, other isoforms of vitamin E, namely tocotrienols have been proposed as potential potent anti-cancerous agents, displaying promising therapeutic effects in different cancer types. In this study we evaluated the anti-cancerous effects of γ-tocotrienol, on AML cell lines in vitro. For this purpose, AML cell lines incubated with γ-tocotrienol were examined for their viability, cell cycle status, apoptotic cell death, DNA fragmentation, production of reactive oxygen species and expression of proapoptotic proteins. Our results showed that γ-tocotrienol exhibits time and dose-dependent anti-proliferative, pro-apoptotic and antioxidant effects on U937 and KG-1 cell lines, through the upregulation of proteins involved in the intrinsic apoptotic pathway.


Leukemia ◽  
2021 ◽  
Author(s):  
Madeline Niederkorn ◽  
Chiharu Ishikawa ◽  
Kathleen M. Hueneman ◽  
James Bartram ◽  
Emily Stepanchick ◽  
...  

AbstractUbiquitin-specific peptidase 15 (USP15) is a deubiquitinating enzyme implicated in critical cellular and oncogenic processes. We report that USP15 mRNA and protein are overexpressed in human acute myeloid leukemia (AML) as compared to normal hematopoietic progenitor cells. This high expression of USP15 in AML correlates with KEAP1 protein and suppression of NRF2. Knockdown or deletion of USP15 in human and mouse AML models significantly impairs leukemic progenitor function and viability and de-represses an antioxidant response through the KEAP1-NRF2 axis. Inhibition of USP15 and subsequent activation of NRF2 leads to redox perturbations in AML cells, coincident with impaired leukemic cell function. In contrast, USP15 is dispensable for human and mouse normal hematopoietic cells in vitro and in vivo. A preclinical small-molecule inhibitor of USP15 induced the KEAP1-NRF2 axis and impaired AML cell function, suggesting that targeting USP15 catalytic function can suppress AML. Based on these findings, we report that USP15 drives AML cell function, in part, by suppressing a critical oxidative stress sensor mechanism and permitting an aberrant redox state. Furthermore, we postulate that inhibition of USP15 activity with small molecule inhibitors will selectively impair leukemic progenitor cells by re-engaging homeostatic redox responses while sparing normal hematopoiesis.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1906-1906
Author(s):  
David S. Maxwell ◽  
Ashutosh Pal ◽  
Zhenghong Peng ◽  
Alexandr Shavrin ◽  
Stefan Faderl ◽  
...  

Abstract Inhibitors of c-Kit kinase have shown clinical relevance in various myeloid disorders, including acute myeloid leukemia (AML). Research in our lab has been oriented towards structure-based drug design of c-Kit inhibitors based on the available crystal structure. We describe the design, synthesis, and preliminary results from the in-vitro testing of several c-Kit kinase inhibitors in both enzymatic and cell-based assays. The design resulted from in-silico screening of several targeted libraries via docking to the crystal structure of c-Kit, followed by aggressive post-filtering by several criteria to significantly bias synthesis efforts towards candidate compounds with best chance for success. This led to 128 structures built from 8 common structural cores, from which 2 cores were initially selected based on the synthetic feasibility. Five compounds were initially synthesized, and were immediately followed by 60 compounds with variations to probe local structure-activity relationships. The initial set of compounds, designated APCKxxx, was tested in a c-Kit kinase assay; two compounds were found to have an IC50 in the high nM to low uM range. These compounds have been tested in a MTT-based assay using OCIM2 and OCI/AML3 cell lines. In the c-Kit expressing OCI/AML3 cell line, all five compounds possessed an EC50 < 500 nM and two had and EC50 ~100 nM. Our most recent results show that these compounds also show efficacy in some imatinib-resistant cell lines. We will discuss these results and our strategies for the second generation of compounds that are optimized for better activity, selectivity, and ADME properties.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 8-8 ◽  
Author(s):  
Claudia Scholl ◽  
Dimple Bansal ◽  
Konstanze Dohner ◽  
Karina Eiwen ◽  
Benjamin H. Lee ◽  
...  

