scholarly journals Therapeutic Effect of a Traditional Chinese Medicine Compound Mixture Compound Kushen Injection in Treating Multiple Myeloma

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 31-32
Author(s):  
Hongqiang Jiang ◽  
Honglei Tu ◽  
Yanxia Jin ◽  
Xianjin Wu ◽  
Ziyi Luo ◽  
...  

Abstract Background: Multiple myeloma (MM) is a hematology malignant disease originated from B-cell line and still incurable. Compound Kushen Injection (CKI) as a Traditional Chinese Medicines are promising agents in our previous research for treating cancer. The effect of CKI on multiple myeloma was still unknown. Methods: In vitro experiment, flow cytometry was used to evaluate effect of CKI on multiple myeloma cells. Optofluidic chip was applied to detect effect at single-cell level. And in vivo RPMI-8226 GFP+ B-NSG mouse model was built to assess the role of CKI in multiple myeloma treatment. Results: CKI inhibited MM cells proliferation of and increased its apoptosis rate. And the cell cycle of MM cells was also arrested by CKI treatment. In contrast, CKI has few toxic effects on mesenchymal stem cells (MSCs) and MC3T3 cells. At the single-cell level, MM cells was died in time and dose dependent manner. Transcriptome find that the expression of MYC and TERT in CKI-treated RPMI-8226 cells was significantly down-regulated and confirmed by qRT-PCR and Western blot. Overexpression of TERT can partly reverse the inhibition effect of CKI on RPMI-8226 cells. B-NSG mouse was injected with GFP+ RPMI-8226 cells through caudal vein, and the disease was partially alleviated by decreased tumor burden in the CKI-treated group. Furthermore, it is surprising that in animal models with myeloma bone disease, the bone mass was higher in CKI treatment group than control. Conclusions: CKI inhibits MM cells through the MYC/TERT signaling pathway and improve the quality of life of MM mouse. Our findings provide preclinical evidence to show that CKI could be a promising candidate in human MM therapy. Disclosures No relevant conflicts of interest to declare.

2021 ◽  
Vol 12 ◽  
Author(s):  
Christian Lohasz ◽  
Jacqueline Loretan ◽  
Dario Sterker ◽  
Ekkehard Görlach ◽  
Kasper Renggli ◽  
...  

Understanding the pharmacokinetic/pharmacodynamic (PK/PD)-relationship of a drug candidate is key to determine effective, yet safe treatment regimens for patients. However, current testing strategies are inefficient in characterizing in vivo responses to fluctuating drug concentrations during multi-day treatment cycles. Methods based on animal models are resource-intensive and require time, while traditional in vitro cell-culturing methods usually do not provide temporally-resolved information on the effects of in vivo–like drug exposure scenarios. To address this issue, we developed a microfluidic system to 1) culture arrays of three-dimensional spheroids in vitro, to 2) apply specific dynamic drug exposure profiles, and to 3) in-situ analyze spheroid growth and the invoked drug effects in 3D by means of 2-photon microscopy at tissue and single-cell level. Spheroids of fluorescently-labeled T-47D breast cancer cells were monitored under perfusion-culture conditions at short time intervals over three days and exposed to either three 24 h-PK-cycles or a dose-matched constant concentration of the phosphatidylinositol 3-kinase inhibitor BYL719. While the overall efficacy of the two treatment regimens was similar, spheroids exposed to the PK profile displayed cycle-dependent oscillations between regression and regrowth. Spheroids treated with a constant BYL719 concentration regressed at a steady, albeit slower rate. At a single-cell level, the cell density in BYL719-treated spheroids oscillated in a concentration-dependent manner. Our system represents a versatile tool for in-depth preclinical characterization of PK/PD parameters, as it enables an evaluation of drug efficacy and/or toxicity under realistic exposure conditions.


Blood ◽  
1997 ◽  
Vol 90 (8) ◽  
pp. 3179-3186 ◽  
Author(s):  
Shuji Ozaki ◽  
Masaaki Kosaka ◽  
Shingo Wakatsuki ◽  
Masahiro Abe ◽  
Yasuo Koishihara ◽  
...  

