scholarly journals Identification of Molecular Markers of Tumor Cell Sensitivity and Resistance to Natural Killer Cells through Genome-Wide CRISPR Activation and CRISPR Editing Screens in Multiple Myeloma Cell Lines: Implications for Anti-Myeloma Immunotherapy

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1115-1115
Author(s):  
Sara Gandolfi ◽  
Michal Sheffer ◽  
Emily Lowry ◽  
Olga Dashevsky ◽  
Ryosuke Shirasaki ◽  
...  

Abstract Natural killer (NK) cells represent a promising immunotherapeutic approach as they can potently kill tumor cells without triggering graft-versus-host reactions. Indeed, infusion of high numbers of NK cells, either autologous or allogeneic, after their ex vivo expansion and activation, has been feasible and safe in clinical studies. However, prior studies and early clinical trials indicate that tumor cells can exhibit decreased response to NK due to the protective effect of nonmalignant mesenchymal stromal cells; and depending on the genetic background of the tumor cells. To our knowledge, since earlier subgenome-scale RNAi-based studies, there have been no genome-wide CRISPR-based screens to identify candidate markers conferring tumor cell resistance or sensitivity to NK cells in multiple myeloma (MM). To address this void, and building on a recent loss-of-function (LOF) study by our group on solid tumors, we sought to identify genes regulating the response of MM cells to the cytotoxic activity of NK cells by conducting a genome-wide CRISPR/Cas9-based gene editing (Brunello library of sgRNA) and gene activation (Calabrese library of sgRNA) screens in MM.1S cells co-cultured with primary NK (pNK) cells (effector-to-target [E:T] ratio of 3.75:1) derived from healthy donor peripheral blood mononuclear cells (PBMCs) cultured in vitro in GMP SCGM medium with IL-2. Briefly, MM.1S cells engineered to stably express the nuclease SpCas9 (Brunello) or a catalytically inactive programmable RNA-dependent DNA-binding protein (dCas9)-VP64 (Calabrese) were also transduced with lentiviral particles for a pool of ~70,000 (Brunello library) or ~120,000 (Calabrese) sgRNAs, targeting exons of ~20,000 genes (plus non-targeting control sgRNAs), under conditions of transduction which allow for an average of no more than 1 sgRNA to be incorporated in a given cell. This allowed us to convert the initial population of MM.1S cells into heterogeneous pools in which each gene is subject to individual LOF or gain-of-function (GOF), due to Cas9-mediated editing, by only 1 sgRNA. Flow cytometry was performed to verify pNK viability, purity (CD56 and CD3), and expression of p46 receptor, surrogate marker of NK cell activity. These screens identified genes whose knock-out (Brunello sgRNA library) or activation (Calabrese sgRNA library) led to NK cells resistance or potential sensitivity. The hits observed in the current MM-oriented study exhibited, compared to our similar studies in solid tumor model, substantial gene level differences, but notable overlap at the pathway level (including death receptor pathways, NK activating pathways), which suggests that mechanisms determining tumor cell response vs. resistance to NK cells operate through modules consistent across tumors, but manifested through potentially different members of the respective pathways in different neoplasms. For instance, in this MM-oriented study, we identified that NK cell sensitivity of tumor cells is modulating by activation of several metabolic and homeostatic genes, receptor kinases, and interestingly membrane-bound proteins of the mucin family, e.g. MUC1, and MUC4, which have been reported to play a role in NK-mediated tumor killing in other types of cancer. MUC1 in particular has a clinical relevance as a small molecule inhibitor with prior preclinical studies in MM is available. Interestingly, our GOF screen identified as potential NK cell sensitizers TNFRSF10B, a death receptor related to TNFRSF10A (a hit identified in our studies in solid tumors), the putative death receptor adaptor TRADD, and the NK ligands PVR and ULBP1. Interestingly, genes such as PTEN and TP53, commonly associated with high-risk MM, didn't affect the response to NK cell, suggesting that NK cell-based therapies may potentially have a role in treatment of MM patients with high-risk clinical or biological features. In conclusion, this is the first study applying both LOF and GOF genome-wide screens to NK cell response in MM. The combination of such screens performed in parallel provide complementary and orthogonal information that allows us to identify genes that might not have been appreciated if only either LOF or GOF alone screens had been performed. We envision that the methodology and results presented herein will provide a framework towards validation of molecular markers which can help to optimize and individualize the use of NK cell-based therapy in MM. Disclosures Mitsiades: Abbvie: Research Funding; TEVA: Research Funding; EMD Serono: Research Funding; Janssen/ Johnson & Johnson: Research Funding; Takeda: Other: employment of a relative.

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1865-1865
Author(s):  
Inger S. Nijhof ◽  
Michel de Weers ◽  
Pascale Andre ◽  
Berris van Kessel ◽  
Henk M. Lokhorst ◽  
...  

