scholarly journals SETBP1 overexpression acts in the place of class-defining mutations to drive FLT3-ITD–mutant AML

2021 ◽  
Vol 5 (9) ◽  
pp. 2412-2425
Author(s):  
Suruchi Pacharne ◽  
Oliver M. Dovey ◽  
Jonathan L. Cooper ◽  
Muxin Gu ◽  
Mathias J. Friedrich ◽  
...  

Abstract Advances in cancer genomics have revealed genomic classes of acute myeloid leukemia (AML) characterized by class-defining mutations, such as chimeric fusion genes or in genes such as NPM1, MLL, and CEBPA. These class-defining mutations frequently synergize with internal tandem duplications in FLT3 (FLT3-ITDs) to drive leukemogenesis. However, ∼20% of FLT3-ITD–positive AMLs bare no class-defining mutations, and mechanisms of leukemic transformation in these cases are unknown. To identify pathways that drive FLT3-ITD mutant AML in the absence of class-defining mutations, we performed an insertional mutagenesis (IM) screening in Flt3-ITD mice, using Sleeping Beauty transposons. All mice developed acute leukemia (predominantly AML) after a median of 73 days. Analysis of transposon insertions in 38 samples from Flt3-ITD/IM leukemic mice identified recurrent integrations at 22 loci, including Setbp1 (20/38), Ets1 (11/38), Ash1l (8/38), Notch1 (8/38), Erg (7/38), and Runx1 (5/38). Insertions at Setbp1 led exclusively to AML and activated a transcriptional program similar, but not identical, to those of NPM1-mutant and MLL-rearranged AMLs. Guide RNA targeting of Setbp1 was highly detrimental to Flt3ITD/+/Setbp1IM+, but not to Flt3ITD/+/Npm1cA/+, AMLs. Also, analysis of RNA-sequencing data from hundreds of human AMLs revealed that SETBP1 expression is significantly higher in FLT3-ITD AMLs lacking class-defining mutations. These findings propose that SETBP1 overexpression collaborates with FLT3-ITD to drive a subtype of human AML. To identify genetic vulnerabilities of these AMLs, we performed genome-wide CRISPR-Cas9 screening in Flt3ITD/+/Setbp1IM+ AMLs and identified potential therapeutic targets, including Kdm1a, Brd3, Ezh2, and Hmgcr. Our study gives new insights into epigenetic pathways that can drive AMLs lacking class-defining mutations and proposes therapeutic approaches against such cases.

2019 ◽  
Author(s):  
Adrian Kovač ◽  
Csaba Miskey ◽  
Michael Menzel ◽  
Esther Grueso ◽  
Andreas Gogol-Döring ◽  
...  

ABSTRACTTwo different approaches of genomic modification are currently used for genome engineering and gene therapy: integrating vectors, which can efficiently integrate large transgenes but are unspecific with respect to their integration sites, and nuclease-based approaches, which are highly specific but not efficient at integrating large genetic cargoes. Here we demonstrate biased genome-wide integration of the Sleeping Beauty (SB) transposon by combining it with components of the CRISPR/Cas9 system. We provide proof-of-concept that it is possible to influence the target site selection of SB by fusing it to a catalytically inactive Cas9 (dCas9) and by providing a single guide RNA (sgRNA) against the human Alu retrotransposon. Enrichment of transposon integrations was dependent on the sgRNA, occurred in a relatively narrow, ∼200 bp window around the targeted sites and displayed an asymmetric pattern with a bias towards sites that are downstream of the sgRNA targets. Our data indicate that the targeting mechanism specified by CRISPR/Cas9 forces integration into genomic regions that are otherwise poor targets for SB transposition. Future modifications of this technology may allow the development of methods for efficient and specific gene insertion for precision genetic engineering.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Adrian Kovač ◽  
Csaba Miskey ◽  
Michael Menzel ◽  
Esther Grueso ◽  
Andreas Gogol-Döring ◽  
...  

