scholarly journals Analysis of Mechanisms of Blast Crisis in Chronic Myeloid Leukemia By Whole Genome Sequencing

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 19-19
Author(s):  
Kristina Loy ◽  
Melanie Zenger ◽  
Manja Meggendorfer ◽  
Stephan Hutter ◽  
Wolfgang Kern ◽  
...  

Background: Thanks to tyrosine kinase inhibitors (TKIs) chronic myeloid leukemia (CML) has become a well manageable disease. This drastically changes once an individual progresses to blast crisis (BC), which carries a poor prognosis. Although progression to BC fortunately is a rare event, the mechanisms leading to transformation from chronic phase to BC are sparsely studied, which led us to perform in depth analyses of CML patients each at diagnosis (D), at molecular or hematological remission (REM) and at BC by whole genome sequencing (WGS). Aim: (1) Study chromosomal and mutational profiles at D, REM and BC (2) Identify chromosomal and molecular genetic mechanisms in progression to BC Patients and Methods: We performed in depth analyses of 11 CML patients with BC confirmed by cytomorphology. REM samples were available for 8 patients, in 1 patient 2 BC samples were sequenced. Median age at D was 59 years (range 31-70) and median time to BC was 2 years (range 0-6). Nine patients received only first line TKI and 2 patients had switched to second- or third line TKIs before or at time of BC. We sequenced DNA of bone marrow (n=17) or peripheral blood (n=14) by WGS at a median coverage of 106x and used Strelka2 for variant calling. Structural variations (SVs) were analyzed by Manta caller, copy number alterations (CNVs) were called using the GATK4 CNV calling pipeline. Results: None of the patients presented with known high risk additional chromosomal aberrations (ACA) at D (Hochhaus et al, Leukemia 2020). Using WGS at D, we found deletions in the breakpoint region of der(9)t(9;22) (n=2), der(22)t(9;22) (n=1) and a translocation involving 12p and der(22)t(9;22) (n=1). Mutations in known myeloid driver genes were found in 4 patients at D. In two patients (DNMT3A, ASXL1) mutations were present at D and BC, while in two patients three ASXL1 mutations were present at D (VAF 27%; 23% and 14%), but could not be detected at BC by WGS and more sensitive targeted sequencing. Both patients presented with complex ACAs detected both by chromosome banding analysis (CBA) and WGS at BC. Other known driver or resistance mutations were not detected in any other sample at D. We identified three mechanisms driving the transition from chronic phase to BC, the first being ABL1 resistance mutations which render one or several TKIs ineffective (n=6/11). All patients developed ABL1 mutations that conferred resistance to the TKI they were receiving. In BC we detected T315I, Y253H, F359V (n=2 each), E450K, Q252H and Q255K (n=1 each) mutations, one patient had T315I, Q255K and F259V mutation combined, all other patients had a single mutation. In one patient two BCs occurred which showed both an additional t(9;10) but differed in the ABL1 mutations: First Q252H was detected and after REM in second BC T315I was present whereas the Q252H was absent. Secondly, in 10/11 of all patients SVs or CNVs were identified in addition to t(9;22)(q34;q11) by WGS in BC. If CBA data was available it confirmed the WGS data. Patients showed an additional t(9;10) (n=1), t(10;11) (n=1), inv(16) (n=1) and CNVs involving virtually all chromosomes which were only detected in BC pointing towards a major role of chromosomal instability. Interestingly WGS detected de-novo leukemic driver mutations in BC that are described primarily in other myeloid malignancies, representing the third mechanism (n=7). Two patients gained truncating mutations in BCOR, one patient each gained a mutation in ASXL1 and CUX1, one patient 3 frameshift mutations in ETV6, another patient two mutations in WT1 and one case gained a CBFB-MYH11 rearrangement which is usually found in a subtype of AML. Conclusion: Using WGS we found three different contributing mechanisms to progression to BC in CML: 1) ABL1 resistance mutations, 2) gain of structural and copy number variations and 3) potentially rise of additional AML like mutations. Since none of these factors were identified at D and REM, a comprehensive screening is recommended to detect, at the earliest possible time point when molecular remission is lost, the drivers to BC and allow early clinical intervention such as allogeneic transplant. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2715-2715
Author(s):  
Naomi E van der Sligte ◽  
Manuela Krumbholz ◽  
Agata Pastorczak ◽  
Blanca Scheijen ◽  
Josephine T. Tauer ◽  
...  