Abstract Abstract 1865 Despite significant improvements in the treatment of multiple myeloma (MM), this progressive malignancy of antibody-producing clonal plasma cells is still considered incurable. New innovative treatments need to be developed to improve long term outcomes. Recent successes of CD20 antibodies in the clinical lymphoma management indicate that targeted immunotherapy can represent a powerful therapeutical strategy for hematological malignancies. Towards developing a similar strategy for MM, we have recently generated a novel human monoclonal antibody, daratumumab (DARA), which targets the CD38 molecule expressed at high levels on MM cells. We have demonstrated that DARA mediates the lysis of CD38+ MM cells via direct apoptosis, complement mediated lysis and antibody-dependent cell mediated cytotoxicity (ADCC). Natural killer (NK) cells appeared important effector cells mediating the ADCC effect. Since NK cell activity against tumor cells is regulated by the balance of signals generated by inhibitory or activating receptors of NK cells (KIRs), we now explored whether blocking the inhibitory KIRs would improve the NK cell mediated DARA dependent lysis of MM cells. Thus, we evaluated the potential benefits of combining DARA with a novel human anti KIR monoclonal antibody, IPH2102, which blocks the inhibitory KIR2DL1/2/3 receptors (HLA-C specific KIRs), and has been shown to augment NK cell function against MM cells. We recently developed FACS-based ex vivo MM cell lysis assays, in which DARA-dependent NK cell-mediated lysis of MM cells can be directly measured in bone marrow MNCs, thus without separating the malignant cells from autologous NK cells and other accessory cells. Using these, we investigated whether the addition of IPH2102 would augment the DARA dependent lysis of MM cells. As expected, DARA induced lysis of MM cells in bone marrow MNCs isolated from MM patients (n=10). Mean lysis at 10 μg/ml DARA was 27.6% (range 11.3–48.1%). IPH2102 showed little or no lysis of MM cells (at 0.3, 1, 3 and 10 μg/ml) in this setting. The combination of 10 μg/ml IPH2102 with 3 and 10 μg/ml DARA significantly enhanced cytotoxicity against primary MM tumor cells compared to DARA alone (p=0.013 and p=0.028 respectively). Mean lysis of MM tumor cells at 10 μg/ml DARA and 10 μg/ml IPH2102 was 38%. These data confirm our previous findings that NK-cell mediated killing is an important mechanism of action of DARA. We demonstrate a clear synergy between DARA and IPH2102 to achieve effective lysis of MM cells directly in the bone marrow MNC of MM patients, indicating that complementary effects may be achieved by combining IPH2102 and DARA in clinical MM management. Disclosures: Weers: Genmab: Employment. Andre:Innate Pharma: Employment. Lokhorst:Genmab: Research Funding. Parren:Genmab: Employment. Morel:Innate Pharma: Employment. Mutis:Genmab: Research Funding.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 732-732
Author(s):  
Sara Gandolfi ◽  
Olli Dufva ◽  
Jani Huuhtanen ◽  
Olga Dashevsky ◽  
Jay Klievink ◽  
...  

Abstract Natural killer (NK) cell-based therapies are considered promising future approaches for multiple myeloma (MM) treatment, but immune evasion mechanisms are poorly understood. To determine the mechanisms regulating MM cell response to NK cells, we performed genome-wide (GW) and targeted CRISPR screens in MM cell lines. To further investigate the transcriptional impact of genes identified as regulators of sensitivity to NK cells, we performed additional pooled CRISPR screens with a single-cell (sc) transcriptome readout using the CROP-seq platform and integrated these findings with data from phenotypic assessment of NK cell response of pooled "DNA-barcoded" cell line including 15 MM cell lines (PRISM platform) and molecular profiling of MM patient samples. Our loss-of-function (LOF) and gain-of-function (GOF) GW-CRISPR screens were performed in the MM1.S, LP1, KMS11 MM lines treated with ex vivo expanded NK cells vs untreated control. The top LOF hits were validated using a focused library of ~600 genes. As expected, LOF of class I HLA /antigen presentation machinery genes, transcriptional regulators of HLA and IFNg pathway genes sensitized MM cells to NK cells, confirming that these pathways represent prominent suppressors of NK cell killing. Moreover, LOF of death receptors or downstream effectors was associated with NK resistance; while LOF of the negative regulators of death receptor signaling (e.g. CFLAR, and XIAP) sensitized to NK cell killing. To mechanistically dissect the transcriptional impact of genes identified as regulators of sensitivity to NK cells, we performed scRNAseq using the CROP-seq platform. Pools of MM1.S and LP1 expressing single-guide (sg)RNAs targeting 31 select hits were co-cultured with NK cells for 24 h or left untreated, followed by scRNA-seq and sgRNA detection, differential gene-expression analysis and patient data correlation. The single cell transcriptional profiling of each CRISPR-based LOF for genes of interest documented that disruption of TRAF2, NFKBIA or NFKBIB enhanced NF-kB signaling and was associated with increased expression of the death receptor FAS, a key mediator of NK cell sensitivity (Figure), and changes in expression of BIRC3, CD70, and CXCL10(the latter may further increase immune reactivity through recruitment of T and NK cells). Interestingly, in our PRISM data, high transcriptional NF-kB signatures and/or presence of TRAF3 mutations (an activator of NF-kB signaling) correlated with decreased NK cell response. Among the individual genes most highly correlated with NK cell resistance was CFLAR, a known NF-kB target gene, and negative regulator of death receptor-mediated apoptosis. In contrast, PTEN and NLRC5 mutations were associated with enhanced NK cell sensitivity in several MM lines tested, consistent with their depletion in the GW LOF CRISPR screens and the HLA I regulatory function of NLRC5. We correlated our findings with patient-derived data from the CoMMpass study. Mutations of NF-kB negative regulators TRAF2 and NFKBIA were associated with increased expression of NF-kB target genes, consistent with our CROP-seq data. NFKBIA mutations were also linked to reduced HLA-E expression in both MM patient and CROP-seq data, suggesting a potential explanation for the NK-sensitizing effect of NFKBIA disruption. NLRC5 mutations were associated with lower HLA-E expression consistent with CROP-seq data, suggesting that, although rare, NLRC5mutations may represent a more NK-sensitive MM subset. TRAF3 alterations occurred both in a distinct TRAF3-altered cluster and in a subset of CoMMpass patients with WHSC1 translocations, consistent with the observations in our PRISM data set. CFLAR expression was enriched in patients with TRAF3 alterations belonging to both of these groups. The aggregate of molecular data from MM patient samples and PRISM or CRISPR-based functional studies preclinically raise the possibility that TRAF3 and WHSC1/t(4;14) alterations may contribute, at least in part through CFLAR, to decreased NK cell response in MM cells. Our data illuminate the complex mechanisms of response to NK cells in MM, highlighting the different effects of distinct molecularly defined subgroups of MM tumor cells with increased susceptibility to NK cell treatment, underlining the potential of such studies as a blueprint for identification of biomarkers individualized use of NK cell-based therapies in MM. Figure 1 Figure 1. Disclosures Mustjoki: Novartis: Research Funding; BMS: Research Funding; Pfizer: Research Funding; Janpix: Research Funding. Mitsiades: H3 Biomedicine: Research Funding; FIMECS: Consultancy, Honoraria; Adicet Bio: Membership on an entity's Board of Directors or advisory committees; Nurix: Research Funding; Sanofi: Research Funding; Karyopharm: Research Funding; BMS: Research Funding; Fate Therapeutics: Consultancy, Honoraria; Novartis: Research Funding; Janssen/Johnson & Johnson: Research Funding; TEVA: Research Funding; EMD Serono: Research Funding; Arch Oncology: Research Funding; Abbvie: Research Funding; Ionis Pharmaceuticals: Consultancy, Honoraria.


