scholarly journals Setbp1 Overexpression Acts in the Place of Class-Defining Somatic Mutations to Drive Mouse and Human FLT3-ITD-Mutant AMLs

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 31-32
Author(s):  
Suruchi Pacharne ◽  
Oliver M. Dovey ◽  
Jonathan L Cooper ◽  
Muxin Gu ◽  
Vijay Baskar ◽  
...  

Setbp1 overexpression acts in the place of class-defining somatic mutations to drive mouse and human FLT3-ITD-mutant AMLs Suruchi Pacharne,1,2 Oliver M. Dovey,1 Jonathan L. Cooper,1 Muxin Gu,1,2 MS Vijaybaskar,1,2 Mathias J. Friedrich,1,5 Malgorzata Gozdecka,1,2 Sandeep S. Rajan,1,4, Etienne De Braekeleer,1,2 Maxim Barenboim,5,6 Grace Collord,1,2 Hannes Ponstingl,1 Ruben Bautista,1 Milena Mazan,1,8 Roland Rad,5,6 Konstantinos Tzelepis,1,7 Penny Wright,3 and George S. Vassiliou1,2,9* Abstract Internal tandem duplications in FLT3 (FLT3-ITD) are found in 30% of acute myeloid leukemia (AML) cases and impart a poor prognosis. FLT3-ITD commonly synergizes with class-defining mutations such as chimeric fusion genes or mutations in NPM1, RUNX1, CEBPA or MLL to drive AML. However, 20% of FLT3-ITD-mutant AMLs bare no class-defining mutations and the mechanisms of acute leukemic transformation in these cases are unknown. To identify pathways that can drive FLT3-ITD-mutant AML in the absence of class-defining mutations, we performed an insertional mutagenesis (IM) screen in Flt3-ITD mice using the Sleeping Beauty transposon system, activated by the Mx1-Cre recombinase in hematopoietic stem cells. All mice developed acute leukemia, predominantly AML, after a median latency of 73 days (Figure A). Analysis of transposon insertions in 38 Flt3-ITD/IM leukemias identified common integration sites (CISs) in 22 loci (Figure B). The most commonly "hit" genes were Setbp1 (20/38), Ets1 (11/38), Ash1l (8/38), Notch1 (8/38), Erg (7/38), Flt3 (6/38) and Runx1 (5/38) (Figure B). Of these, Setbp1 and Runx1 were unique to Flt3-ITD and not identified as CISs in insertional mutagenesis screens of wild type, Npm1c or BCR-ABL-expressing mice. Transposon insertions in Setbp1, primarily located upstream of its first coding exon, were associated with Setbp1 and Hoxa mRNA overexpression and were invariably associated with AML development (Figure B). These findings propose that overexpression of wild type SETBP1 may collaborate with FLT3-ITD to drive leukemogenesis in human AMLs lacking mutations known to collaborate with mutant FLT3. Corroborating this, we found that SETBP1 expression was higher in human FLT3-ITD-mutant AMLs lacking class-defining mutations and in those with RUNX1 mutations (Figure C). We go on to show that Setbp1 insertions activate a Hoxa gene signature such that shares significant similarities, but also specific differences to those driven by mutant Npm1 and MLL fusion genes. We go on to show, using CRISPR-gRNA, that whilst Flt3ITD/+/SETBP1IM+AMLs are entirely dependent on Setbp1 expression, Flt3ITD/+/Npm1cA/+AMLs are not, but do depend on the expression of the homebox gene Nkx2.3. Our findings propose that SETBP1 overexpression activates a gene expression pattern that collaborates with FLT3-ITD to drive many human AMLs and that this combination represents a specific subtype of AML amongst AMLs lacking class-defining mutations. To identify genetic vulnerabilities of this AML subtype, we performed genome-wide CRISPR-Cas9 recessive screens in primary murine Flt3ITD/+SETBP1IM+AMLs and identified more than 2000 genetic vulnerabilities, of which 677 were not required for the survival of HPC7 non-leukemic hematopoietic cells including >100 "druggable" genes such as Brd3, Ezh2 and Hmgcr (Figure D). Collectively our study: i) identifies SETBP1overexpression as a non-genetic alteration driving a subgroup of FLT3-ITD mutant AMLs lacking class-defining somatic mutations and ii) goes on to define the genetic vulnerabilities of such AMLs as a starting point for the development of targeted therapies. Figure Disclosures Vassiliou: Kymab Ltd - Monoclonal antibody company. Currently not working in myeloid cancers or clonal haematopoiesis.: Consultancy.

