Structure-Based Drug Design of c-Kit Inhibitors for Use in the Treatment of Acute Myeloid Leukemia.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1906-1906
Author(s):  
David S. Maxwell ◽  
Ashutosh Pal ◽  
Zhenghong Peng ◽  
Alexandr Shavrin ◽  
Stefan Faderl ◽  
...  

Abstract Inhibitors of c-Kit kinase have shown clinical relevance in various myeloid disorders, including acute myeloid leukemia (AML). Research in our lab has been oriented towards structure-based drug design of c-Kit inhibitors based on the available crystal structure. We describe the design, synthesis, and preliminary results from the in-vitro testing of several c-Kit kinase inhibitors in both enzymatic and cell-based assays. The design resulted from in-silico screening of several targeted libraries via docking to the crystal structure of c-Kit, followed by aggressive post-filtering by several criteria to significantly bias synthesis efforts towards candidate compounds with best chance for success. This led to 128 structures built from 8 common structural cores, from which 2 cores were initially selected based on the synthetic feasibility. Five compounds were initially synthesized, and were immediately followed by 60 compounds with variations to probe local structure-activity relationships. The initial set of compounds, designated APCKxxx, was tested in a c-Kit kinase assay; two compounds were found to have an IC50 in the high nM to low uM range. These compounds have been tested in a MTT-based assay using OCIM2 and OCI/AML3 cell lines. In the c-Kit expressing OCI/AML3 cell line, all five compounds possessed an EC50 < 500 nM and two had and EC50 ~100 nM. Our most recent results show that these compounds also show efficacy in some imatinib-resistant cell lines. We will discuss these results and our strategies for the second generation of compounds that are optimized for better activity, selectivity, and ADME properties.

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5087-5087
Author(s):  
Andrea Tomirotti ◽  
Giuseppe Merlino ◽  
Alessio Fiascarelli ◽  
Simone Baldini ◽  
Alessia Tagliavini ◽  
...  