Hemato ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 167-181
Author(s):  
Marie Thérèse Rubio ◽  
Adèle Dhuyser ◽  
Stéphanie Nguyen

Myeloma tumor cells are particularly dependent on their microenvironment and sensitive to cellular antitumor immune response, including natural killer (NK) cells. These later are essential innate lymphocytes implicated in the control of viral infections and cancers. Their cytotoxic activity is regulated by a balance between activating and inhibitory signals resulting from the complex interaction of surface receptors and their respective ligands. Myeloma disease evolution is associated with a progressive alteration of NK cell number, phenotype and cytotoxic functions. We review here the different therapeutic approaches that could restore or enhance NK cell functions in multiple myeloma. First, conventional treatments (immunomodulatory drugs-IMids and proteasome inhibitors) can enhance NK killing of tumor cells by modulating the expression of NK receptors and their corresponding ligands on NK and myeloma cells, respectively. Because of their ability to kill by antibody-dependent cell cytotoxicity, NK cells are important effectors involved in the efficacy of anti-myeloma monoclonal antibodies targeting the tumor antigens CD38, CS1 or BCMA. These complementary mechanisms support the more recent therapeutic combination of IMids or proteasome inhibitors to monoclonal antibodies. We finally discuss the ongoing development of new NK cell-based immunotherapies, such as ex vivo expanded killer cell immunoglobulin-like receptors (KIR)-mismatched NK cells, chimeric antigen receptors (CAR)-NK cells, check point and KIR inhibitors.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1955-1955
Author(s):  
Sumithira Vasu ◽  
Nelli Bejanyan ◽  
Steven Devine ◽  
Elizabeth Krakow ◽  
Elizabeth Krakow ◽  
...  