2021 ◽  
Vol 5 (9) ◽  
pp. 2412-2425
Author(s):  
Suruchi Pacharne ◽  
Oliver M. Dovey ◽  
Jonathan L. Cooper ◽  
Muxin Gu ◽  
Mathias J. Friedrich ◽  
...  

Abstract Advances in cancer genomics have revealed genomic classes of acute myeloid leukemia (AML) characterized by class-defining mutations, such as chimeric fusion genes or in genes such as NPM1, MLL, and CEBPA. These class-defining mutations frequently synergize with internal tandem duplications in FLT3 (FLT3-ITDs) to drive leukemogenesis. However, ∼20% of FLT3-ITD–positive AMLs bare no class-defining mutations, and mechanisms of leukemic transformation in these cases are unknown. To identify pathways that drive FLT3-ITD mutant AML in the absence of class-defining mutations, we performed an insertional mutagenesis (IM) screening in Flt3-ITD mice, using Sleeping Beauty transposons. All mice developed acute leukemia (predominantly AML) after a median of 73 days. Analysis of transposon insertions in 38 samples from Flt3-ITD/IM leukemic mice identified recurrent integrations at 22 loci, including Setbp1 (20/38), Ets1 (11/38), Ash1l (8/38), Notch1 (8/38), Erg (7/38), and Runx1 (5/38). Insertions at Setbp1 led exclusively to AML and activated a transcriptional program similar, but not identical, to those of NPM1-mutant and MLL-rearranged AMLs. Guide RNA targeting of Setbp1 was highly detrimental to Flt3ITD/+/Setbp1IM+, but not to Flt3ITD/+/Npm1cA/+, AMLs. Also, analysis of RNA-sequencing data from hundreds of human AMLs revealed that SETBP1 expression is significantly higher in FLT3-ITD AMLs lacking class-defining mutations. These findings propose that SETBP1 overexpression collaborates with FLT3-ITD to drive a subtype of human AML. To identify genetic vulnerabilities of these AMLs, we performed genome-wide CRISPR-Cas9 screening in Flt3ITD/+/Setbp1IM+ AMLs and identified potential therapeutic targets, including Kdm1a, Brd3, Ezh2, and Hmgcr. Our study gives new insights into epigenetic pathways that can drive AMLs lacking class-defining mutations and proposes therapeutic approaches against such cases.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 21-21
Author(s):  
Simona Pagliuca ◽  
Carmelo Gurnari ◽  
Sanghee Hong ◽  
Cassandra M Kerr ◽  
Sunisa Kongkiatkamon ◽  
...  