Abstract The caudal-type homeobox transcription factor 2 (CDX2) plays an important role in embryonic development and regulates the proliferation and differentiation of intestinal epithelial cells in the adult. Ectopic expression of CDX2 in the hematopoietic compartment was previously identified as the key pathogenetic event in a single patient with acute myeloid leukemia (AML) and t(12;13)(p13;q12). Using real-time quantitative PCR, we detected aberrant CDX2 expression in 153 (90%) of 170 patients with AML, in patients with high-risk myelodysplastic syndrome or advanced-stage chronic myeloid leukemia, and in several AML cell lines, but not in bone marrow derived from normal individuals. Expression of CDX2 was monoallelic in the majority of cases with informative single-nucleotide polymorphisms in the CDX2 coding region, but was not related to mutations in the CDX2 coding region or in the predicted CDX2 promoter sequence, gene-specific hypomethylation of the CDX2 promoter, or increased CDX2 gene copy numbers. Stable knockdown of CDX2 expression by lentivirus-mediated RNA interference inhibited the proliferation of various human AML cell lines exhibiting CDX2 transcript levels that were in the range of those observed in most primary AML samples, and strongly reduced their clonogenic potential in vitro. Primary murine hematopoietic progenitor cells transduced with Cdx2 acquired serial replating activity in vitro, could be continuously propagated in liquid culture, generated a fully penetrant and transplantable AML in vivo, and displayed dysregulated expression of Hox family members. Together, these results (i) demonstrate that aberrant expression of CDX2 is a frequent event in myeloid leukemogenesis, (ii) suggest a role for CDX2 as part of a common effector pathway that increases the proliferative capacity and promotes the self-renewal potential of hematopoietic progenitors, and (iii) support the unifying hypothesis that CDX2 is responsible, at least in part, for abnormalities in HOX gene expression in AML.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1275-1275
Author(s):  
Sonja C Lück ◽  
Annika C Russ ◽  
Konstanze Döhner ◽  
Ursula Botzenhardt ◽  
Domagoj Vucic ◽  
...  

Abstract Abstract 1275 Poster Board I-297 Core binding factor (CBF) leukemias, characterized by translocations t(8;21) or inv(16)/t(16;16) targeting the core binding factor, constitute acute myeloid leukemia (AML) subgroups with favorable prognosis. However, 40-50% of patients relapse, and the current classification system does not fully reflect the heterogeneity existing within the cytogenetic subgroups. Therefore, illuminating the biological mechanisms underlying these differences is important for an optimization of therapy. Previously, gene expression profiling (GEP) revealed two distinct CBF leukemia subgroups displaying significant outcome differences (Bullinger et al., Blood 2007). In order to further characterize these GEP defined CBF subgroups, we again used gene expression profiles to identify cell line models similar to the respective CBF cohorts. Treatment of these cell lines with cytarabine (araC) revealed a differential response to the drug as expected based on the expression patterns reflecting the CBF subgroups. In accordance, the cell lines resembling the inferior outcome CBF cohort (ME-1, MONO-MAC-1, OCI-AML2) were less sensitive to araC than those modeling the good prognostic subgroup (Kasumi-1, HEL, MV4-11). A previous gene set enrichment analysis had identified the pathways Caspase cascade in apoptosis and Role of mitochondria in apoptotic signaling among the most significant differentially regulated BioCarta pathways distinguishing the two CBF leukemia subgroups. Thus, we concluded that those pathways might be interesting targets for specific intervention, as deregulated apoptosis underlying the distinct subgroups should also result in a subgroup specific sensitivity to apoptotic stimuli. Therefore, we treated our model cell lines with the Smac mimetic BV6, which antagonizes inhibitor of apoptosis (IAP) proteins that are differentially expressed among our CBF cohorts. In general, sensitivity to BV6 treatment was higher in the cell lines corresponding to the subgroup with good outcome. Time-course experiments with the CBF leukemia cell line Kasumi-1 suggested a role for caspases in this response. Interestingly, combination treatment of araC and BV6 in Kasumi-1 showed a synergistic effect of these drugs, with the underlying mechanisms being currently further investigated. Based on the promising sensitivity to BV6 treatment in some cell lines, we next treated mononuclear cells (mostly leukemic blasts) derived from newly diagnosed AML patients with BV6 in vitro to evaluate BV6 potency in primary leukemia samples. Interestingly, in vitro BV6 treatment also discriminated AML cases into two distinct populations. Most patient samples were sensitive to BV6 monotherapy, but about one-third of cases were resistant even at higher BV6 dosage. GEP of BV6 sensitive patients (at 24h following either BV6 or DMSO treatment) provided insights into BV6-induced pathway alterations in the primary AML patient samples, which included apoptosis-related pathways. In contrast to the BV6 sensitive patients, GEP analyses of BV6 resistant cases revealed no differential regulation of apoptosis-related pathways in this cohort. These results provide evidence that targeting deregulated apoptosis pathways by Smac mimetics might represent a promising new therapeutic approach in AML and that GEP might be used to predict response to therapy, thereby enabling novel individual risk-adapted therapeutic approaches. Disclosures Vucic: Genentech, Inc.: Employment. Deshayes:Genentech, Inc.: Employment.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1425-1425 ◽  
Author(s):  
Kim R Kampen ◽  
Arja ter Elst ◽  
André B Mulder ◽  
Megan E Baldwin ◽  
Klupacs Robert ◽  
...  