Background and Rationale: Relapse remains the leading cause of treatment failure for patients with high-risk acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) undergoing allogeneic blood or marrow transplantation (BMT). Although relapse rates vary based on patient population, age, and conditioning intensity, relapse is experienced in at least 30-50% after conventional BMT in high-risk AML/MDS. Initial safety and post-BMT relapse risk reduction results are reported by investigators at MD Anderson Cancer Center in a phase I study of ex vivo-expanded, donor-derived, haploidentical natural killer (NK)-cell infusion in conjunction with haploBMT. Of 13 patients with high-risk myeloid malignancies treated with NK cells, no infusion reactions or dose-limiting toxicities occurred and only 1 patient, treated at the lowest dose of 1×105 cells/kg, relapsed (Ciurea, Blood 2017). This experience supports investigation of CSTD002, a product derived from haploidentical donor NK cells and expanded ex vivo using plasma membrane (PM21) nanoparticles bearing membrane-bound IL-21 and 4-1BBL. This study represents a public-private partnership between the sponsor (Kiadis Pharma) and the Blood and Marrow Transplant Clinical Trials Network (BMT CTN), leveraging existing National Institutes of Health-supported clinical trials infrastructure to conduct a complex cellular immunotherapy trial. We used contemporary, unpublished data from the Center for International Blood and Marrow Transplant Research registry to determine baseline relapse rates that informed the statistical design. Doses of NK cells expanded by a novel method and exceeding those previously achieved in most published studies will be given in the peri-transplant period to test the hypothesis that haploidentical NK cells can mediate an effective anti-leukemia response. Trial Design and Methods: BMT CTN 1803 is a phase II, single-arm, open-label, multicenter trial designed to investigate the safety and efficacy of CSTD002 for the treatment of patients with high-risk AML or MDS undergoing haploBMT. An initial safety run-in phase will precede enrollment into the full study of approximately 60 patients. Major inclusion criteria of patients and donors are listed in the Table. Peripheral blood will be drawn from the donor to start the NK-cell expansion approximately 5 weeks before the planned haploBMT. Patients will receive intravenous (IV) melphalan 140 mg/m2 (100 mg/m2 for patients ≥60 years old) on Day -7; fludarabine 40 mg/m2 IV on Days -7, -6, -5, and -4; and 2 Gy of total body irradiation on Day -3. Donor bone marrow will be harvested and given on Day 0. Three doses of CSTD002 will be administered IV on Days -2, +7, and +28, relative to the haploBMT. The recommended dose of CSTD002 for administration will be formulated at 1×108 NK cells/kg of recipient body weight. Graft-versus-host disease (GVHD) prophylaxis is post-transplantation cyclophosphamide with tacrolimus and mycophenolate mofetil. The primary endpoint is cumulative incidence of relapse at 1 year post haploBMT in patients receiving at least 1 infusion of CSTD002. Secondary endpoints are safety and tolerability of CSTD002; overall survival; non-relapse mortality; relapse-free survival; GVHD-free survival; cumulative incidence of acute GVHD and chronic GVHD; hematologic recovery; donor-cell engraftment; primary and secondary graft failure; overall incidence of toxicity; and cumulative incidence of infections including cytomegalovirus re-activation and symptomatic BK virus hemorrhagic cystitis. Exploratory endpoints are systemic immunosuppression-free survival; immune reconstitution at Days 28, 100, and 365 post haploBMT; proportion of patients with detectable minimal residual disease at Days 28 and 100 post haploBMT; feasibility of administering the planned CSTD002 doses; and impact of NK-cell alloreactivity on relapse and survival. Disclosures Vasu: Boehringer Ingelheim: Other: Travel support; Seattle Genetics: Other: Clinical trial support. Bejanyan:Kiadis Pharma: Other: advisory board. Devine:Kiadis Pharma: Other: Protocol development (via institution); Magenta Therapeutics: Other: Travel support for advisory board; My employer (National Marrow Donor Program) has equity interest in Magenta; Bristol Myers: Other: Grant for monitoring support & travel support. Krakow:Bellicum Pharmaceuticals: Research Funding; Highpass Bio: Research Funding; Magnolia Innovations: Other: Personal fees. Logan:Eisai: Other: Personal fees; Astellas: Other: Grant; Kiadis (formerly Cytosen): Other: Grant; Novartis: Other: Personal fees; Kite: Other: Grant. Luznik:Merck: Research Funding, Speakers Bureau; Genentech: Research Funding; AbbVie: Consultancy; WindMiL Therapeutics: Patents & Royalties: Patent holder. Barrett:Kiadis Pharma (formerly Cytosen): Other: Personal fees; Biologics Consulting Company: Other: Personal fees. Shan:Kiadis Pharma (formerly Cytosen): Employment. Champlin:Actinium: Consultancy; Johnson and Johnson: Consultancy; Sanofi-Genzyme: Research Funding.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4034-4034
Author(s):  
David A. Knorr ◽  
Zhenya Ni ◽  
Allison Bock ◽  
Vijay G. Ramakrishnan ◽  
Shaji Kumar ◽  
...  

Abstract Abstract 4034 Natural Killer (NK) cells are lymphocytes of the innate immune system with anti-viral and anti-cancer activity. Over the past decade, they have gained interest as a promising cellular source for use in adoptive immunotherapy for the treatment of cancer. Most notably, NK cells play an important role in the graft-vs-tumor effect seen in allogeneic hematopoietic stem cell transplantation (allo-HSCT), and a better understanding of NK cell biology has translated into improved transplant outcomes in acute myelogenous leukemia (AML). Small studies have demonstrated a role for NK cell activity in multiple myeloma (MM) patients receiving allo-HSCT. Investigators have also utilized haplo-identical killer immunoglobulin-like receptor (KIR) mismatched NK cells for adoptive immunotherapy in patients with multiple myeloma (MM). Our group has focused on the development of NK cells from human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) as a novel starting source of lymphocytes for immunotherapy. We have previously demonstrated potent anti-tumor activity of hESC-derived NK cells in vitro and in vivo against a variety of different targets. We have also shown that iPSC-derived NK cells from a variety of different somatic cell starting sources posses potent anti-tumor and anti-viral activity. Here, we demonstrate hESC- and iPSC-derived NK cell development in a completely defined, feeder-free system that is amenable to clinical scale-up. These cultures contain a pure population of mature NK cells devoid of any T or B cell contamination, which are common adverse bystanders of cellular products isolated and enriched from peripheral blood. Our cultures are homogenous for their expression of CD56 and express high levels of effector molecules known to be important in anti-MM activity, including KIR, CD16, NKG2D, NKp46, NKp44, FasL and TRAIL. We have now tested the activity of hESC- and iPSC-derived NK cells against MM tumor cells in order to provide a universal source of lymphocytes for adoptive immunotherapy in patients with treatment refractory disease. We find that similar to peripheral blood NK cells (PB-NK), hESC- and iPSC-derived NK cells are cytotoxic against 3 distinct MM cell lines in a standard chromium release cytotoxicity assay. Specifically, activated PB-NK cells killed 48.5% of targets at 10 to 1 effector to target ratios, whereas hESC (46.3%) and iPSC (42.4%) derived NK cells also demonstrated significant anti-MM activity. Also, hESC- and iPSC-derived NK cells secrete cytokines (IFNγ and TNFα) and degranulate as demonstrated by CD107a surface expression in response to MM target cell stimulation. When tested against freshly isolated samples from MM patients, hESC- and IPSC-derived NK cells respond at a similar level as activated PB-NK cells, the current source of NK cells used in adoptive immunotherapy trials. These MM targets (both cell lines and primary tumor cells) are known to express defined ligands (MICA/B, DR4/5, ULBP-1, BAT3) for receptors expressed on NK cells as well as a number of undefined ligands for natural cytotoxicity receptors (NCRs) and KIR. As these receptor-ligand interactions drive the anti-MM activity of NK cells, we are currently evaluating expression of each of these molecules on the surface of both the effector and target cell populations. Not only do hESC- and iPSC-derived NK cells provide a unique, homogenous cell population to study these interactions, they also provide a genetically tractable source of lymphocytes for improvement of the graft-vs-myeloma effect and could be tailored on a patient specific basis using banks of hESC-or iPSC-derived NK cells with defined KIR genotypes for use as allogeneic or autologous effector cells. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (13) ◽  
pp. 2286-2294 ◽  
Author(s):  
Don M. Benson ◽  
Courtney E. Bakan ◽  
Anjali Mishra ◽  
Craig C. Hofmeister ◽  
Yvonne Efebera ◽  
...  