Curative potential of allogeneic hematopoietic cell transplantation (aHCT) in myeloid malignancies is principally related to the graft versus leukemia (GvL) effect exerted by donor-derived immune effectors on leukemic cells. However, different pathways may drive post-transplant relapse, including perturbation/attenuation of T cell-mediated GvL responses. For example, decreased expression of HLA alleles has been described in post-aHCT relapse.1 This could be due to down-regulation of HLA or 6p HLA locus deletion. However, the occurrence of chromosome 6p uniparental disomy (UPD) along with del6p (first described by our group in the context of aplastic anemia)2 suggests that HLA loss of heterozygosity (LOH) and inherent loss of one allele (presenting immunodominant peptides) may be a significant contributor to leukemic relapse either directly, causing decreased HLA expression or as additive effect to HLA down-regulation. In relapses after haploidentical or mismatched aHCT, LOH of mismatched allele has been described.3 Here, we hypothesize that not only copy neutral LOH or haploinsufficient HLA expression but also defective function due to HLA mutations may lead to immune escape from GvL. Such a mechanism would involve the loss of an allele responsible for the presentation of an immunodominant antigenic peptide. Moreover, unlike relapse due to the acquisition of additional myeloid mutations, HLA mutant relapse would also acquire resistance to donor lymphocyte infusion (DLI) therapy. In order to dissect the immunogenomic mechanisms leading to leukemic immune-evasion, we performed a comprehensive genetic analysis of specimens sequentially collected from a cohort of patients with acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) relapsed after aHCT. Specifically, we applied a deep-targeted NGS panel to study HLA region along with 173 genes known to have a role in leukemogenesis and cancer ontogeny. So far, 57 paired/serial biospecimens from 25 transplanted patients have been analyzed (25 samples at AML/MDS diagnosis, 25 at the moment of relapse after aHCT and 7 samples at relapse after chemotherapy) Overall, we found the acquisition of 8 disruptive HLA somatic mutations in 6 patients at post-transplant relapse (24%), 4 in class I and 4 in class II loci. None of those events were found in samples at diagnosis or at post-chemotherapy relapse, suggesting the possibility of an "immune-escape relapse". Those somatic hits accounted for 4 intronic indels, 1 frameshift insertion, one splicing site and 2 point mutations in 3′ and 5′ untranslated regions (UTRs). Median variant allele frequency (VAF) was 17% (range 2-58%). Of note is that all HLA mutant patients received a matched aHCT (4 from related and 2 from a 10/10 matched unrelated donors) suggesting that this mechanism is independent from the deletion and the loss of an immune privileged mismatched allele. Interestingly, median time to relapse was 514 (range 119-935) days for HLA-mutated patients vs 126 (62-543) for HLA wild type cases (p=.00042), consistent with the hypothesis that the establishment of immune-tolerance, and the presence of a GvL effect (less likely in early relapses) are required for the selection of those mutations. When somatic genotype of these patients prior and after transplant was studied, we found that post-aHCT relapses were associated in most cases with a new genomic configuration with either loss of previous events or acquisition of new subclonal mutations in myeloid or cancer related genes (in 17/25 cases). However no difference was seen in terms of number and patterns of new events among the HLA mutated and HLA wild type patients. Results shown here represent an important proof-of-concept for the role played by somatic mutations in HLA genes in the setting of post-aHCT AML/MDS relapses. These events, in analogy to the deletion or copy neutral LOH, may promote immune escape relapse resistant to immunologic manipulations and may coexist or be an alternative pathway to the progression/relapse characterized by acquisition of myeloid subclonal driver mutations. In that context, HLA mutations would be considered facilitator lesions. Disclosures Hsi: CytomX: Consultancy, Honoraria; Eli Lilly: Research Funding; Abbvie: Research Funding; Miltenyi: Consultancy, Honoraria; Seattle Genetics: Consultancy, Honoraria. Hamilton:Syndax Pharmaceuticals: Consultancy, Honoraria. Carraway:Abbvie: Other: Independent Advisory Committe (IRC); BMS: Consultancy, Other: Research support, Speakers Bureau; Novartis: Consultancy, Speakers Bureau; Jazz: Consultancy, Speakers Bureau; Stemline: Consultancy, Speakers Bureau; Takeda: Other: Independent Advisory Committe (IRC); ASTEX: Other: Independent Advisory Committe (IRC). Majhail:Incyte: Honoraria; Mallinckrodt: Honoraria; Nkarta Therapeutics: Honoraria; Anthem, Inc.: Consultancy. Maciejewski:Alexion, BMS: Speakers Bureau; Novartis, Roche: Consultancy, Honoraria.


2012 ◽  
Vol 224 (03) ◽  
Author(s):  
K Karl ◽  
E Kowarz ◽  
T Dingermann ◽  
R Marschalek
Keyword(s):  

2006 ◽  
Vol 188 (6) ◽  
pp. 2063-2072 ◽  
Author(s):  
Preeti M. Tendolkar ◽  
Arto S. Baghdayan ◽  
Nathan Shankar