SEL24/MEN1703 is a first-in-class, orally available, dual PIM/FLT3 kinase inhibitor currently investigated in patients with Acute Myeloid Leukemia (AML) in the first-in-human study CLI24-001 (NCT03008187). PIM and FLT3 kinases are considered to play an important role in AML and are inhibited by SEL24/MEN1703. Moreover, there is evidence that inhibition of PIM kinases might contribute to overcoming acquired resistance induced by approved FLT3 inhibitors1. In AML, different signal transducers in the FLT3 pathway are substrates of kinases. Therefore, their phosphorylation levels might be modulated by kinase inhibitors and may be exploited as a potential pharmacodynamic biomarker in clinical development. In particular, phosphorylation of S6, 4E-BP1, and STAT5 is regulated by both FLT3 and PIM1/2. Thus, the objective of this investigation was to identify the most promising pharmacodynamic biomarker/s for implementation in the clinical trials of SEL24/MEN1703. Initially, we assessed the in vitro cytotoxic effect of SEL24/MEN1703 in a panel of 26 AML cell lines harboring different genetic mutations, to identify suitable cell lines for subsequent experiments. In the selected panel of AML cell lines, SEL24/MEN1703 resulted in the inhibition of phosphorylation of S6, 4-EBP1 and STAT5 as measured by immunoblotting. Notably, the reduction in phosphorylated S6 (pS6) in response to SEL24/MEN1703 was particularly evident. Since SEL24/MEN1703 displays a broad cytotoxic activity in AML cell lines, we clustered sensitive and resistant cell lines considering 0.5 μM as the IC50 cut-off value. Then, we investigated the relationship between SEL24/MEN1703 cytotoxic activity in AML cell lines and the inhibition of the above mentioned phosphorylated proteins in a 24-hour cytotoxic assay, showing a correlation between IC50 and the reduction of pS6 (Pearson correlation coefficient: -0.6905, R2= 0.477). To further confirm the in vitro data, SEL24/MEN1703 ability to modulate phosphoproteins was assessed also in xenograft mice bearing MOLM-16 cell line. The phosphorylation status of S6, 4E-BP1 and STAT5 was analyzed by immunoblot in tumor tissues from mice treated at 25 mg/kg of SEL24/MEN1703 at baseline and at 4, 8, and 16 hours after treatment. Results showed that also in vivo, SEL24/MEN1703 administration resulted in a decrease of pS6, with maximum reduction in this parameter observed 4 hours after the administration of the investigational compound. Based on these results, pS6 was identified as the pharmacodynamic biomarker to be implemented in the CLI24-001 clinical trial. Among different available methods, flow cytometry was selected as the preferred platform to analyze patient samples, because of its ability to provide quantitative assessment of cellular events and pharmacodynamic evaluation in a selected, relevant cell subpopulation, such as the AML blast cells. The assessment of pS6 in the clinical trial is planned both at baseline and at cycle 1 day 14 for whole blood and bone marrow. In addition, pS6 levels will be measured in whole blood at additional time points during treatment cycles. We have implemented the measurement of pS6 in the CLI24-001 trial, and pS6 levels as well as their relationship with the main pharmacokinetic parameters in patients treated with SEL24/MEN703 at 100 and 125 mg will be presented. 1Green A.S. et al., Pim kinases modulate resistance to FLT3 tyrosine kinase inhibitors in FLT3-ITD acute myeloid leukemia, Sci Adv, 2015 Disclosures Tomirotti: Menarini Ricerche S.p.A.: Employment. Merlino:Menarini Ricerche S.p.A.: Employment. Fiascarelli:Menarini Ricerche S.p.A.: Employment. Baldini:Menarini Ricerche S.p.A.: Employment. Tagliavini:Menarini Ricerche S.p.A: Employment. Borella:Menarini Ricerche S.p.A.: Employment. Mazan:Selvita S.A.: Employment. Brzózka:Selvita S.A.: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees. Bressan:Menarini Ricerche S.p.A.: Employment. Pellacani:Menarini Ricerche S.p.A.: Employment; Amgen: Equity Ownership. Salerno:Menarini Ricerche S.p.A.: Employment. Binaschi:Menarini Ricerche S.p.A.: Employment. Bellarosa:Menarini Ricerche S.p.A.: Employment.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4159-4159
Author(s):  
John F Lyons ◽  
Matthew S Squires ◽  
John Goodall ◽  
Murray Yule ◽  
Farhad Ravandi ◽  
...  

Abstract Abstract 4159 Aurora kinases (AK) A and B are overexpressed in a proportion of patients with acute myeloid leukemia (AML) and the level of overexpression correlates with their sensitivity to AK inhibition in vitro. We recently reported data from a dose escalation study of AT9238, a small molecule inhibitor of AKs in patients with refractory leukemias in which eight of 24 AML patients with relapsed/refractory AML achieved a 3 33% reduction in bone marrow blasts and haematological improvement. All patients had received at least one line of previous therapy. Further analysis has revealed that of the eight patients with relapsed/refractory AML that benefited from treatment with AT9283 five had a normal karyotype and the remaining three patients showed evidence of isolated abnormalities of chromosome 7, including 7q loss. Separately, we have reported that AT9283 inhibits the proliferation and survival of AML cell lines in vitro and suggested that those cell lines with complex karyotypic abnormalities responded differently from normal diploid lines. In these experiments AML cell lines exhibit one of two phenotypes following exposure to AT9283; rapid induction of cell death at low nM concentrations (Phenotype 1) or endo-reduplication followed by cell death at a later time point (Phenotype 2). In both scenarios treatment with AT9283 results ultimately in cell death. Cell lines with a normal karyotype tended to undergo rapid apoptosis without evidence of endoreduplication at low concentrations of AT9283. These findings provide further support for the potential importance of karyotype as a determinant of outcome in the clinical study. This is the first indication that cytogenetics might be used to predict responsiveness to Aurora kinase inhibitors in the clinic. Disclosures: Lyons: astex therapeutics: Employment. Squires:Astex Therapeutics, Ldt: Employment. Goodall:astex therapeutics: Employment. Yule:Astex Therapeutics Ldt: Employment. Ravandi:BMS: Consultancy, Honoraria, Research Funding.


