scholarly journals Mouse Erythroid Cells Originate from a Megakaryocyte Precursor in Common Myeloid Progenitors

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 337-337
Author(s):  
Elisabeth F Heuston ◽  
Bethan Psaila ◽  
Cheryl A Keller ◽  
NISC Comparative SequencingProgram ◽  
Stacie M Anderson ◽  
...  

The hierarchical model of hematopoiesis posits that hematopoietic stem and progenitor cells produce common myeloid progenitors (CMP). CMP can become granulocyte/monocyte progenitors (GMP) or bipotential megakaryocyte/erythroid progenitors (MEP). MEP can produce megakaryocytic (Mk) or erythroid (Ery) cells. However, we and others have shown that early mouse and human progenitor populations express many Mk genes (Heuston, Epig. Chrom., 2016), while single cell studies have identified lineage-specific colony forming cells in progenitor populations thought to be multipotent (Psaila, Genome Biol., 2016). To identify the earliest mouse Ery and Mk cells, we performed single cell RNASeq on 10000 stem and progenitor cells (Lin-Sca1+Kit+), 12000 CMP (Lin-Sca1-Kit+CD16/32-CD34+), 6000 MEP (Lin-Sca1-Kit+CD16/32-CD34-) and 8000 GMP (Lin-Sca1-Kit+CD16/32+CD34+). TSNE analysis of expression in the 4 populations identified 33 clusters, which were correlated to biological functions using gene set enrichment analysis. In LSK, no cells with an Ery RNA profile were found, while 56% of cells co-expressed Mk-associated (e.g., Meis1, Fli1) and lymphoid genes. In CMP, 12% of the cells co-expressed Ery (e.g., Gata1, Fog1) and Mk (e.g., Pf4, Cd41) genes, while 23% had an Mk-specific profile (e.g., Fli1, Cd41) enriched for platelet biology processes (p< 3E-18). Unlike traditional models, over 94% of MEP had Ery RNA profiles enriched for ribosome synthesis and heme-biology processes (p< 4E-10). To establish developmental relationships, we performed pseudotime analysis using the Monocle and Scanpy software packages. These programs model differentiation by mapping similar transcriptomes together. Map nodes indicate lineage commitment points and cells further from a node are more differentiated. Combined analysis of LSK, CMP, and MEP generated a model with a single node and 2 trajectories. LSK with Mk and lymphoid RNA profiles diverged at the node, as did 14% of CMP. 31% of CMP with an Mk RNA profile were downstream of the node. Further downstream were cells with mixed Ery/Mk profiles, and furthest from the node were MEP with Ery profiles. A separate pseudotime analysis of CMP only 2 trajectories: one with decreasing Mk- and increasing Ery RNA profiles, and a second with an early Mk endomitotic RNA profile. Pseudotime analysis of MEP only identified a linear trajectory: cells at one end expressed early Ery RNA profiles, and cells at the other end had RNA profiles similar to those of burst-forming unit-erythroid (BFU-E). We generated a predictive set of RNAs for each TSNE cluster. We used index-sorting with 11 markers (Kit, Sca1, CD34, CD16/32, CD36, CD41, CD48, CD123, CD150, CD9, Flk2) to isolate single cells for custom high-throughput multiplex qPCR. This allowed confirmation of cell frequency within TSNE clusters while identifying surface markers for prospective isolation of cell subsets. We focused on 2 populations: CMP-E, which had an Ery RNA profile (10% of clustered CMP and 12% of CMP in the qPCR assay), and CMP-MkE, which had Mk and Ery RNA profiles (12% of clustered CMP and 13% of CMP in the qPCR assay). We prospectively isolated CMP-E and CMP-MkE to compare RNASeq profiles, ATACSeq profiles, and colony forming ability against those of bulk CMP, Ery, and Mk. In CMP-E, 54% of RNAs were expressed in both CMP and ERY, while 41% were expressed only in CMP (p < 6E-72). In contrast, 41% of CMP-E ATACSeq peaks were present in CMP and ERY, while 57% of CMP-E peaks were present only in CMP (p < 1E-3). We conclude that in CMP-E, the RNASeq profile is more erythroid than the ATACSeq profile. In CMP-MkE, 89% of RNAs were expressed in both CMP and Mk, while 7% were expressed only in CMP (p < 8E-190). Likewise, 88% of CMP-MkE ATACSeq peaks were present in both CMP and Mk, while 3% were present only in CMP (p < 1E-3). We conclude that in CMP-MkE, the RNASeq and ATACSeq profiles are equivalent. In soft agar assays, 21% of CMP-E and 3% of CMP-MkE colonies contained BFU-E, compared to 9% of control colonies. We conclude that the CMP-E and CMP-MkE populations are skewed towards the ERY and MK lineages, but are not erythro-megakaryocyte restricted. Our data support a model in which there are two megakaryocyte precursor populations and no erythroid populations in LSK. A third megakaryocyte population in CMP gives rise to erythroid cells. Finally, our data show that transcriptional changes precede chromatin accessibility changes in the earliest erythroid cells. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 26-26
Author(s):  
Jimmy L. Zhao ◽  
Chao Ma ◽  
Ryan O'Connell ◽  
Dinesh S. Rao ◽  
James Heath ◽  
...  