ABSTRACT Enterococci are opportunistic pathogens and among the leading causes of nosocomial infections. Enterococcus faecalis, the dominant species among infection-derived isolates, has recently been recognized as capable of forming biofilms on abiotic surfaces in vitro as well as on indwelling medical devices. A few bacterial factors known to contribute to biofilm formation in E. faecalis have been characterized. To identify additional factors which may be important to this process, we utilized a Tn917-based insertional mutagenesis strategy to generate a mutant bank in a high-biofilm-forming E. faecalis strain, E99. The resulting mutant bank was screened for mutants exhibiting a significantly reduced ability to form biofilms. One mutant, P101D12, which showed greater than 70% reduction in its ability to form biofilms compared to the wild-type parent, was further characterized. The single Tn917 insertion in P101D12 was mapped to a gene, bee-2, encoding a probable cell wall-anchored protein. Sequence information for the region flanking bee-2 revealed that this gene was a member of a locus (termed the bee locus for biofilm enhancer in enterococcus) comprised of five genes encoding three putative cell wall-anchored proteins and two probable sortases. Contour-clamped homogeneous electric field gel and Southern hybridization analyses suggested that the bee locus is likely harbored on a large conjugative plasmid. Filter mating assays using wild-type E99 or mutant P101D12 as a donor confirmed that the bee locus could transfer conjugally at high frequency to recipient E. faecalis strains. This represents the first instance of the identification of a mobile genetic element conferring biofilm-forming property in E. faecalis.


2004 ◽  
Vol 186 (7) ◽  
pp. 2038-2045 ◽  
Author(s):  
Caroline B. Michielse ◽  
Arthur F. J. Ram ◽  
Paul J. J. Hooykaas ◽  
Cees A. M. J. J. van den Hondel

ABSTRACT Reductions to 2, 5, and 42% of the wild-type transformation efficiency were found when Agrobacterium mutants carrying transposon insertions in virD2, virC2, and virE2, respectively, were used to transform Aspergillus awamori. The structures of the T-DNAs integrated into the host genome by these mutants were analyzed by Southern and sequence analyses. The T-DNAs of transformants obtained with the virE2 mutant had left-border truncations, whereas those obtained with the virD2 mutant had truncated right ends. From this analysis, it was concluded that the virulence proteins VirD2 and VirE2 are required for full-length T-DNA integration and that these proteins play a role in protecting the right and left T-DNA borders, respectively. Multicopy and truncated T-DNA structures were detected in the majority of the transformants obtained with the virC2 mutant, indicating that VirC2 plays a role in correct T-DNA processing and is required for single-copy T-DNA integration.


1996 ◽  
Vol 132 (3) ◽  
pp. 359-370 ◽  
Author(s):  
E F Smith ◽  
P A Lefebvre

Several studies have indicated that the central pair of microtubules and their associated structures play a significant role in regulating flagellar motility. To begin a molecular analysis of these components we have generated central apparatus-defective mutants in Chlamydomonas reinhardtii using insertional mutagenesis. One paralyzed mutant recovered in our screen, D2, is an allele of a previously identified mutant, pf16. Mutant cells have paralyzed flagella, and the C1 microtubule of the central apparatus is missing in isolated axonemes. We have cloned the wild-type PF16 gene and confirmed its identity by rescuing pf16 mutants upon transformation. The rescued pf16 cells were wild-type in motility and in axonemal ultrastructure. A full-length cDNA clone for PF16 was obtained and sequenced. Database searches using the predicted 566 amino acid sequence of PF16 indicate that the protein contains eight contiguous armadillo repeats. A number of proteins with diverse cellular functions also contain armadillo repeats including pendulin, Rch1, importin, SRP-1, and armadillo. An antibody was raised against a fusion protein expressed from the cloned cDNA. Immunofluorescence labeling of wild-type flagella indicates that the PF16 protein is localized along the length of the flagella while immunogold labeling further localizes the PF16 protein to a single microtubule of the central pair. Based on the localization results and the presence of the armadillo repeats in this protein, we suggest that the PF16 gene product is involved in protein-protein interactions important for C1 central microtubule stability and flagellar motility.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3883-3883 ◽  
Author(s):  
Pratibha Singh ◽  
Louis M. Pelus