An ideal tool for gene therapy would enable efficient gene integration at predetermined sites in the human genome. Here we demonstrate biased genome-wide integration of the Sleeping Beauty (SB) transposon by combining it with components of the CRISPR/Cas9 system. We provide proof-of-concept that it is possible to influence the target site selection of SB by fusing it to a catalytically inactive Cas9 (dCas9) and by providing a single guide RNA (sgRNA) against the human Alu retrotransposon. Enrichment of transposon integrations was dependent on the sgRNA, and occurred in an asymmetric pattern with a bias towards sites in a relatively narrow, 300 bp window downstream of the sgRNA targets. Our data indicate that the targeting mechanism specified by CRISPR/Cas9 forces integration into genomic regions that are otherwise poor targets for SB transposition. Future modifications of this technology may allow the development of methods for specific gene insertion for precision genetic engineering.


Insects ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 954
Author(s):  
Liqiang Liang ◽  
Zhenghanqing Li ◽  
Qiufang Li ◽  
Xiuxiu Wang ◽  
Songkun Su ◽  
...  

CRISPR/Cas9, a predominant gene-editing tool, has been utilised to dissect the gene function in Apis mellifera. However, only the genomic region containing NGG PAM could be recognised and edited in A. mellifera, seriously hampering the application of CRISPR technology in honeybees. In this study, we carried out the bioinformatics analysis for genome-wide targeting sites of NGG, TTN, and NNGRRT to determine the potential expansion of the SpCas9, SaCas9, Cpf1, and it was found that the targetable spectrum of the CRISPR editing system could be markedly extended via the integrated gene manipulation system. Meanwhile, the single guide RNA (sgRNA)/crRNA of different novel gene editing systems and the corresponding CRISPR proteins were co-injected into honeybee embryos, and their feasibility was tested in A. mellifera. The sequencing data revealed that both SaCas9 and Cpf1 are capable of mediating mutation in A. mellifera, albeit with relatively lower mutagenesis rates for Cpf1 and unstable editing for SaCas9. To our knowledge, our results provide the first demonstration that SaCas9 and Cpf1 can function to induce genome sequence alternation, which extended the editing scope to the targets with TTN and NNGRRT and enabled CRISPR-based genome research in a broader range in A. mellifera.


Author(s):  
Jose Espejo Valle-Inclan ◽  
Nicolle J.M. Besselink ◽  
Ewart de Bruijn ◽  
Daniel L. Cameron ◽  
Jana Ebler ◽  
...  

AbstractAccurate detection of somatic structural variation (SV) in cancer genomes remains a challenging problem. This is in part due to the lack of high-quality gold standard datasets that enable the benchmarking of experimental approaches and bioinformatic analysis pipelines for comprehensive somatic SV detection. Here, we approached this challenge by genome-wide somatic SV analysis of the paired melanoma and normal lymphoblastoid COLO829 cell lines using four different technologies: Illumina HiSeq, Oxford Nanopore, Pacific Biosciences and 10x Genomics. Based on the evidence from multiple technologies combined with extensive experimental validation, including Bionano optical mapping data and targeted detection of candidate breakpoint junctions, we compiled a comprehensive set of true somatic SVs, comprising all SV types. We demonstrate the utility of this resource by determining the SV detection performance of each technology as a function of tumor purity and sequence depth, highlighting the importance of assessing these parameters in cancer genomics projects and data analysis tool evaluation. The reference truth somatic SV dataset as well as the underlying raw multi-platform sequencing data are freely available and are an important resource for community somatic benchmarking efforts.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 31-32
Author(s):  
Suruchi Pacharne ◽  
Oliver M. Dovey ◽  
Jonathan L Cooper ◽  
Muxin Gu ◽  
Vijay Baskar ◽  
...  