Author(s):  
Yudi Miao ◽  
Behnam Mahdavi ◽  
Mohammad Zangeneh

IntroductionThe present study investigated the anti-acute myeloid leukemia effects of Ziziphora clinopodides Lam leaf aqueous extract conjugated cadmium nanoparticles.Material and methodsTo synthesize CdNPs, Z. clinopodides aqueous extract was mixed with Cd(NO3)2 .4H2O. The characterization of the biosynthesized cadmium nanoparticles was carried out using many various techniques such as UV-Vis. and FT-IR spectroscopy, XRD, FE-SEM, and EDS.ResultsThe uniform spherical morphology of NPs was proved by FE-SEM images with NPs the average size of 26.78cnm. For investigating the antioxidant properties of Cd(NO3)2, Z. clinopodides, CdNPs, and Daunorubicin, the DPPH test was used. The cadmium nanoparticles inhibited half of the DPPH molecules in a concentration of 196 µg/mL. To survey the cytotoxicity and anti-acute myeloid leukemia effects of Cd(NO3)2, Z. clinopodides, CdNPs, and Daunorubicin, MTT assay was used on the human acute myeloid leukemia cell lines i.e., Murine C1498, 32D-FLT3-ITD, and Human HL-60/vcr. The IC50 of the cadmium nanoparticles was 168, 205, and 210 µg/mL against Murine C1498, 32D-FLT3-ITD, and Human HL-60/vcr cell lines, respectively. In the part of in vivo study, DMBA was used for inducing acute myeloid leukemia in mice. CdNPs similar to daunorubicin ameliorated significantly (p≤0.01) the biochemical, inflammatory, RBC, WBC, platelet, stereological, histopathological, and cellular-molecular parameters compared to the other groups.ConclusionsAs mentioned, the cadmium nanoparticles had significant anti-acute myeloid leukemia effects. After approving the above results in the clinical trial studies, these cadmium nanoparticles can be used as a chemotherapeutic drug to treat acute myeloid leukemia in humans.


2019 ◽  
Author(s):  
Yusuke Tarumoto ◽  
Shan Lin ◽  
Jinhua Wang ◽  
Joseph P. Milazzo ◽  
Yali Xu ◽  
...  

AbstractLineage-defining transcription factors (TFs) are compelling targets for leukemia therapy, yet they are among the most challenging proteins to modulate directly with small molecules. We previously used CRISPR screening to identify a Salt-Inducible Kinase 3 (SIK3) requirement for the growth of acute myeloid leukemia (AML) cell lines that overexpress the lineage TF MEF2C. In this context, SIK3 maintains MEF2C function by directly phosphorylating histone deacetylase 4 (HDAC4), a repressive cofactor of MEF2C. Here, we evaluated whether inhibition of SIK3 with the tool compound YKL-05-099 can suppress MEF2C function and attenuate disease progression in animal models of AML. Genetic targeting of SIK3 or MEF2C selectively suppressed the growth of transformed hematopoietic cells underin vitroandin vivoconditions. Similar phenotypes were obtained when exposing cells to YKL-05-099, which caused cell cycle arrest and apoptosis in MEF2C-expressing AML cell lines. An epigenomic analysis revealed that YKL-05-099 rapidly suppressed MEF2C function by altering the phosphorylation state and nuclear localization of HDAC4. Using a gatekeeper allele ofSIK3, we found that the anti-proliferative effects of YKL-05-099 occurred through on-target inhibition of SIK3 kinase activity. Based on these findings, we treated two different mouse models of MLL-AF9 AML with YKL-05-099, which attenuated disease progressionin vivoand extended animal survival at well-tolerated doses. These findings validate SIK3 as a therapeutic target in MEF2C-positive AML and provide a rationale for developing drug-like inhibitors of SIK3 for definitive pre-clinical investigation and for studies in human patients with leukemia.Key PointsAML cells are uniquely sensitive to genetic or chemical inhibition of Salt-Inducible Kinase 3in vitroandin vivo.A SIK inhibitor YKL-05-099 suppresses MEF2C function and AMLin vivo.