Abstract Abstract 26 During infection, hematopoietic stem and progenitor cells (HSPCs) are called upon to proliferate and differentiate to produce more innate and adaptive immune cells to combat infection. Traditionally, HSPCs are thought to respond to depletion of downstream hematopoietic cells during infection. More recent evidence suggests that HSPCs may respond directly to infection and pro-inflammatory cytokines. However, little is known about the direct immune response of HSPCs and the molecular signaling regulating this response upon sensing an infection. In this study, we have combined transgenic and genetic knockout mouse models with a novel single cell barcode proteomics microchip technology to tackle these questions. We show that although long-term hematopoietic stem cells (HSCs) (defined by Lineage-cKit+Sca1+CD150+CD48-) do not secrete cytokines upon toll-like receptor (TLR) stimulation, short-term HSCs and multipotent progenitor cells (MPPs) (defined by Lineage-cKit+Sca1+, referred to as LKS thereafter) can produce copious amounts of cytokines upon direct TLR-4 and TLR-2 stimulation, indicating that LKS cells can directly participate in an immune response by producing a myriad of cytokines, upon a bacterial infection. Within the population of LKS cells we detect multiple functional subsets of cells, specialized in producing myeloid-like, lymphoid-like or both types of cytokines. Moreover, we show that the cytokine production by LKS cells is regulated by the NF-κB activity, as p50-deficient LKS cells show reduced cytokine production while microRNA-146a (miR-146a)-deficient LKS cells show significantly increased cytokine production. As long-term HSCs differentiate, they start to gain effector immune function much earlier than we had originally anticipated. In light of this finding, we should start to view the stepwise differentiation scheme of HSCs, and perhaps all other stem cells, as a strategy to sequentially gain functional capacity, instead of simply losing stemness and self-renewal ability. The remarkable ability of LKS cells to produce copious amounts of cytokines in response to bacteria may provide some protective immunity during severe neutropenia and lymphopenia or in the early stage of HSC transplantation. This study further extends the functions of NF-κB to include the regulation of primitive hematopoietic stem and progenitor cells and provides direct evidence of the bacteria-responding ability of HSPCs through the TLR/NF-κB axis. The single cell barcode proteomics technology can be widely applied to study proteomics of other rare cells or heterogeneous cell population at a single cell level. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1274-1274
Author(s):  
Elisabeth F Heuston ◽  
Bethan Psaila ◽  
Stacie M Anderson ◽  
NISC Comparative Sequencing Program ◽  
David M. Bodine