Abstract Chronic myeloid leukemia (CML) is a rare malignancy in children and is mostly diagnosed in the chronic phase (CP). In adults, the five-year overall survival rate is 89% for patients on Imatinib and disease progression occurs in 1-3% per year (Druker 2006). Once a blast crisis (BC) has occurred, treatment options are limited with a median survival of only a few months (Cortes 2008). Therefore, early recognition of patients at risk for developing a BC is desirable. Besides the translocation t(9;22)(q34;q11), IKZF1, PAX5, and CDKN2A deletions have been reported in CML lymphoid blast crisis (LyBC) of both adult and pediatric patients (Mullighan 2008, Alpár 2012). The aim of this study was to investigate the presence of IKZF1 deletions and other copy number alterations (CNAs) by MLPA analysis in a large cohort of pediatric CML patients at time of diagnosis in order to determine whether CNAs commonly found in pediatric ALL might predict disease progression and / or treatment response. Between October 1991 and October 2012 a total of 86 children with newly diagnosed CML were included. The median follow up was 31 months. Among the 86 patients, 82 patients were diagnosed in CP, 2 patients in accelerated phase (AP), and 2 patients in LyBC. Six patients experienced progression to a BC respectively a myeloid blast crisis (MyBC) (N=2) and LyBC (N=4). At time of diagnosis, an IKZF1 deletion was detected in one patient diagnosed with CML-AP (Table A, patient no 58). IKZF1 and EBF1 deletions were detected in one patient diagnosed with CML-LyBC (Table A, patient no 22). No CNAs were detected in the 82 patients diagnosed with CML-CP. At time of disease progression, new CNAs were detected at time of the LyBC (Table A, patient no 62, 64, and 67). Due to the absence of material no CNAs could be detected in both patients experiencing a MyBC. In conclusion, we were able to detect CNAs in progressive CML disease (CML-AP and CML-LyBC) and not in the samples at the time of chronic phase in this large pediatric cohort of CML patients. Therefore, the investigated CNAs could not be used to predict disease progression at time of diagnosis. The CNAs detected in patients with progressive CML were similar to specific CNAs detected in pediatric B-cell precursor ALL, indicating a similar disease development (Kuiper 2010). Additionally, our results are in accordance with existing literature, suggesting that mechanisms of disease progression in pediatric and adult CML might be similar (Brazma, 2007). Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Vol 48 (5) ◽  
pp. 030006052091923 ◽  
Author(s):  
Cheng-Cheng Ma ◽  
Ye Chai ◽  
Hui ling Chen ◽  
Xin Wang ◽  
Ying Gao ◽  
...  

Blast crisis develops in a minority of patients with chronic myeloid leukemia even in the era of tyrosine kinase inhibitor (TKI) therapy. Reports suggest that we know little about the mechanism of BCR-ABL and AML1-ETO co-expression in blast crisis of chronic myeloid leukemia, and that other chromosomal abnormalities also coexist. Here, we document an unusual and interesting case of a 51-year-old female diagnosed in the chronic phase of chronic myeloid leukemia. After undergoing TKI treatment for 3 months, her bone marrow aspirates in the chronic phase had transformed to blast crisis. Molecular genetic testing indicated she was positive for p210 form of BCR-ABL (copy number decreased from 108.91% to 56.96%) and AML1-ETO fusion (copy number, 5.65%) genes and had additional chromosomal abnormalities of t(8; 21)(q22; q22)/t(9; 22)(q34; q11), t(2; 5)(p24; q13) and an additional +8 chromosome.