Setbp1 overexpression acts in the place of class-defining somatic mutations to drive mouse and human FLT3-ITD-mutant AMLs Suruchi Pacharne,1,2 Oliver M. Dovey,1 Jonathan L. Cooper,1 Muxin Gu,1,2 MS Vijaybaskar,1,2 Mathias J. Friedrich,1,5 Malgorzata Gozdecka,1,2 Sandeep S. Rajan,1,4, Etienne De Braekeleer,1,2 Maxim Barenboim,5,6 Grace Collord,1,2 Hannes Ponstingl,1 Ruben Bautista,1 Milena Mazan,1,8 Roland Rad,5,6 Konstantinos Tzelepis,1,7 Penny Wright,3 and George S. Vassiliou1,2,9* Abstract Internal tandem duplications in FLT3 (FLT3-ITD) are found in 30% of acute myeloid leukemia (AML) cases and impart a poor prognosis. FLT3-ITD commonly synergizes with class-defining mutations such as chimeric fusion genes or mutations in NPM1, RUNX1, CEBPA or MLL to drive AML. However, 20% of FLT3-ITD-mutant AMLs bare no class-defining mutations and the mechanisms of acute leukemic transformation in these cases are unknown. To identify pathways that can drive FLT3-ITD-mutant AML in the absence of class-defining mutations, we performed an insertional mutagenesis (IM) screen in Flt3-ITD mice using the Sleeping Beauty transposon system, activated by the Mx1-Cre recombinase in hematopoietic stem cells. All mice developed acute leukemia, predominantly AML, after a median latency of 73 days (Figure A). Analysis of transposon insertions in 38 Flt3-ITD/IM leukemias identified common integration sites (CISs) in 22 loci (Figure B). The most commonly "hit" genes were Setbp1 (20/38), Ets1 (11/38), Ash1l (8/38), Notch1 (8/38), Erg (7/38), Flt3 (6/38) and Runx1 (5/38) (Figure B). Of these, Setbp1 and Runx1 were unique to Flt3-ITD and not identified as CISs in insertional mutagenesis screens of wild type, Npm1c or BCR-ABL-expressing mice. Transposon insertions in Setbp1, primarily located upstream of its first coding exon, were associated with Setbp1 and Hoxa mRNA overexpression and were invariably associated with AML development (Figure B). These findings propose that overexpression of wild type SETBP1 may collaborate with FLT3-ITD to drive leukemogenesis in human AMLs lacking mutations known to collaborate with mutant FLT3. Corroborating this, we found that SETBP1 expression was higher in human FLT3-ITD-mutant AMLs lacking class-defining mutations and in those with RUNX1 mutations (Figure C). We go on to show that Setbp1 insertions activate a Hoxa gene signature such that shares significant similarities, but also specific differences to those driven by mutant Npm1 and MLL fusion genes. We go on to show, using CRISPR-gRNA, that whilst Flt3ITD/+/SETBP1IM+AMLs are entirely dependent on Setbp1 expression, Flt3ITD/+/Npm1cA/+AMLs are not, but do depend on the expression of the homebox gene Nkx2.3. Our findings propose that SETBP1 overexpression activates a gene expression pattern that collaborates with FLT3-ITD to drive many human AMLs and that this combination represents a specific subtype of AML amongst AMLs lacking class-defining mutations. To identify genetic vulnerabilities of this AML subtype, we performed genome-wide CRISPR-Cas9 recessive screens in primary murine Flt3ITD/+SETBP1IM+AMLs and identified more than 2000 genetic vulnerabilities, of which 677 were not required for the survival of HPC7 non-leukemic hematopoietic cells including >100 "druggable" genes such as Brd3, Ezh2 and Hmgcr (Figure D). Collectively our study: i) identifies SETBP1overexpression as a non-genetic alteration driving a subgroup of FLT3-ITD mutant AMLs lacking class-defining somatic mutations and ii) goes on to define the genetic vulnerabilities of such AMLs as a starting point for the development of targeted therapies. Figure Disclosures Vassiliou: Kymab Ltd - Monoclonal antibody company. Currently not working in myeloid cancers or clonal haematopoiesis.: Consultancy.


Author(s):  
Е.Н. Воропаева ◽  
Т.И. Поспелова ◽  
В.Н. Максимов ◽  
О.В. Березина ◽  
В.С. Карпова ◽  
...  

Проанализированы данные полногеномного секвенирования более 1200 образцов пациентов с диффузной В-крупноклеточной лимфомой (ДВККЛ) базы CBioPortal for Cancer Genomics. Также выполнено собственное полноэкзомное секвенирование 7 образцов ДВККЛ с рецидивами в ЦНС. Выделены характеристики, ассоциированные с высоким риском вторичного вовлечения ЦНС при лимфоме. Значимые различия в частоте мутаций между подвыборками с поражением ЦНС в рецидиве и без вовлечения ЦНС были получены по генам BCR/NF-kВ пути (MYD88, CD79B) и системы ремоделирования хроматина (ARID1A, SMARCA4). The genome-wide sequencing data of more than 1200 Diffuse Large B-cell Lymphomas (DLBCL) samples of the CBioPortal database for Genomic cancer were analyzed. We also performed our own full-exome sequencing of 7 samples of DLBCL with relapses in the central nervous system (CNS). Characteristics associated with a high level of secondary CNS involvement in lymphoma were selected. Differences were obtained in the BCR/NF-kB genotypes (MYD88, CD79B) and chromatin remodeling system (ARID1A, SMARCA4).