Abstract The hierarchical model of hematopoiesis posits that hematopoietic stem cells (HSC) give rise to myeloid progenitors (CMP), that can become further restricted to bipotential granulocyte/monocyte progenitors (GMP) or megakaryocyte/erythroid progenitors (MEP). We and others have shown that this model may not accurately depict hematopoiesis. Recent studies have shown that shown that populations of mouse hematopoietic stem and progenitor cells (LSK) have a strong megakaryocyte (Mk) transcriptional profile (Heuston, 2018, Epig. & Chrom.), and single cell studies have identified lineage committed cells in progenitor populations thought to be multipotent. For example, we recently reported that human MEP contain 3 populations: erythroid (Ery) primed, Mk primed, and bipotential (Psaila, 2016; Gen. Bio.). To determine when Mk and Ery cells emerge during mouse hematopoiesis, we performed single cell RNASeq on 10000 LSK, 12000 CMP, 6000 MEP and 8000 GMP cells. Clustering analysis (Satija, 2018, Nat. Biotech.) of all 4 populations identified 33 transcriptionally distinct clusters. In 30 of 33 clusters, 85% of cells were from a single defined population (e.g. MEP). LSK and CMP clusters grouped closely together. We used gene set profiling (Gene Set Enrichment Analysis, GO and KEGG) to correlate transcriptional profiles of clusters with specific hematopoietic lineages and cellular activities. In LSK, the most common transcriptional profiles correlated with active cell cycling. Mk-associated genes (Meis1, Myct1, and Fli1), were co-expressed with lymphoid genes in 56% of all LSK. Consistent with previous studies, we conclude that cells with Mk transcriptional profiles are abundant in LSK. No cells with an Ery RNA signature were observed in LSK. 23% of all CMP cells expressed Mk genes (e.g., Pf4, Itga2b, and Fli1) and were enriched for processes involved in platelet biology (p < 3E-18). 12% of CMP had an Ery RNA signature (low expression of Gata1, Klf1, and Nfe2) and decreased Mk gene expression (e.g., Gata2 and Gfi1b, [p < 3E-18]) compared to other CMP clusters. The high ratio of Gata2/Gata1 expression (1.90) suggests that this cluster contained immature Ery cells. More than 94% of all mouse MEP had Ery RNA signatures. Clusters could be distinguished by gene expression (e.g., Gata1, Klf1, Tfrc) and biological processes (ribosome synthesis and heme-biology processes [p < 4 E-10]). Based on the transcriptional profiles, we determined the most mature erythroid cells in MEP were late BFU-E. To compare the differentiation of Mk and Ery cells, we pooled our LSK, CMP, and MEP data for analysis using the Monocle software package. GMP contained only clusters expressing granulocytic or monocytic genes and were excluded from the analysis. Monocle arranges cells into trajectories based on their transcriptional profiles, with more differentiated cells positioned further from a common node (Xiaojie, 2017, bioRxiv). We found that LSK cells near the node had overlapping lymphoid and Mk transcriptional profiles. Closest to the node, we found 38% of CMP expressed a profile similar to LSK. An additional 45% of CMP formed one trajectory with lymphoid and granulocyte RNA signatures. Another 17% of CMP formed a second trajectory, with cells expressing an Mk signature closest to the node, cells with a mixed Ery/Mk signature further along the trajectory, and MEP cells with Ery-only signatures furthest from the node. To clarify the Mk/Ery divergence, we focused our analysis on the CMP populations expressing Mk RNAs (Figure1). We observed cells in G1/S phase with an immature Mk signature to the left of the node where the trajectories diverge. On the right, cells with immature Mk signatures were nearest the node and cells with a mixed Ery/Mk signature were at the end of the trajectory (upper right; Mk/Ery). Along the second trajectory, rapidly cycling G2/M Mk cells with an early endomitosis-associated RNA signature (e.g., Pf4, Gp1bb, Gp9, and Vwf) were located at the end of the trajectory (lower right; Mk early endomitosis). Our data are consistent with a model in which two waves of Mk differentiation begin in LSK and progresses to CMP. The Mk lineage is divided in CMP, producing cells that begin endomitosis and cells that have an Mk-repressing/Ery-activating cell program that gives rise to the Ery lineage. We conclude that the erythroid lineage is derived from an Mk-like precursor and is the last lineage to be specified in mouse hematopoiesis. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3707-3707
Author(s):  
Adedamola Elujoba-Bridenstine ◽  
Lijian Shao ◽  
Katherine Zink ◽  
Laura Sanchez ◽  
Brian Cox ◽  
...  