Abstract T-cell expression of programmed death receptor-1 (PD-1) down-regulates the immune response against malignancy by interacting with cognate ligands (eg, PD-L1) on tumor cells; however, little is known regarding PD-1 and natural killer (NK) cells. NK cells exert cytotoxicity against multiple myeloma (MM), an effect enhanced through novel therapies. We show that NK cells from MM patients express PD-1 whereas normal NK cells do not and confirm PD-L1 on primary MM cells. Engagement of PD-1 with PD-L1 should down-modulate the NK-cell versus MM effect. We demonstrate that CT-011, a novel anti–PD-1 antibody, enhances human NK-cell function against autologous, primary MM cells, seemingly through effects on NK-cell trafficking, immune complex formation with MM cells, and cytotoxicity specifically toward PD-L1+ MM tumor cells but not normal cells. We show that lenalidomide down-regulates PD-L1 on primary MM cells and may augment CT-011's enhancement of NK-cell function against MM. We demonstrate a role for the PD-1/PD-L1 signaling axis in the NK-cell immune response against MM and a role for CT-011 in enhancing the NK-cell versus MM effect. A phase 2 clinical trial of CT-011 in combination with lenalidomide for patients with MM should be considered.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1613-1613
Author(s):  
Chad C Bjorklund ◽  
Michael Amatangelo ◽  
Hsiling Chiu ◽  
Jian Kang ◽  
Tiziana Civardi ◽  
...  

Abstract Background: Pomalidomide (POM) is an established agent in relapsed/refractory (R/R) multiple myeloma (MM) with direct cytotoxicity against MM cells and immunostimulatory activities in multiple cell types including T cells and NK cells. CC-92480 is a novel Aiolos/Ikaros degrading cereblon E3 ligase modulator (CELMoD ®) agent is currently being investigated in combination with the proteasome inhibitor (PI) bortezomib (BTZ) and corticosteroid dexamethasone (DEX), or with DEX only in R/R MM (CC-92480-MM-002 and CC-92480-MM-001). Previous results indicate that triplet combination of POM/BTZ/DEX may enhance some T, B and NK cell subpopulations, overcoming immunosuppression when compared to BTZ/DEX-only treated patients (Rao et al, 2019). Mechanisms of action (MOA) of CC-92480- and POM-mediated substrate depletion occurs via ubiquitination and proteasome degradation, where BTZ has been speculated as potentially antagonistic as a PI. Here, we report pre-clinical and clinical observations of an immune MOA of CC-92480 or POM in combination with BTZ. Results: To mimic the clinical pharmacokinetics, BTZ was utilized as a high-dose pulse method alone and in combination with POM or CC-92480, followed by flow cytometric measurements of Aiolos and Ikaros protein abundance in healthy donor (HD) T cells. The addition of BTZ modestly delayed CRBN-dependent substrate depletion compared to single agent POM or CC-92480; however, this effect was only apparent at early time points (1-6 hr) where the effect was negligible by 24 hr. To understand the functional implications of BTZ combination, we conducted CD3-stimulated PBMC-mediated cytotoxicity assay against H929 MM target cells in a co-culture model. The efficiency of POM or CC-92480 induced PBMC-mediated killing in a dose dependent manner (~65% increase compared to DMSO) were similar at a 100-fold lower dose range of CC-92480 compared to POM, with the effect not being altered by co-treatment with BTZ. These data were replicated with a POM or CC-92480 treated supernatant stimulation of purified NK cells co-culture, which induced an 80% reduction in target cell viability with the BTZ combination having no negative effects on CELMoD-mediated activity. Cytokine analysis on PBMC supernatants treated with either POM or CC-92480 in the absence or presence of BTZ-pulse showed a dose-dependent increase in IL-2 (>2.4-fold) and Granzyme B (>3.1-fold), which were not impacted by BTZ co-treatment. As a secondary readout on activation status, we measured multiple signaling molecules and activation markers on the cell surface of T and NK cell subsets in CD3 stimulated HD PBMCs treated with dose-dependent POM or CC-92480 with or without co-treatment of BTZ. Compared to DMSO controls, elevated expression levels of CD25 (IL2RA), CD278 (ICOS), Granzyme B, CD134 (OX40R) and HLA-DR were observed with both POM and CC-92480 on CD4, CD8 and NK cells demonstrating a CELMoD-mediated increase in immune activation. These effects were not impacted by the co-treatment of BTZ. Examination of peripheral blood samples from MM patients enrolled in the CC-92480-MM-001/002 (NCT03374085/NCT03989414) clinical trials revealed that CC-92480 promoted potent immunomodulation when administered in combination with DEX and with BTZ/DEX. These data included increased numbers of activated and central memory T cells, as well as increased Ki67+ proliferating T and NK cell populations compared to samples collected during the screening period before any drugs had been administered, consistent with earlier observation of POM in combination with BTZ/DEX treated patients. Conclusions: Taken together, these data demonstrate that POM and CC-92480 are potent immunomodulatory agents with enhanced induction of PBMC and NK mediated cell killing of MM tumor cells and activation of T and NK cells, at 100-fold lower concentrations of CC-92480 compared to POM. Additionally, we showed that combination with BTZ in preclinical assays and in the clinical setting did not antagonistically affect the immunostimulatory ability of POM or CC-92480. Disclosures Bjorklund: BMS: Current Employment, Current equity holder in publicly-traded company. Amatangelo: Bristol Myers Squibb: Current Employment, Current equity holder in publicly-traded company. Chiu: Bristol Myers Squibb: Current Employment, Current holder of individual stocks in a privately-held company, Current holder of stock options in a privately-held company. Kang: BMS: Current equity holder in publicly-traded company. Civardi: Bristol Myers Squibb: Current Employment. Katz: Bristol Myers Squibb: Current Employment, Current equity holder in publicly-traded company. Maciag: Bristol Myers Squibb: Current Employment, Current equity holder in publicly-traded company. Hagner: BMS: Current Employment, Current equity holder in publicly-traded company. Pourdehnad: Bristol Myers Squibb: Current Employment, Current equity holder in publicly-traded company, Patents & Royalties: No royalty. Bahlis: Pfizer: Consultancy, Honoraria; Amgen: Consultancy, Honoraria; Genentech: Consultancy; BMS/Celgene: Consultancy, Honoraria; Janssen: Consultancy, Honoraria; Abbvie: Consultancy, Honoraria; Takeda: Consultancy, Honoraria; GlaxoSmithKline: Consultancy, Honoraria; Sanofi: Consultancy, Honoraria; Karyopharm: Consultancy, Honoraria. Richardson: Oncopeptides: Consultancy, Research Funding; Celgene/BMS: Consultancy, Research Funding; Takeda: Consultancy, Research Funding; Karyopharm: Consultancy, Research Funding; Protocol Intelligence: Consultancy; Janssen: Consultancy; Sanofi: Consultancy; Secura Bio: Consultancy; GlaxoSmithKline: Consultancy; Regeneron: Consultancy; AstraZeneca: Consultancy; AbbVie: Consultancy; Jazz Pharmaceuticals: Consultancy, Research Funding. Thakurta: Bristol Myers Squibb: Current Employment, Current equity holder in publicly-traded company, Patents & Royalties.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 590-590 ◽  
Author(s):  
Alejandra Leivas ◽  
Paula Rio ◽  
Rebeca Mateos ◽  
Mari Liz Paciello ◽  
Almudena Garcia-Ortiz ◽  
...  