Nutrients ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2808 ◽  
Author(s):  
Ghanem ◽  
Zouein ◽  
Mohamad ◽  
Hodroj ◽  
Haykal ◽  
...  

Acute myeloid leukemia (AML) is a blood cancer characterized by the formation of faulty defective myelogenous cells with morphological heterogeneity and cytogenic aberrations leading to a loss of their function. In an attempt to find an effective and safe AML treatment, vitamin E derivatives, including tocopherols were considered as potential anti-tumor compounds. Recently, other isoforms of vitamin E, namely tocotrienols have been proposed as potential potent anti-cancerous agents, displaying promising therapeutic effects in different cancer types. In this study we evaluated the anti-cancerous effects of γ-tocotrienol, on AML cell lines in vitro. For this purpose, AML cell lines incubated with γ-tocotrienol were examined for their viability, cell cycle status, apoptotic cell death, DNA fragmentation, production of reactive oxygen species and expression of proapoptotic proteins. Our results showed that γ-tocotrienol exhibits time and dose-dependent anti-proliferative, pro-apoptotic and antioxidant effects on U937 and KG-1 cell lines, through the upregulation of proteins involved in the intrinsic apoptotic pathway.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
María Luz Morales ◽  
Alicia Arenas ◽  
Alejandra Ortiz-Ruiz ◽  
Alejandra Leivas ◽  
Inmaculada Rapado ◽  
...  

AbstractFMS-like tyrosine kinase 3 (FLT3) is a key driver of acute myeloid leukemia (AML). Several tyrosine kinase inhibitors (TKIs) targeting FLT3 have been evaluated clinically, but their effects are limited when used in monotherapy due to the emergence of drug-resistance. Thus, a better understanding of drug-resistance pathways could be a good strategy to explore and evaluate new combinational therapies for AML. Here, we used phosphoproteomics to identify differentially-phosphorylated proteins in patients with AML and TKI resistance. We then studied resistance mechanisms in vitro and evaluated the efficacy and safety of rational combinational therapy in vitro, ex vivo and in vivo in mice. Proteomic and immunohistochemical studies showed the sustained activation of ERK1/2 in bone marrow samples of patients with AML after developing resistance to FLT3 inhibitors, which was identified as a common resistance pathway. We examined the concomitant inhibition of MEK-ERK1/2 and FLT3 as a strategy to overcome drug-resistance, finding that the MEK inhibitor trametinib remained potent in TKI-resistant cells and exerted strong synergy when combined with the TKI midostaurin in cells with mutated and wild-type FLT3. Importantly, this combination was not toxic to CD34+ cells from healthy donors, but produced survival improvements in vivo when compared with single therapy groups. Thus, our data point to trametinib plus midostaurin as a potentially beneficial therapy in patients with AML.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 8-8 ◽  
Author(s):  
Claudia Scholl ◽  
Dimple Bansal ◽  
Konstanze Dohner ◽  
Karina Eiwen ◽  
Benjamin H. Lee ◽  
...  