Hematopoietic stem and progenitor cells (HSPCs) have multi-lineage potential and can be used in transplants as a curative treatment for various hematopoietic diseases. HSPC function and behavior is tightly regulated by various cell types and factors in the bone marrow niche. One level of regulation comes from the sympathetic nervous system that innervates the niche and releases neurotransmitters to stromal cells. However, the direct regulation of HSPCs via cell surface expression of neural receptors has not been functionally explored. Using imaging mass spectrometry, we detected strong and regionally specific gamma-aminobutyric acid (GABA) neurotransmitter signal in the endosteal region of mouse bone marrow. GABBR1 is known to be expressed on human HSPCs (Steidl et al., Blood 2004), however its function in their regulation has not been investigated. Based on published mouse HSPC single cell RNA-seq data (Nestorowa et al., Blood 2016), we found that a subset of HSPCs expressed the GABA type B receptor subunit 1 (Gabbr1). We confirmed by surface receptor expression that a subset of mouse bone marrow HSPCs express Gabbr1 protein. Using the same single cell RNA-seq data as above, our own gene set enrichment analysis (GSEA) revealed positive correlation of Gabbr1 expression with genes involved in immune system processes, such as response to type I interferons. We generated a CRISPR-Cas9 Gabbr1 mutant mouse model on a C57/BL6 background suitable for hematopoietic studies. Analysis of Gabbr1 mutant bone marrow cells revealed a reduction in the absolute number of Lin-Sca1+cKit+ (LSK) HSPCs, but no change in the number of long-term hematopoietic stem cells (LT-HSCs). With further hematopoietic profiling, we discovered reduced numbers of white blood cells in peripheral blood that was primarily due to fewer B220+ cells. We show that Gabbr1 null HSPCs display reduced proliferative capacity, as well as diminished reconstitution ability when transplanted in a competitive setting. An in vitro differentiation assay revealed the impaired ability of Gabbr1 null HSPCs to produce B cell lineages. We tested our predicted association with type I interferon response by administration of poly(I:C) and found reduced HSPC proliferation in Gabbr1 null mice. Our results may translate well to humans, as a rare human SNP within the GABBR1 locus was found that correlates with altered leukocyte counts (Astle et al., Cell 2016). Our results indicate an important role for Gabbr1 in the regulation of HSPC proliferation and differentiation, highlighting Gabbr1 as an emerging factor in the modulation of HSPC function and behavior. Disclosures No relevant conflicts of interest to declare.


Genes ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 549
Author(s):  
Niclas Björn ◽  
Ingrid Jakobsen ◽  
Kourosh Lotfi ◽  
Henrik Gréen

Treatments that include gemcitabine and carboplatin induce dose-limiting myelosuppression. The understanding of how human bone marrow is affected on a transcriptional level leading to the development of myelosuppression is required for the implementation of personalized treatments in the future. In this study, we treated human hematopoietic stem and progenitor cells (HSPCs) harvested from a patient with chronic myelogenous leukemia (CML) with gemcitabine/carboplatin. Thereafter, scRNA-seq was performed to distinguish transcriptional effects induced by gemcitabine/carboplatin. Gene expression was calculated and evaluated among cells within and between samples compared to untreated cells. Cell cycle analysis showed that the treatments effectively decrease cell proliferation, indicated by the proportion of cells in the G2M-phase dropping from 35% in untreated cells to 14.3% in treated cells. Clustering and t-SNE showed that cells within samples and between treated and untreated samples were affected differently. Enrichment analysis of differentially expressed genes showed that the treatments influence KEGG pathways and Gene Ontologies related to myeloid cell proliferation/differentiation, immune response, cancer, and the cell cycle. The present study shows the feasibility of using scRNA-seq and chemotherapy-treated HSPCs to find genes, pathways, and biological processes affected among and between treated and untreated cells. This indicates the possible gains of using single-cell toxicity studies for personalized medicine.