Abstract Introduction Immunotherapy represents a new weapon in the fight against multiple myeloma. Current clinical outcomes using CAR-T cell therapy against multiple myeloma show promise in the eradication of the disease. However, these CARs observe relapse as a common phenomenon after treatment due to the reemergence of neoantigens or negative cells. CARs can also be targeted using non-antibody approaches, including the use of receptors, as NKG2D with a wider range of ligands, and ligands to provide target specificity. Different cell types have been used to improve CAR cell therapy. CAR-T cells are the most commonly used. However, despite its effectiveness, there are still problems to face. The toxicity of the cytokine release syndrome is well known, that is why memory CD45RA- T cells are used to avoid collateral effects, although having lower efficacy. However, CAR-NK cells may have less toxicity and provide a method to redirect these cells specifically to refractory cancer. The objective of this work was to compare the anti-tumor activity of CAR-T, NKAEs and CAR-NK cells from multiple myeloma patients. Methods The activated and expanded NK cells (NKAE) were generated by coculture of peripheral blood mononuclear cells with the previously irradiated CSTX002 cell line. The CD45RA- T cells were obtained by depletion with CD45RA magnetic beads and subsequent culture. The NKAE and T were transduced with an NKG2D-CAR with signaling domains of 4-1BB and CD3z. The expansion of NKAE and the expression of NKG2D-CAR were evaluated by flow cytometry based on the percentage of NK cell population and transduction efficiency by the expression of NKG2D. Europium-TDA release assays (2-4 hours) were performed to evaluate in vitro cytotoxic activity. The antitumor activity of the NKAE (n=4) and CD45RA- (n=4) cells against MM U-266 cells was studied. Methylcellulose cultures were performed to assess the activity against the clonogenic tumor cell. In vivo studies were carried out in NSG mice receiving 5.106 of U266-luc MM cells i.v. injected at day 1. At day 4, mice received 15.106 i.v. injected of either CAR-NKAE or untransduced NKAE cells. Results In vitro. The killing activity of primary NKAE cells (n=4) was 86.6% (± 13.9%), considerably higher than that of CD45RA- lymphocytes (16.7% ± 13.6%) from the same patient (n=4). Even CD45RA- T cells from healthy donors (n=4) exhibit lower anti tumoral capacity (28.2% ± 9.7%) than NKAE cells. The transduction with an NKG2D CAR (MOI=5) improved the activity of autologous NKAE cells by 10% (96.4% ± 19%) leading to a nearly complete destruction of U-266 MM cells, and that of CD45RA- allogenic healthy cells in 19% (47.4% ± 12.6%). Nevertheless, CD45RA- autologous T cells transduced with NKG2D-CAR minimally improved their activity by 5.8% (22.5% ± 10.6%). Additionally, the CAR-NKAE cells were able to destroy the clonogenic tumor cell responsible for the progression of the MM from RPMI-8226 cell line. At an 8:1 ratio the CAR-NKAE cells were able to destroy 71.2% ± 2.5% of the clonogenic tumor cells, while the NKAE reached 56.5% ± 2.6% at a maximum ratio of 32: 1. The toxicity of the CAR-NKAE cells on healthy tissue from the same patient was assessed, and no activity against autologous PBMCs was observed, 1,8% at a maximun ratio of 32:1 (effector:target). In vivo. NKAE cells and CAR-NKAE cells were efficient in abrogating MM growth. However, CAR-NKAE cells treatment showed higher efficiency 14 days after tumor cells injection. Forty-two days after tumor cells injection, only animals receiving CAR-NKAE cells treatment remain free of disease (Figure 1). Conclusions It is feasible to modify primary NKAE cells and CD45RA- T cells from primary MM cells to safely express an NKG2D-CAR. Our data show that CD45RA- T cells from patients are not effective in vitro against MM even once transduced with our CAR. The resulting CAR-NKG2D NKAE cells are the most appropriate strategy for the destruction of MM in vitro and in vivo in our model. These results form the basis for the development of an NKG2D-CAR NK cell therapy in MM. Disclosures Rio: Rocket Pharmaceuticals Inc: Equity Ownership, Patents & Royalties, Research Funding. Lee:Merck, Sharp, and Dohme: Consultancy; Courier Therapeutics: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; CytoSen Therapeutics: Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Research Funding. Martinez-Lopez:Janssen: Honoraria, Research Funding; Celgene: Honoraria, Research Funding; Vivia: Honoraria; Pfizer: Research Funding; BMS: Research Funding; Novartis: Research Funding.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1342-1342 ◽  
Author(s):  
Yibo Zhang ◽  
Lichao Chen ◽  
Yufeng Wang ◽  
Xinxin Li ◽  
Tiffany Hughes ◽  
...  