Hematopoietic stem cells (HSC) reside in a complex microenvironment (niche) within the bone marrow (BM), where multiple populations of microenvironmental stromal cells regulate and finely tune their proliferation, differentiation and trafficking. Recent studies have shown that mesenchymal stem cells (MSC) are an essential component of the HSC niche. Intrinsic HSC CXCR4-SDF-1 signaling has been implicated in self-renewal and quiescence; however, the role of microenvironment CXCR4-SDF-1 signaling in supporting HSC function remains unclear. We previously demonstrated that microenvironmental stromal cell-derived CXCR4 is important for HSC recovery, as transplantation of wild-type HSC into CXCR4 deficient recipients showed reduced HSC engraftment. In this study, we now show that CXCR4-SDF-1 signaling in nestin+ MSC regulates HSC maintenance under normal homeostatic conditions and promotes hematopoietic regeneration after irradiation. Multivariate flow cytometry analysis of marrow stroma cells revealed that mouse BM MSCs identified as CD45-Ter119-CD31-Nestin+PDGFR+CD51+ express the CXCR4 receptor, which was confirmed by RT-PCR analysis. To investigate the role of MSC CXCR4 signaling in niche maintenance and support of HSC function, we utilized genetic mouse models, in which CXCR4 could be deleted in specific stromal cell types. Selective deletion of CXCR4 from nestin+ MSC in adult tamoxifen inducible nestin-cre CXCR4flox/flox mice resulted in reduced total MSC in BM (Control vs. Deleted: 647±128 vs. 209±51/femur, respectively, n=5, p<0.05), which was associated with a significant reduction in Lineage-Sca-1+c-Kit+ (LSK) cells (Control vs. Deleted: 18,033±439 vs. 4523±358/femur, respectively n=5, p<0.05). Selective CXCR4 deletion in nestin+ MSC also resulted in enhanced LSK cell egress to the peripheral circulation (Control vs. Deleted: 1022±106 vs. 2690±757/ml blood, respectively n=5, p<0.05), with no detectable difference in HSC cell cycle or apoptosis. However, the repopulation ability of HSC obtained from mice where CXCR4 was deleted in nestin+ MSC was reduced by >2 fold. In contrast, deletion of CXCR4 from osteoblasts using osteocalcin cre CXCR4flox/flox mice had no effect on HSC numbers in BM and blood.To investigate the role of nestin+ MSC CXCR4 signaling in BM niche reconstruction and hematopoietic recovery, we transplanted BM cells from wild-type mice into syngeneic wild-type or nestin+ MSC CXCR4 deleted recipients after lethal irradiation (950 rad) and analyzed HSC homing, niche recovery and hematopoietic reconstitution. Deletion of CXCR4 from nestin expressing MSC resulted in significantly reduced LSK cell homing at 16 hrs post transplantation (Control vs. Deleted: 8643±1371 vs. 3004±1044/ mouse, respectively, n=5, p<0.05). Robust apoptosis and senescence after total body irradiation was observed in nestin expressing MSCs lacking CXCR4 expression. At 15 days post-transplantation, chimeric mice with nestin+ MSC lacking CXCR4 expression displayed attenuated niche recovery and hematopoietic reconstitution compared to mice with wild-type stroma. In conclusion, our study suggests that CXCR4-SDF-1 signaling in nestin+ MSC is critical for the maintenance and retention of HSC in BM during homeostasis and promotes niche regeneration and hematopoietic recovery after transplantation. Furthermore, our data suggest the modulating CXCR4 signaling in the hematopoietic niche could be beneficial as a means to enhance HSC recovery following clinical hematopoietic transplantation or radiation/chemotherapy injury. Disclosures No relevant conflicts of interest to declare.


Author(s):  
Oriol Pich ◽  
Iker Reyes-Salazar ◽  
Abel Gonzalez-Perez ◽  
Nuria Lopez-Bigas

AbstractMutations in genes that confer a selective advantage to hematopoietic stem cells (HSCs) in certain conditions drive clonal hematopoiesis (CH). While some CH drivers have been identified experimentally or through epidemiological studies, the compendium of all genes able to drive CH upon mutations in HSCs is far from complete. We propose that identifying signals of positive selection in blood somatic mutations may be an effective way to identify CH driver genes, similarly as done to identify cancer genes. Using a reverse somatic variant calling approach, we repurposed whole-genome and whole-exome blood/tumor paired samples of more than 12,000 donors from two large cancer genomics cohorts to identify blood somatic mutations. The application of IntOGen, a robust driver discovery pipeline, to blood somatic mutations across both cohorts, and more than 24,000 targeted sequenced samples yielded a list of close to 70 genes with signals of positive selection in CH, available at http://www.intogen.org/ch. This approach recovers all known CH genes, and discovers novel candidates. Generating this compendium is an essential step to understand the molecular mechanisms of CH and to accurately detect individuals with CH to ascertain their risk to develop related diseases.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3459-3459
Author(s):  
Jennifer J. Trowbridge ◽  
Amit U. Sinha ◽  
Scott A. Armstrong ◽  
Stuart H. Orkin