Blood ◽  
1994 ◽  
Vol 83 (10) ◽  
pp. 2844-2850 ◽  
Author(s):  
N Yanai ◽  
C Sekine ◽  
H Yagita ◽  
M Obinata

Abstract Adhesion molecules are required for development of hematopoietic stem and progenitor cells in the respective hematopoietic microenvironments. We previously showed that development of the erythroid progenitor cells is dependent on their direct adhesion to the stroma cells established from the erythropoietic organs. In this stroma-dependent erythropoiesis, we examined the role of adhesion molecules in erythropoiesis by blocking antibodies. The development of the erythroid cells on stroma cells was inhibited by anti-very late activation antigen-4 (VLA-4 integrin) antibody, but not by anti-VLA-5 antibody, although the erythroid cells express both VLA-4 and VLA-5. Whereas high levels of expression of vascular cell adhesion molecule-1 (VCAM-1) and fibronectin, ligands for VLA-4, were detected in the stroma cells, the adhesion and development of the erythroid progenitor cells were partly inhibited by the blocking antibody against VCAM-1. VLA-5 and fibronectin could mediate adhesion of the erythroid progenitor cells to the stromal cells, but the adhesion itself may not be sufficient for the stroma-supported erythropoiesis. The stromal cells may support erythroid development by the adhesion through a new ligand molecule(s) for VLA-4 in addition to VCAM-1, and such collaborative interaction may provide adequate signaling for the erythroid progenitor cells in the erythropoietic microenvironment.


Blood ◽  
2017 ◽  
Vol 130 (25) ◽  
pp. 2762-2773 ◽  
Author(s):  
Xin Zhao ◽  
Shouguo Gao ◽  
Zhijie Wu ◽  
Sachiko Kajigaya ◽  
Xingmin Feng ◽  
...  

Key Points We distinguished aneuploid cells from diploid cells within the hematopoietic stem and progenitor cells using scRNA-seq. Monosomy 7 cells showed downregulated pathways involved in immune response and maintenance of DNA stability.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1219-1219
Author(s):  
Srinivas D. Narasipura ◽  
Jane L. Liesveld ◽  
Joel C. Wojciechowski ◽  
Nichola Charles ◽  
Karen Rosell ◽  
...  

Abstract Enrichment and purification of hematopoietic stem and progenitor cells (HSPCs) is important in transplantation therapies for hematological disorders and for basic stem cell research. Primitive CD34+ HSPCs have demonstrated stronger rolling adhesion than mature CD34- mononuclear cells on selectins (Blood2000; 95:478–486). We have exploited this differential rolling behavior to capture and purify HSPCs from bone marrow, by perfusing mononuclear cells through selectin-coated microtubes. Bone marrow mononuclear cells were perfused through the cell capture microtubes coated with adhesion molecules. These utilized a parallel plate flow chamber (Glycotech), and the P-selectin was adsorbed with laboratory tubing of appropriate lengths attached to the inlet, outlet, and vacuum ports of the gasket chamber. After perfusion, the device lumen was washed and captured cells were visualized and estimated by video microscopy. “Rolling” cells were defined as cells translating at less than 50% of the calculated hydrodynamic free stress velocity. Velocities of single cells were determined using a MATLAB program designed to measure the change in position of the cell centroid in a given time period. Adherent cells were eluted by high shear, calcium free buffer and air embolism. Immunofluorescence staining followed by flow cytometry was used to analyze CD34+ HSPCs. CD34+ HSPC purity of cells captured in adhesion molecule-coated devices was significantly higher than the fraction of CD34+ cells found in bone marrow- mononuclear cells (2.5 ± 0.8%). P-selectin coated surfaces yielded 16–20% CD34+ cell purity, while antibody coated surfaces yielded 12–18%. Although the CD34+ cell purities were comparable between selectin and antibody surfaces, the total number of CD34+ HSPCs captured was significantly higher in P-selectin devices (∼5.7–7.1 × 104) when compared to the antibody device (∼1.74–2.61 × 104). Furthermore, analysis for cells positive for CD133, a surface marker for more primitive HSPCs, depicted approximately 10–14 fold enrichment in P-selectin samples over control bone marrow mononuclear cells. The captured cells were viable and exhibited in vitro colony forming capabilities. Thus, P-selectin can be used in a compact flow device to capture and enrich HSPCs. This study supports the hypothesis that flow-based adhesion molecule-mediated capture may be a viable physiologic approach to the capture and purification of HSPCs.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1234-1234
Author(s):  
Robert S Welner ◽  
Giovanni Amabile ◽  
Deepak Bararia ◽  
Philipp B. Staber ◽  
Akos G. Czibere ◽  
...  