Abstract The caudal-type homeobox transcription factor 2 (CDX2) plays an important role in embryonic development and regulates the proliferation and differentiation of intestinal epithelial cells in the adult. Ectopic expression of CDX2 in the hematopoietic compartment was previously identified as the key pathogenetic event in a single patient with acute myeloid leukemia (AML) and t(12;13)(p13;q12). Using real-time quantitative PCR, we detected aberrant CDX2 expression in 153 (90%) of 170 patients with AML, in patients with high-risk myelodysplastic syndrome or advanced-stage chronic myeloid leukemia, and in several AML cell lines, but not in bone marrow derived from normal individuals. Expression of CDX2 was monoallelic in the majority of cases with informative single-nucleotide polymorphisms in the CDX2 coding region, but was not related to mutations in the CDX2 coding region or in the predicted CDX2 promoter sequence, gene-specific hypomethylation of the CDX2 promoter, or increased CDX2 gene copy numbers. Stable knockdown of CDX2 expression by lentivirus-mediated RNA interference inhibited the proliferation of various human AML cell lines exhibiting CDX2 transcript levels that were in the range of those observed in most primary AML samples, and strongly reduced their clonogenic potential in vitro. Primary murine hematopoietic progenitor cells transduced with Cdx2 acquired serial replating activity in vitro, could be continuously propagated in liquid culture, generated a fully penetrant and transplantable AML in vivo, and displayed dysregulated expression of Hox family members. Together, these results (i) demonstrate that aberrant expression of CDX2 is a frequent event in myeloid leukemogenesis, (ii) suggest a role for CDX2 as part of a common effector pathway that increases the proliferative capacity and promotes the self-renewal potential of hematopoietic progenitors, and (iii) support the unifying hypothesis that CDX2 is responsible, at least in part, for abnormalities in HOX gene expression in AML.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1275-1275
Author(s):  
Sonja C Lück ◽  
Annika C Russ ◽  
Konstanze Döhner ◽  
Ursula Botzenhardt ◽  
Domagoj Vucic ◽  
...  

Abstract Abstract 1275 Poster Board I-297 Core binding factor (CBF) leukemias, characterized by translocations t(8;21) or inv(16)/t(16;16) targeting the core binding factor, constitute acute myeloid leukemia (AML) subgroups with favorable prognosis. However, 40-50% of patients relapse, and the current classification system does not fully reflect the heterogeneity existing within the cytogenetic subgroups. Therefore, illuminating the biological mechanisms underlying these differences is important for an optimization of therapy. Previously, gene expression profiling (GEP) revealed two distinct CBF leukemia subgroups displaying significant outcome differences (Bullinger et al., Blood 2007). In order to further characterize these GEP defined CBF subgroups, we again used gene expression profiles to identify cell line models similar to the respective CBF cohorts. Treatment of these cell lines with cytarabine (araC) revealed a differential response to the drug as expected based on the expression patterns reflecting the CBF subgroups. In accordance, the cell lines resembling the inferior outcome CBF cohort (ME-1, MONO-MAC-1, OCI-AML2) were less sensitive to araC than those modeling the good prognostic subgroup (Kasumi-1, HEL, MV4-11). A previous gene set enrichment analysis had identified the pathways Caspase cascade in apoptosis and Role of mitochondria in apoptotic signaling among the most significant differentially regulated BioCarta pathways distinguishing the two CBF leukemia subgroups. Thus, we concluded that those pathways might be interesting targets for specific intervention, as deregulated apoptosis underlying the distinct subgroups should also result in a subgroup specific sensitivity to apoptotic stimuli. Therefore, we treated our model cell lines with the Smac mimetic BV6, which antagonizes inhibitor of apoptosis (IAP) proteins that are differentially expressed among our CBF cohorts. In general, sensitivity to BV6 treatment was higher in the cell lines corresponding to the subgroup with good outcome. Time-course experiments with the CBF leukemia cell line Kasumi-1 suggested a role for caspases in this response. Interestingly, combination treatment of araC and BV6 in Kasumi-1 showed a synergistic effect of these drugs, with the underlying mechanisms being currently further investigated. Based on the promising sensitivity to BV6 treatment in some cell lines, we next treated mononuclear cells (mostly leukemic blasts) derived from newly diagnosed AML patients with BV6 in vitro to evaluate BV6 potency in primary leukemia samples. Interestingly, in vitro BV6 treatment also discriminated AML cases into two distinct populations. Most patient samples were sensitive to BV6 monotherapy, but about one-third of cases were resistant even at higher BV6 dosage. GEP of BV6 sensitive patients (at 24h following either BV6 or DMSO treatment) provided insights into BV6-induced pathway alterations in the primary AML patient samples, which included apoptosis-related pathways. In contrast to the BV6 sensitive patients, GEP analyses of BV6 resistant cases revealed no differential regulation of apoptosis-related pathways in this cohort. These results provide evidence that targeting deregulated apoptosis pathways by Smac mimetics might represent a promising new therapeutic approach in AML and that GEP might be used to predict response to therapy, thereby enabling novel individual risk-adapted therapeutic approaches. Disclosures Vucic: Genentech, Inc.: Employment. Deshayes:Genentech, Inc.: Employment.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 915-915
Author(s):  
Stuart A Rushworth ◽  
Lyubov Zaitseva ◽  
Megan Y Murray ◽  
Matthew J Lawes ◽  
David J MacEwan ◽  
...  