Abstract Multiple myeloma remains an incurable malignancy because of marked resistance of tumor cells to conventional chemotherapeutic agents. Alternative strategies are needed to solve these problems. To develop a new strategy, we have generated a monoclonal antibody (MoAb), which detects a human plasma cell-specific antigen, HM1.24. In this report, we evaluated the in vivo antitumor effect of unconjugated anti-HM1.24 MoAb on human myeloma xenografts implanted into severe combined immunodeficiency (SCID) mice. Two models of disseminated or localized tumors were established in SCID mice by either intravenous or subcutaneous injection of human myeloma cell lines, ARH-77 and RPMI 8226. When mice were treated with a single intraperitoneal injection of anti-HM1.24 MoAb 1 day after tumor inoculation, the development of disseminated myeloma was completely inhibited. In mice bearing advanced tumors, multiple injections of anti-HM1.24 MoAb reduced the tumor size and significantly prolonged survival, including tumor cure, in a dose-dependent manner. The proliferation of cultured human myeloma cells was inhibited in vitro by anti-HM1.24 IgG-mediated complement-dependent cytotoxicity, but not by the antibody alone. Moreover, spleen cells from SCID mice mediated antibody-dependent cell cytotoxicity against RPMI 8226 cells. These results indicate that anti-HM1.24 MoAb can be used for immunotherapy of multiple myeloma and related plasma cell dyscrasias.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 5175-5175
Author(s):  
Juliana Pereira ◽  
Debora Levy ◽  
Jorge Luis Maria Ruiz ◽  
Felipe Vieira Rodrigues Maciel ◽  
Dalton de Alencar Fisher Chamone ◽  
...  

Abstract JBD57 is a nucleoside/nucleotide analogue that in human cells causes depletion of mitochondrial DNA by disrupting oxidative phosphorylation pathways leading to toxic accumulation of nonesterified fatty acids, dicarboxylic acids and free radicals. Human 26S proteasome is also a target for JBD57. Here we evaluated JBD57 citotoxicity in several human tumor cell lines in vitro. Human MM cell line RPMI 8226/S (CCL-155), human T-cell lymphoblastic-like (Jurkat) and human T-cell leukemia (1301) were grown in RPMI 1640 medium; uterine sarcoma (MES-S (CRL-1976) cells were grown in McCoy medium; HUV-EC-C (CRL-1730) cells were grown in 199/EBSS medium. Media were supplemented with 10 % FBS. Cells were incubated at 37°C in a water-jacketed incubator with 5 % CO2. To evaluate JBD57 citotoxicity in RPMI 8226/S, MES-S, Jurkat, 1301 and HUV-EC-C cells, 104cells/well were grown in flat-bottomed 96-well tissue culture plates for 24, 48 and 72 hr; JBD57 was added to the media in several concentrations (0μM, 32.25μM, 62.5μM, 125μM, 250μM and 500μM). At the end of the experimental periods, cell viability was determined by the MTT method. JBD57 inhibited the growth of MM cell line RPMI 8226/S in a dose- and time-dependent manner. Cell viability decreased progressively with increasing concentrations of JBD57 as well as with increasing time periods. The IC50 (inhibitory concentration at 50%) was 125 μM at 72 hr. The viability of the MM cells after 72 hr incubation with JBD57 500μM was 33%, whereas 100% viability was observed when no drug was added. On the other hand, JBD57 did not affect cell viability of any of the other studied cell lines (uterine sarcoma, Jurkat, 1301 and HUVEC-C). JBD57 promotes a significant human MM cell death in a dose and time dependent manner but do not affect neither normal cell HUV-EC-C nor the tumoral cells MES-S, Jurkat and 1301, at least in the studied conditions. These results suggest that the potent antitumoral activity of JBD57 observed against MM cells could be potentially useful in the treatment of multiple myeloma.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2202-2202
Author(s):  
David R Myers ◽  
Todd Sulchek ◽  
Wilbur Lam