Abstract Abstract 1425 Previously, it was demonstrated that exogenous addition of vascular endothelial growth factor C (VEGFC) increased the leukemic cell viability, reduced apoptosis via activation of Bcl-2, and decreased chemotherapy induced apoptosis via its receptor FLT-4 (Further revert to as VEGFR3) (Dias et al. Blood 2002). Furthermore, it was shown that VEGFC promotes angiogenesis by induction of COX-2 through VEGFR3 activation in THP-1 cells (Chien et al. Carcinogenesis 2005). We have previously found that endogenous VEGFC expression is associated with decreased drug responsiveness in childhood acute myeloid leukemia (AML), both in vitro as well as in vivo (de Jonge et al. Clinical Cancer Research 2008). In addition, high VEGFC mRNA expression is strongly associated with reduced complete remission and overall survival in adult as well as pediatric AML (de Jonge et al. Blood 2010). It was thought that the leukemic blast population is organized as a hierarchy, whereby leukemia initiating cells (LICs) reside at the top of this hierarchy, and it is only these cells that have the capacity to engraft in non-obese diabetic/severe combined immunodeficient (NOD/SCID) mice. The LIC is thought to be enriched in the CD34+ leukemic cell fraction and is shown to expand in vitro using a myeloid cytokine mix of IL-3, TPO, and G-CSF in colony forming cell (CFC) assays and long-term culture-initiating cell (LTC-IC) assays (Guan et al. Exp. Hematol. 2002, van Gosliga et al. Exp. Hematol. 2007). Moreover, LTC-IC assays performed in limiting dilution detect the in vitro outgrowth potential of stem-like cells that reside underneath the stromal cell layer. In this study, we set out to investigate the potential of anti-VEGFC treatment as an inhibitor of the outgrowth of LICs within the CD34+ fraction of primary AML samples. First, we determined the possibility of an autocrine loop for VEGFC in AML. Pediatric AML cell (n=7) derived VEGFC levels were found to be 1.4-fold increased (P =.008) compared to secreted VEGFC levels from normal bone marrow (NBM) cells (n=4). Pediatric AML blast cells showed KDR (further revert to as VEGFR2) membrane expression in 44 out of 50 patient samples (varying 8–99% of the total blast population), whereas on NBM cells VEGFR2 expression was below 5%. VEGFR3 expression was below 5% on both leukemic blasts and NBM cells. We evaluated the effect of anti-VEGFC (VGX-100, kindly provided by Vegenics, used at a concentration of 30 μg/ml) treatment on the CD34+ isolated compartment of pediatric AML bone marrow samples. Anti-VEGFC treatment reduced the outgrowth potential of AML derived CD34+ cells (n=2) with >25% in CFC assays. Interestingly, morphological analysis revealed a 3-fold enhanced formation of macrophages. LTC-IC assays demonstrated a (15% to 50%) decrease in the long-term growth of CD34+ isolated AML cells in 3 out of 4 patient samples. Morphological characterization of the suspension cells suggested a shift in development along the myelomonocytic lineage after two weeks of anti-VEGFC treatment. With FACS analysis, these cells showed a higher number of cells stained positive for CD11b, and CD14, and lower numbers where positive for CD34. Anti-VEGFC treated LTC-IC assays in limiting dilution demonstrated a (44% and 74%) reduction in the outgrowth potential of long-term cultured CD34+ isolated AML cells and blocked the erythroid colony formation in 2 out of 3 patient samples. Anti-VEGFC treatment did not have an effect on the outgrowth of CD34+ sorted NBM cells in the various assays (n=2). In conclusion, anti-VEGFC treatment of the CD34+ isolated fraction from primary pediatric AML samples showed a reduction of AML outgrowth. Differentiating cells are skewed to the myelomonocytic lineage upon anti-VEGFC treatment. We hypothesize that deprivation of VEGFC in primary CD34+ AML cell cultures results in enhanced leukemic cell death and abates an important proliferation signal for AML cells. Yet, further investigations are warranted.Figure 1.Skewing of LTC-IC assay suspension cells towards the myelomonocytic lineage upon anti-VEGFC treatment. MGG stained cytospins of suspension cells of the LTC-IC co-culture obtained during demi-depopulation at week 2.Figure 1. Skewing of LTC-IC assay suspension cells towards the myelomonocytic lineage upon anti-VEGFC treatment. MGG stained cytospins of suspension cells of the LTC-IC co-culture obtained during demi-depopulation at week 2. Disclosures: Baldwin: Circadian Technologies Limited: Employment. Robert:Circadian Technologies Limited: Employment, Membership on an entity's Board of Directors or advisory committees.


Sign in / Sign up

Export Citation Format

Share Document