2019 ◽  
Author(s):  
Sandeep Chakraborty

‘Prime-editing’ proposes to replace traditional programmable nucleases (CRISPR-Cas9) using a catalytically impaired Cas9 (dCas9) connected to a engineered reverse transcriptase, and a guide RNA encoding both the target site and the desired change. With just a ‘nick’ on one strand, it is hypothe- sized, the negative, uncontrollable effects arising from double-strand DNA breaks (DSBs) - translocations, complex proteins, integrations and p53 activation - will be eliminated. However, sequencing data pro- vided (Accid:PRJNA565979) reveal plasmid integration, indicating that DSBs occur. Also, looking at only 16 off-targets is inadequate to assert that Prime-editing is more precise. Integration of plasmid occurs in all three versions (PE1/2/3). Interestingly, dCas9 which is known to be toxic in E. coli and yeast, is shown to have residual endonuclease activity. This also affects studies that use dCas9, like base- editors and de/methylations systems. Previous work using hRad51–Cas9 nickases also show significant integration in on-targets, as well as off-target integration [1]. Thus, we show that cellular response to nicking involves DSBs, and subsequent plasmid/Cas9 integration. This is an unacceptable outcome for any in vivo application in human therapy.


2021 ◽  
Vol 22 (8) ◽  
pp. 4201
Author(s):  
Shuai Zhang ◽  
Lang Xie ◽  
Shuqing Zheng ◽  
Baoyue Lu ◽  
Wenjing Tao ◽  
...  

The short-chain dehydrogenases/reductases (SDR) superfamily is involved in multiple physiological processes. In this study, genome-wide identification and comprehensive analysis of SDR superfamily were carried out in 29 animal species based on the latest genome databases. Overall, the number of SDR genes in animals increased with whole genome duplication (WGD), suggesting the expansion of SDRs during evolution, especially in 3R-WGD and polyploidization of teleosts. Phylogenetic analysis indicated that vertebrates SDRs were clustered into five categories: classical, extended, undefined, atypical, and complex. Moreover, tandem duplication of hpgd-a, rdh8b and dhrs13 was observed in teleosts analyzed. Additionally, tandem duplications of dhrs11-a, dhrs7a, hsd11b1b, and cbr1-a were observed in all cichlids analyzed, and tandem duplication of rdh10-b was observed in tilapiines. Transcriptome analysis of adult fish revealed that 93 SDRs were expressed in more than one tissue and 5 in one tissue only. Transcriptome analysis of gonads from different developmental stages showed that expression of 17 SDRs were sexually dimorphic with 11 higher in ovary and 6 higher in testis. The sexually dimorphic expressions of these SDRs were confirmed by in situ hybridization (ISH) and qPCR, indicating their possible roles in steroidogenesis and gonadal differentiation. Taken together, the identification and the expression data obtained in this study contribute to a better understanding of SDR superfamily evolution and functions in teleosts.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Mariana G. Ferrarini ◽  
Avantika Lal ◽  
Rita Rebollo ◽  
Andreas J. Gruber ◽  
Andrea Guarracino ◽  
...  

AbstractThe novel betacoronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused a worldwide pandemic (COVID-19) after emerging in Wuhan, China. Here we analyzed public host and viral RNA sequencing data to better understand how SARS-CoV-2 interacts with human respiratory cells. We identified genes, isoforms and transposable element families that are specifically altered in SARS-CoV-2-infected respiratory cells. Well-known immunoregulatory genes including CSF2, IL32, IL-6 and SERPINA3 were differentially expressed, while immunoregulatory transposable element families were upregulated. We predicted conserved interactions between the SARS-CoV-2 genome and human RNA-binding proteins such as the heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) and eukaryotic initiation factor 4 (eIF4b). We also identified a viral sequence variant with a statistically significant skew associated with age of infection, that may contribute to intracellular host–pathogen interactions. These findings can help identify host mechanisms that can be targeted by prophylactics and/or therapeutics to reduce the severity of COVID-19.


Sign in / Sign up

Export Citation Format

Share Document