Abstract Daratumumab (Dara), a targeted therapy utilizing a monoclonal antibody against CD38, and its combination with other are becoming a new standard of care treatment in multiple myeloma (MM). Recently, chimeric antigen receptor (CAR) T cell immunotherapy has been successful in the clinic for the treatment of leukemia and lymphoma. Our preliminary data suggest that both CS1-CAR T cells and CS1-CAR NK cells are effective in eradicating MM cells in vitro and in vivo (Chu et al., 2014, Leukemia and Chu et al., 2014, Clinical Cancer Research). In this study, we investigated the combination therapy with Dara and CS1-CAR NK cells for the treatment of relapsed MM. We first showed that that in MM patients, CD38brightCD138─CD34─CD20+CD27+ MM cancer stem-like cells (CSCs) express CS1 at levels much higher than any other cells, and are susceptible to being eradicated by CS1-CAR NK cells. However, CD34+hematopoietic stem cells from bone marrow of healthy donors do not express CS1. These data suggest that CS1-CAR NK cells can target MM CSCs, and thus may prevent relapse of MM, as ample evidence shows that relapsed or recurrent tumor cells are derived from CSCs. We also demonstrated that CD38 is highly expressed on NK and MM cells. Dara triggered IFN-γ and GZMB expression (p< 0.01) in primary human NK cells, even in the absence of crosslinking with tumor cells. Interestingly, the increase IFN-γ expression can be validated in the CD16 (+) haNK-92 (high-affinity natural killer cells), but not in the parental NK-92 cell line. Blocking the recognition between CD16 and Dara (an IgG1 mAb) with an Fc blocking Ab completely impaired Dara-induced IFN-γ and GZMB expression, indicating that Dara-induced NK cell activation is CD16-dependent. Mechanistically, Dara significantly induced phosphorylation of NFkB and STAT1, indicating that Dara induces IFN-γ and GZMB in NK cells, which may occur through CD16 and be mediated downstream by STAT1 and NFkB. We also found that Dara failed to stimulate GZMB and IFN-γ expression in CD38(-) CD16(+) NK cells, while successful in stimulating CD38(+) CD16(+) NK cells, indicating that Dara induces NK cell activation, which requires not only the binding between CD16 and Fc fragment of Dara, but also the CD38 signaling pathway. Furthermore, we found that Dara mediated cytotoxicity of NK cells against MM cells through antibody-dependent cell-mediated cytotoxicity (ADCC) against CD38-positive (e.g., MM1.S), but not CD38-negative (e.g., U266), which can be blocked by CD16 blocking Ab. Moreover, Dara displays ADCC effects in CD16(+) NK cells but not CD16(-) NK cells. When CD16(+) NK cells were armed with the CS1-CAR, ADCC is still observed against CD38(+) MM cells at low effector to target ratios, i.e., Dara still enhances cytotoxicity of CS1-CAR NK cells, which already have enhanced cytotoxicity. We observed that Dara-induced NK cell ADCC against CD38(+) MM MM1.S cells led to increased T cell proliferation and activation in a co-culture system including dendritic cells. This effect was not observed when MM U266 cells were included as the NK cell target. Out data are consistent with that recent discovery by DiLillo and Ravetch showing that engagement of monoclonal antibody can induce an antitumor vaccine effects (David J et al., Cell, 2015). To tested Dara affects NK cell survival, immunoblotting was performed with anti-cleaved Caspase-3 and anti-cleaved PARP-1 antibodies. We demonstrated that apoptotic activity was increased in both CD16(+)NK cells (primary NK and haNK-92) and parental CD16(-)NK-92 cells treated with Dara for 24 h in a dose-dependent manner. Unlike Dara's positive effects on CD16(+) NK cells (i.e. stimulating IFN-γ production and ADCC), induction of apoptosis seems to be CD16-independent, as parental NK-92 cells, which are CD16(-), also showed an increased levels of apoptosis induced by Dara. We are testing whether the apoptosis induction is dependent on the antigen for Dara, because as mentioned above, both primary NK cells, and modified as well as unmodified NK-92 cells, that were CD38 (+). In conclusion, our study demonstrates that the combination of Dara and CS1-CAR NK cells, which target two different tumor-associated antigens, both of which have potent anti-MM efficacy, may show additive or synergistic effects; however due to the positive and negative effects of Dara on NK cells, sequential treatment rather than a concomitant treatment modality should be considered. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 138-138
Author(s):  
John Daly ◽  
Subhashis Sarkar ◽  
Alessandro Natoni ◽  
Robert Henderson ◽  
Dawn Swan ◽  
...  