Abstract Introduction Despite recent significant progress in the understanding of the biology of acute myeloid leukemia (AML) the clinical outcomes for the majority of patients diagnosed with AML presently remain poor. Consequently, there is an urgent need to identify pharmacological strategies in AML, which are not only effective but can be tolerated by the older, less well patient. Recently our group and others have shown that there is high Bruton’s Tyrosine Kinase (BTK) phosphorylation and RNA expression in AML. Moreover, our recent study described for the first time that ibrutinib and BTK-targeted RNA interference reduced factor-induced proliferation of both AML cell lines and primary AML blasts, as well as reducing AML blast adhesion to bone marrow stromal cells. Inhibition of BTK has been shown to regulate chronic lymphocytic leukemia, mantle cell lymphoma and multiple myeloma cell migration by inhibiting SDF1 (stromal derived factor 1) induced CXCR4 regulated cell trafficking. Here we report that in human AML ibrutinib in addition functions in a similar way to inhibit SDF1/CXCR4-mediated AML migration at concentrations achievable in vivo. Methods To investigate the role of BTK in regulating AML migration we used both pharmacological inhibitor ibrutinib and genetic knockdown using a lentivirus mediated BTK targeted miRNA in primary AML blasts and AML cell lines. We examined migration of AML blasts and AML cells to SDF-1 using Transwell permeable plates with 8.0µM pores. Western blotting was used to examine the role of SDF-1 in regulating BTK, AKT and MAPK activation in primary AML blasts. Results We initially examined the expression of CXCR4 in human AML cell lines and found that 4/4 cell lines were positive for CXCR4 expression. Next we examined the effects of ibrutinib on the migration of the AML cell lines U937, MV4-11, HL60 and THP-1 in response to SDF1. We found that ibrutinib can inhibit the migration of all AML cell lines tested. We tested the in-vitro activity of ibrutinib on SDF-1 induced migration in a spectrum of primary AML blasts from a wide age spectrum of adult patients and across a range of WHO AML subclasses and found that ibrutinib significantly inhibits primary AML blast migration (n=12). Next we found that ibrutinib can inhibit SDF-1 induced BTK phosphorylation and downstream MAPK and AKT signalling in primary AML blast. Finally to eliminate the problems associated with off target ibrutinib activity we evaluated migration of AML cells lines using genetic inhibition of BTK. The introduction of BTK-specific miRNA dramatically inhibited the expression of BTK in THP-1 and HL60 and reduced SDF1 mediated migration confirming that BTK is involved in regulating AML migration in response to SDF1. Conclusions These results reported here provide a molecular mechanistic rationale for clinically evaluating BTK inhibition in AML patients and suggests that in some AML patients the blasts count may initially rise in response to ibrutinib therapy, analgous to similar clinical observations in CLL. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document