Abstract Abstract 3459 Leukemia stem cells (LSCs) are an attractive target in treatment of many types of blood cancers. There remains an incomplete understanding of the epigenetic mechanisms driving LSC formation and maintenance, and how this compares to the epigenetic regulation of normal hematopoietic stem cells (HSCs). One of the major epigenetic modifications, DNA methylation, is catalyzed by the DNA methyltransferase enzymes Dnmt1, Dnmt3a and Dnmt3b. We observed decreased expression of Dnmt3a and Dnmt3b in LSCs isolated from a model of MLL-AF9-induced acute myeloid leukemia (AML) compared to normal HSCs. In contrast, expression of Dnmt1 was maintained in LSCs compared to HSCs, suggesting that Dnmt1 may have a critical function in the formation and maintenance of LSCs. Supporting this hypothesis, we found that conditional knockout of Dnmt1 fully ablates the development of AML. Furthermore, haploinsufficiency of Dnmt1 (Dnmt1fl/+ Mx-Cre) was sufficient to delay progression of leukemogenesis and impair LSC self-renewal. Strikingly, haploinsufficiency of Dnmt1 did not functionally alter normal hematopoiesis or HSCs, suggesting an enhanced dependence of LSCs on DNA methylation. Mechanistically, we observed that haploinsufficiency of Dnmt1 in LSCs resulted in derepression of genes that had been silenced by MLL-AF9-mediated transformation and marked by bivalent H3K27me3/H3K4me3 chromatin domains. These results suggest that the formation and maintenance of LSCs depends not only upon activation of a leukemogenic program, but also upon silencing of a specific gene signature that is active in HSCs through crosstalk between two epigenetic mechanisms, polycomb-mediated repression and DNA methylation-mediated repression. This silenced gene signature includes known and candidate tumor suppressor genes as well as genes involved in lineage restriction. These studies present evidence that distinct epigenetic regulatory mechanisms are dominant in LSCs compared to HSCs and provide novel gene candidates for targeted reactivation in AML therapy. Disclosures: Armstrong: Epizyme: Consultancy.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4107-4107
Author(s):  
Max Jan ◽  
Florian Scherer ◽  
David M. Kurtz ◽  
Aaron M Newman ◽  
Henning Stehr ◽  
...  