Introduction: Evading Natural Killer (NK) cell-mediated immunosurveillance is key to the development of Multiple Myeloma (MM). Recent attention has focused on the role of hypersialylation in facilitating immune-evasion of NK cells. Abnormal cell surface sialylation is considered a hallmark of cancer and we have implicated hypersialylation in MM disease progression. Certain sialylated glycans can act as ligands for the sialic acid-binding immunoglobulin-like lectin (Siglec) receptors expressed by NK cells (Siglec-7 and Siglec-9). These ITIM motif-containing inhibitory receptors transmit an inhibitory signal upon sialic acid engagement. We hypothesized that desialylation of MM cells or targeted interruption of Siglec expression could lead to enhanced NK cell mediated cytotoxicity of MM cells. Methodology: MM cells were treated with the sialidase neuraminidase prior to co-culture with primary NK (PNK) cells. MM cells were treated with 300µM 3Fax-Neu5Ac (sialyltransferase inhibitor) for 3 days prior to co-cultures with PNK cells. PNK cells were expanded, IL-2 activated (500U/ml) overnight, or naïve (resting). Primary MM samples/MM cell lines were screened with Siglec-7/9 chimeras (10µg/ml). PNK (IL-2 activated) cells were stained with anti-Siglec-7 and anti-Siglec-9 antibodies. Siglec-7 was targeted for knockout (KO) using the CRISPR/Cas9 system, a pre-designed guideRNA and the MaxCyteGT transfection system. MM cells were treated with 10µg/ml of Daratumumab prior to co-culture with expanded PNK cells. Results: Using recombinant Siglec-7/9 chimeras a panel of MM cell lines (MM1S, RPMI-8226, H929, JJN3 and U266) were shown to express ligands for Siglec-7 and Siglec-9 (&gt;85%, n=3). Primary MM cells isolated from BM of newly diagnosed (n=3) and relapsed patients (n=2) were also shown to express Siglec-7 ligands (72.5±17.5%, 36.5% respectively). PNK cells express Siglec-7 and Siglec-9 (94.3±3.3% and 61±8.8% respectively, n=6). Desialylation of the MM cell lines JJN3 and H929 using neuraminidase significantly enhanced killing of MM cells by healthy donor (HD) derived PNK cells (expanded, IL-2 activated and naïve, n=7) at multiple effector:target (E:T) cell ratios. Furthermore, de-sialylation of JJN3 and H929 using neuraminidase resulted in increased NK cell degranulation (CD107α expression), compared to a glycobuffer control (n=7). De-sialylation, using 300µM 3Fax-Neu5Ac, resulted in strongly enhanced killing of MM1S by expanded HD-derived PNK cells at multiple E:T ratios (n=5, p&lt;0.01 at 0.5:1, p&lt;0.001 at 1:1, p&lt;0.01 at 2.5:1). Furthermore, CD38 expression on H929 MM cells significantly increased after treatment with 300µM 3Fax-Neu5Ac for 3 days (p&lt;0.01, n=3). In a cytotoxicity assay, expanded PNK cell-mediated antibody dependent cellular cytotoxicity (ADCC) of H929 MM cells pre-treated with Daratumumab (anti-CD38 moAb) and 3Fax-Neu5Ac was significantly higher than H929 cells pre-treated with Dara (p&lt;0.05 at 0.5:1, p&lt;0.01 at 1:1) or 3Fax-Neu5Ac (p&lt;0.01 at 0.5:1, p&lt;0.01 at 1:1) alone (n=5). Using CRISPR/Cas9, over 50% complete KO of Siglec-7 was observed on expanded PNK cells, yet did not result in enhanced NK cell-mediated cytotoxicity against either H929 or JJN3 (n=7). Siglec-9 KO using CRISPR/Cas9 is ongoing. Discussion: Hypersialylation of MM cells facilitates immune evasion and targeted removal of sialic acid strongly enhances the cytotoxicity of NK cells against MM. However, to date the role of Siglecs remains inconclusive. Nevertheless, our data suggest that targeted desialylation is a novel therapeutic strategy worth exploring in MM. In particular, upregulation of CD38 provides a strong rationale for combinatory strategies employing targeted desialylation with CD38 moAbs such as Daratumumab, with the goal of maximizing ADCC. Disclosures Sarkar: Onkimmune: Research Funding. O'Dwyer:Onkimmune: Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding; BMS: Research Funding; GlycoMimetics Inc: Research Funding; AbbVie: Consultancy.


Sign in / Sign up

Export Citation Format

Share Document