Abstract Abstract 1234 Specialized bone marrow (BM) microenvironment niches are essential for hematopoietic stem and progenitor cell maintenance, and recent publications have focused on the leukemic stem cells interaction and placement within those sites. Surprisingly, little is known about how the integrity of this leukemic niche changes the normal stem and progenitor cells behavior and functionality. To address this issue, we started by studying the kinetics and differentiation of normal hematopoietic stem and progenitor cells in mice with Chronic Myeloid Leukemia (CML). CML accounts for ∼15% of all adult leukemias and is characterized by the BCR-ABL t(9;22) translocation. Therefore, we used a novel SCL-tTA BCR/ABL inducible mouse model of CML-chronic phase to investigate these issues. To this end, BM from leukemic and normal mice were mixed and co-transplanted into hosts. Although normal hematopoiesis was increasingly suppressed during the disease progression, the leukemic microenvironment imposed distinct effects on hematopoietic progenitor cells predisposing them toward the myeloid lineage. Indeed, normal hematopoietic progenitor cells from this leukemic environment demonstrated accelerated proliferation with a lack of lymphoid potential, similar to that of the companion leukemic population. Meanwhile, the leukemic-exposed normal hematopoietic stem cells were kept in a more quiescent state, but remained functional on transplantation with only modest changes in both engraftment and homing. Further analysis of the microenvironment identified several cytokines that were found to be dysregulated in the leukemia and potentially responsible for these bystander responses. We investigated a few of these cytokines and found IL-6 to play a crucial role in the perturbation of normal stem and progenitor cells observed in the leukemic environment. Interestingly, mice treated with anti-IL-6 monoclonal antibody reduced both the myeloid bias and proliferation defects of normal stem and progenitor cells. Results obtained with this mouse model were similarly validated using specimens obtained from CML patients. Co-culture of primary CML patient samples and GFP labeled human CD34+CD38- adult stem cells resulted in selective proliferation of the normal primitive progenitors compared to mixed cultures containing unlabeled normal bone marrow. Proliferation was blocked by adding anti-IL-6 neutralizing antibody to these co-cultures. Therefore, our current study provides definitive support and an underlying crucial mechanism for the hematopoietic perturbation of normal stem and progenitor cells during leukemogenesis. We believe our study to have important implications for cancer prevention and novel therapeutic approach for leukemia patients. We conclude that changes in cytokine levels and in particular those of IL-6 in the CML microenvironment are responsible for altered differentiation and functionality of normal stem cells. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 217-217
Author(s):  
Karin Golan ◽  
Aya Ludin ◽  
Tomer Itkin ◽  
Shiri Cohen-Gur ◽  
Orit Kollet ◽  
...  