Abstract Background: Pre-leukemic hematopoietic stem cells (HSC) have been implicated in AML (Jan et al STM 2012) and also for several lymphoid leukemias including ALL, HCL, and CLL. Separately, relapse of ALL following CD19 CAR-T cell therapy has been associated with lymphomyeloid lineage switch. Finally, healthy persons with clonally expanded HSCs are at increased risk of hematologic malignancies including lymphomas, and in mouse DLBCL models we previously demonstrated the oncogenic sufficiency of BCL6 overexpression in HSC (Green et al 2014 Nat Comm). Nevertheless, the cellular origin of DLBCL in the majority of patients is not definitively known. We sought to investigate the presence of mutations found in DLBCL within matched HSCs. Methods: We deeply genotyped somatic mutations in diagnostic biopsy tissues of 16 patients with DLBCL using CAPP-Seq to a median sequencing depth of 1100x (Newman et al 2014 Nat Med; Scherer et al 2015 ASH). We then profiled each patient for evidence implicating HSCs using somatic mutation lineage tracing, in either direct or indirect fashion. For direct evaluation, we used highly purified, serially FACS-sorted HSCs from grossly uninvolved bone marrow (BM) (n=5; Fig 1a-b). For indirect assessment, we either profiled serial tumor biopsies (n=13), or interrogated sorted cells from terminally differentiated blood lineages (n=7), including peripheral CD3+ T cells, CD14+ Monocytes, and B cells expressing a light-chain discordant to that of tumor isotype. HSCs and differentiated lineages were then interrogated by direct genotyping, using 3 highly sensitive orthogonal quantitative methods, including Myd88 L265P droplet digital PCR (n=6), BCL6 translocation breakpoint qPCR (n=4), and DLBCL CAPP-Seq profiling of 268 genes (n=5). We used the theoretical limit of detection (LOD) genotyping performance for CAPP-Seq (0.001%, Newman et al 2016 Nat Biotech), and established analytical sensitivity of our custom MYD88 ddPCR via limiting dilution (~1%). These LODs met or exceeded the expected limit of sorting impurity by FACS (~1%). For 6 patients experiencing one or more DLBCL relapse, we deeply profiled 13 serial tumor biopsies by CAPP-Seq, and then assessed overlap in somatic mutations and VDJ sequences in biopsy pairs as additional indirect evidence implicating HSCs. Results: We obtained a median of ~2000 sorted HSCs and ~1700 sorted cells from differentiated lineages, and genotyped each population using one or more of the 3 direct genotyping methods described above. Three patients with sufficient cell numbers were profiled both by CAPP-Seq and either ddPCR (n=2) or qPCR (n=1). Surprisingly, we found no evidence implicating HSCs either directly or indirectly in any of the 16 patients, regardless of the assay employed or the cell types/lineages genotyped (e.g., Fig 1b). In 2 patients with MYD88 L265P mutations, we found evidence for MYD88+ B-cells with discordant light chains by ddPCR (~0.1%) potentially implicating common lymphoid precursors (CLPs), but found no evidence for similar involvement of T-cells or monocytes. In 6 DLBCL patients experiencing relapse, tumor pairs profiled by CAPP-Seq (median depth 957) shared 93% of somatic mutations (75-100%, Fig 1c). Such pairs invariably shared clonal IgH VDJ rearrangements (4/4, 100%), thus implicating a common progenitor arising in later stages of B-cell development, not HSCs. Conclusions: We find no evidence to implicate HSCs in the derivation of DLBCL. While formal demonstration of absence of pre-malignant HSCs in DLBCL would require overcoming practical and technical limitations (including number of available HSCs, sorting purity, and genotyping sensitivity), the pattern of shared somatic alterations at relapse makes this highly unlikely. We speculate that unlike lymphoid leukemias, the cell-of-origin for most DLBCLs reside later in B-lymphopoiesis, beyond CLPs. Figure. (a) HSC sorting from BM by FACS (b) Allele frequencies of mutations found by CAPP-Seq in an examplary DLBCL case (x-axis) compared to the same variants in HSCs (y-axis). (c) Phylogenetic trees of DLBCL patients experiencing relapse (n=6) with tumor pairs sequenced by CAPP-Seq. Shown are the evolutionary distances between (i) germline and common inferrable progenitor (CIP) illustrating the fraction of shared mutations between tumor pairs, and (ii) CIP and both diagnostic (tumor 1) and relapse tumors (tumor 2) indicating unique mutations to each tumor. Figure. (a) HSC sorting from BM by FACS (b) Allele frequencies of mutations found by CAPP-Seq in an examplary DLBCL case (x-axis) compared to the same variants in HSCs (y-axis). (c) Phylogenetic trees of DLBCL patients experiencing relapse (n=6) with tumor pairs sequenced by CAPP-Seq. Shown are the evolutionary distances between (i) germline and common inferrable progenitor (CIP) illustrating the fraction of shared mutations between tumor pairs, and (ii) CIP and both diagnostic (tumor 1) and relapse tumors (tumor 2) indicating unique mutations to each tumor. Disclosures Newman: Roche: Consultancy. Levy:Kite Pharma: Consultancy; Five Prime Therapeutics: Consultancy; Innate Pharma: Consultancy; Beigene: Consultancy; Corvus: Consultancy; Dynavax: Research Funding; Pharmacyclics: Research Funding. Diehn:Novartis: Consultancy; Quanticel Pharmaceuticals: Consultancy; Roche: Consultancy; Varian Medical Systems: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document