2016 ◽  
Vol 94 (suppl_5) ◽  
pp. 146-146
Author(s):  
D. M. Bickhart ◽  
L. Xu ◽  
J. L. Hutchison ◽  
J. B. Cole ◽  
D. J. Null ◽  
...  

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Peter Higgins ◽  
Cooper A Grace ◽  
Soon A Lee ◽  
Matthew R Goddard

Abstract Saccharomyces cerevisiae is extensively utilized for commercial fermentation, and is also an important biological model; however, its ecology has only recently begun to be understood. Through the use of whole-genome sequencing, the species has been characterized into a number of distinct subpopulations, defined by geographical ranges and industrial uses. Here, the whole-genome sequences of 104 New Zealand (NZ) S. cerevisiae strains, including 52 novel genomes, are analyzed alongside 450 published sequences derived from various global locations. The impact of S. cerevisiae novel range expansion into NZ was investigated and these analyses reveal the positioning of NZ strains as a subgroup to the predominantly European/wine clade. A number of genomic differences with the European group correlate with range expansion into NZ, including 18 highly enriched single-nucleotide polymorphism (SNPs) and novel Ty1/2 insertions. While it is not possible to categorically determine if any genetic differences are due to stochastic process or the operations of natural selection, we suggest that the observation of NZ-specific copy number increases of four sugar transporter genes in the HXT family may reasonably represent an adaptation in the NZ S. cerevisiae subpopulation, and this correlates with the observations of copy number changes during adaptation in small-scale experimental evolution studies.


2021 ◽  
Author(s):  
Stephanie Y Yang ◽  
Charles E Newcomb ◽  
Stephanie L Battle ◽  
Anthony YY Hsieh ◽  
Hailey L Chapman ◽  
...  

Mitochondrial DNA copy number (mtDNA-CN) is a proxy for mitochondrial function and has been of increasing interest to the mitochondrial research community. There are several ways to measure mtDNA-CN, ranging from whole genome sequencing to qPCR. A recent article from the Journal of Molecular Diagnostics described a novel method for measuring mtDNA-CN that is both inexpensive and reproducible. However, we show that certain individuals, particularly those with very low qPCR mtDNA measurements, show poor concordance between qPCR and whole genome sequencing measurements. After examining whole genome sequencing data, this seems to be due to polymorphisms within the D-loop primer region. Non-concordant mtDNA-CN was observed in all instances of polymorphisms at certain positions in the D-loop primer regions, however, not all positions are susceptible to this effect. In particular, these polymorphisms appear disproportionately in individuals with the L, T, and U mitochondrial haplogroups, indicating non-random dropout.


2019 ◽  
Author(s):  
Junhua Rao ◽  
Lihua Peng ◽  
Fang Chen ◽  
Hui Jiang ◽  
Chunyu Geng ◽  
...  

AbstractBackgroundNext-generation sequence (NGS) has rapidly developed in past years which makes whole-genome sequencing (WGS) becoming a more cost- and time-efficient choice in wide range of biological researches. We usually focus on some variant detection via WGS data, such as detection of single nucleotide polymorphism (SNP), insertion and deletion (Indel) and copy number variant (CNV), which playing an important role in many human diseases. However, the feasibility of CNV detection based on WGS by DNBSEQ™ platforms was unclear. We systematically analysed the genome-wide CNV detection power of DNBSEQ™ platforms and Illumina platforms on NA12878 with five commonly used tools, respectively.ResultsDNBSEQ™ platforms showed stable ability to detect slighter more CNVs on genome-wide (average 1.24-fold than Illumina platforms). Then, CNVs based on DNBSEQ™ platforms and Illumina platforms were evaluated with two public benchmarks of NA12878, respectively. DNBSEQ™ and Illumina platforms showed similar sensitivities and precisions on both two benchmarks. Further, the difference between tools for CNV detection was analyzed, and indicated the selection of tool for CNV detection could affected the CNV performance, such as count, distribution, sensitivity and precision.ConclusionThe major contribution of this paper is providing a comprehensive guide for CNV detection based on WGS by DNBSEQ™ platforms for the first time.