Abstract Hematopoietic stem and progenitor cells (HSPC) are mostly retained in a quiescent, non-motile mode in the bone marrow (BM), shifting to a cycling, differentiating and migratory state on demand. How HSC replenish the blood with new mature leukocytes on a daily basis while maintaining a constant pool of primitive cells in the BM throughout life is not clear. Recently, we reported that the bioactive lipid Sphingosine 1-Phosphate (S1P) regulates HSPC mobilization via ROS signaling and CXCL12 secretion (Golan et al, Blood 2012). We hypothesize that S1P influences the daily circadian egress of HSPC and their proliferation. We report that S1P levels in the blood are increased following initiation of light at the peak of HSPC egress and are reduced towards the termination of light when circulating HSPC reach a nadir. Interestingly, mice with constitutively low S1P plasma levels due to lack of one of the enzymes that generates S1P (Sphingosine kinase 1), do not exhibit fluctuations of HSPC levels in the blood between day and night. We report that HSPC numbers in the BM are also regulated in a circadian manner. Unexpectedly, we found two different daily peaks: one in the morning, following initiation of light, which is accompanied by increased HSPC egress and the other at night after darkness, which is associated with reduced HSPC egress. In both peaks HSPC begin to cycle and differentiate via up-regulation of reactive oxygen species (ROS) however, the night peak had lower ROS levels. Concomitant with the peak of primitive stem and progenitor cells, we also observed (to a larger extent in the night peak), expansion of a rare activated macrophage/monocyte αSMA/Mac-1 population. This population maintains HSPC in a primitive state via COX2/PGE2 signaling that reduces ROS levels and increases BM stromal CXCL12 surface expression (Ludin et al, Nat. Imm. 2012). We identified two different BM peaks in HSPC levels that are regulated by the nervous system via circadian changes in ROS levels. Augmented ROS levels induce HSPC proliferation, differentiation and motility, which take place in the morning peak; however, they need to be restored to normal levels in order to prevent BM HSPC exhaustion. In the night peak, HSPC proliferate with less differentiation and egress, and activated macrophage/monocyte αSMA/Mac-1 cells are increased to restore ROS levels and activate CXCL12/CXCR4 interactions to maintain a HSPC primitive phenotype. Additionally, S1P also regulates HSPC proliferation, thus mice with low S1P levels share reduced hematopoietic progenitor cells in the BM. Interestingly S1P is required more for the HSPC night peak since in mice with low S1P levels, HSPC peak normally during day time but not at darkness. We suggest that the first peak is initiated via elevation of ROS by norepinephrine that is augmented in the BM following light-driven cues from the brain (Mendez-Ferrer at al, Nature 2008). The morning elevated ROS signal induces a decrease in BM CXCL12 levels and up-regulated MMP-9 activity, leading to HSC proliferation, as well as their detachment from their BM microenvironment, resulting in enhanced egress. Importantly, ROS inhibition by N-acetyl cysteine (NAC) reduced the morning HSPC peak. Since norepinephrine is an inhibitor of TNFα, upon light termination norepinephrine levels decrease and TNFα levels are up-regulated. TNFα induces activation of S1P in the BM, leading to the darkness peak in HSPC levels. S1P was previously shown also to induce PGE2 signaling, essential for HSPC maintenance by the rare activated αSMA/Mac-1 population. Indeed, in mice with low S1P levels, we could not detect a peak in COX2 levels in these BM cells during darkness. We conclude that S1P not only induces HSPC proliferation via augmentation of ROS levels, but also activates PGE2/COX2 signaling in αSMA/Mac-1 population to restore ROS levels and prevent HSPC differentiation and egress during the night peak. We hypothesize that the morning HSPC peak, involves proliferation, differentiation and egress, to allow HSPC to replenish the blood circulation with new cells. In contrast, the second HSPC night peak induces proliferation with reduced differentiation and egress, allowing the renewal of the BM HSPC pool. In summary, we identified two daily circadian peaks in HSPC BM levels that are regulated via light/dark cues and concomitantly allow HSPC replenishment of the blood and immune system, as well as maintenance of the HSPC constant pool in the BM. Disclosures: No relevant conflicts of interest to declare.


2019 ◽  
Author(s):  
Tamar Tak ◽  
Giulio Prevedello ◽  
Gaël Simon ◽  
Noémie Paillon ◽  
Ken R. Duffy ◽  
...  

AbstractThe advent of high throughput single cell methods such as scRNA-seq has uncovered substantial heterogeneity in the pool of hematopoietic stem and progenitor cells (HSPCs). A significant issue is how to reconcile those findings with the standard model of hematopoietic development, and a fundamental question is how much instruction is inherited by offspring from their ancestors. To address this, we further developed a high-throughput method that enables simultaneously determination of common ancestor, generation, and differentiation status of a large collection of single cells. Data from it revealed that while there is substantial population-level heterogeneity, cells that derived from a common ancestor were highly concordant in their division progression and share similar differentiation outcomes, revealing significant familial effects on both division and differentiation. Although each family diversifies to some extent, the overall collection of cell types observed in a population is largely composed of homogeneous families from heterogeneous ancestors. Heterogeneity between families could be explained, in part, by differences in ancestral expression of cell-surface markers that are used for phenotypic HSPC identification: CD48, SCA-1, c-kit and Flt3. These data call for a revision of the fundamental model of haematopoiesis from a single tree to an ensemble of trees from distinct ancestors where common ancestor effect must be considered. As HSPCs are cultured in the clinic before bone marrow transplantation, our results suggest that the broad range of engraftment and proliferation capacities of HSPCs could be consequences of the heterogeneity in their engrafted families, and altered culture conditions might reduce heterogeneity between families, possibly improving transplantation outcomes.


Sign in / Sign up

Export Citation Format

Share Document