2021 ◽  
Author(s):  
Bing Zhao ◽  
Chunfa Liu ◽  
Jiale Fan ◽  
Aijing Ma ◽  
Wencong He ◽  
...  

Abstract Background: Multidrug/rifampicin-resistant tuberculosis (MDR/RR-TB) is a global barrel for ‘Stop TB plan’. China has the second highest MDR/RR-TB burden in whole world wide. Understanding the transmission dynamic is facilitated for disease control. Methods: Whole genome sequencing (WGS) data from patients of Chongqing tuberculosis control institute were used for phylogenetic classifications, resistance predictions, and cluster analysis as indicator for recent transmission (RT). Factors associated with MDR/RR-TB were defined by a logistic regression model. Results: A total of 223 cases of MDR/RR-TB were recorded between Jan 1, 2018 and Dec 31, 2020, and 200 cases obtained relevant treatment information. The patients who are older than 55 year old were more likely to suffering from death. 178 MDR/RR strains were obtained WGS data, 152 were classified as lineage 2 strains. 80 (44.9%, 80 of 178) strains were in 20 genomic clusters that differed by 12 or fewer single nucleotide polymorphisms (SNPs), indicating RT. Patients who were infected with lineage 2 strains is a significant factor driving the epidemic towards MDR/RR-TB. Resistance mutations of first-line tuberculosis drugs analysis found that 79 (98.8%) of all 80 strains defined as RT have same mutations among each clusters totally. 55% (44 of 80) of the MDR/RR-TB strains accumulated additional drug resistance mutations along the transmission chain, especially fluoroquinolones (FQs) (63.6%, 28 of 44). Conclusions: The age is the most significant factor that causes death of MDR/RR-TB patients. RT of MDR/RR strains is not only drove the MDR/RR-TB epidemic, but also accumulated more serious resistance along the transmission chains.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii408-iii408
Author(s):  
Marina Danilenko ◽  
Masood Zaka ◽  
Claire Keeling ◽  
Stephen Crosier ◽  
Rafiqul Hussain ◽  
...  

Abstract Medulloblastomas harbor clinically-significant intra-tumoral heterogeneity for key biomarkers (e.g. MYC/MYCN, β-catenin). Recent studies have characterized transcriptional heterogeneity at the single-cell level, however the underlying genomic copy number and mutational architecture remains to be resolved. We therefore sought to establish the intra-tumoural genomic heterogeneity of medulloblastoma at single-cell resolution. Copy number patterns were dissected by whole-genome sequencing in 1024 single cells isolated from multiple distinct tumour regions within 16 snap-frozen medulloblastomas, representing the major molecular subgroups (WNT, SHH, Group3, Group4) and genotypes (i.e. MYC amplification, TP53 mutation). Common copy number driver and subclonal events were identified, providing clear evidence of copy number evolution in medulloblastoma development. Moreover, subclonal whole-arm and focal copy number alterations covering important genomic loci (e.g. on chr10 of SHH patients) were detected in single tumour cells, yet undetectable at the bulk-tumor level. Spatial copy number heterogeneity was also common, with differences between clonal and subclonal events detected in distinct regions of individual tumours. Mutational analysis of the cells allowed dissection of spatial and clonal heterogeneity patterns for key medulloblastoma mutations (e.g. CTNNB1, TP53, SMARCA4, PTCH1) within our cohort. Integrated copy number and mutational analysis is underway to establish their inter-relationships and relative contributions to clonal evolution during tumourigenesis. In summary, single-cell analysis has enabled the resolution of common mutational and copy number drivers, alongside sub-clonal events and distinct patterns of clonal and spatial evolution, in medulloblastoma development. We anticipate these findings will provide a critical foundation for future improved biomarker selection, and the development of targeted therapies.


2013 ◽  
Vol 3 (11) ◽  
pp. e157-e157 ◽  
Author(s):  
J Menezes ◽  
R N Salgado ◽  
F Acquadro ◽  
G Gómez-López ◽  
M C Carralero ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document