Abstract Abstract 2202 Background: Blood clots are composed of fibrin, platelets, and other blood cells and proteins, which interact to prevent hemorrhage. Previous studies on clot formation have shown that the mechanical properties of clots have direct effects on hemostasis and thrombosis, and alterations of those clot mechanics are associated with disease. For example, clots are 50% stiffer and more resistant to dissolution in young patients with post-myocardial infarction (Collet, et al., Arterioscler Thromb Vasc Biol, 2006) than clots from healthy controls. Conversely, clots are softer and more prone to dissolution in patients with bleeding disorders (Hvas, et al., J. Thrombosis and Haemostasis, 2007). As such, understanding the mechanical properties of clots is vital to understand hemostasis and thrombosis. As platelets drive this contraction phenomenon, single platelet measurements are required to obtain a mechanistic understanding of the retraction process and to identify specific therapeutic targets for disease states in which platelet/clot retraction is pathologically altered. In addition, as fibrin has recently been shown to have extremely complex material and mechanical properties (Brown, et al., Science, 2009), single platelet studies would decouple the effects of fibrin from platelets when examining clot mechanics. However, few studies have focused on the biomechanical role of platelets in clot formation and clot mechanics, especially at the single cell level. The key barrier which has prevented the study of single platelets has been the lack of technology with the sufficient precision and sensitivity to both manipulate and measure individual platelets. To that end, we recently published the first study investigating platelet contractility at the single cell level using an atomic force microscope (AFM) (Lam, et al., Nat Mater, 2011) Results: An AFM enables precise measurements of force down to the pico-newton level. A mechanically well-defined, fibrinogen-coated cantilever is brought into contact with a platelet and then brought to a fibrinogen-coated surface as shown in Figure 1A. The platelet will contract and the resulting deflection of the cantilever is measured with high accuracy to determine the force applied by the platelet. From AFM studies, it was found that both the loading rate (Fig 1B) and maximum contraction force exerted by single platelets (Fig 1C) were a function of the mechanical stiffness of the cantilever. Furthermore, preliminary data using the same techniques is indicating that there may be a unique subpopulation of platelets which exhibit high-amplitude, oscillatory contraction as shown in Figure 1D. Conclusions and Ongoing Effort: Ours is the first reported data measuring platelet contraction at the single cell level and reveals that platelets are extremely “strong” contractile machines, especially when taking account their small size. In addition, we discovered that platelets can “sense” their mechanical microenvironment, adjusting their contractility accordingly. Based on this research, the overall theme of this proposed work is to quantitatively investigate how the biophysics interacts with the molecular biology of platelet contraction. However, our initial work and past research have shown that platelets within a given population exhibit varied behavior, and to truly obtain meaningful data, studies on large populations are necessary. We are developing a high-throughput device that is capable of individually measuring the contractility of thousands of platelets using the same principles as AFM. As this “biomechanical flow cytometer” leverages microfabrication techniques, it offers new capabilities to manipulate the platelet microenvironment while making contractility measurements. This device will use massively parallel sets of polymer cantilevers to measure individual platelet contractility with an integrated microfluidic delivery system (Figure 2). Platelets flowing in the microfluidic channel will be captured by a set of fibrinogen-coated cantilevers. As the platelet contracts, the deflection of the cantilever tip can be measured optically, which is correlated to the force with the cantilever spring constant. Leveraging the capabilities of this system to test multiple conditions simultaneously, we will vary shear stresses and expose platelet to different doses of different agonists and determine how these parameters affect contraction. Disclosures: No relevant conflicts of interest to declare.


1999 ◽  
Vol 92 (1) ◽  
pp. 111-117 ◽  
Author(s):  
Y. Pae ◽  
H. Minagawa ◽  
J. Hayashi ◽  
S. Kashiwagi ◽  
Y. Yanagi

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3068-3068
Author(s):  
Ye Yang ◽  
Mengjie Guo ◽  
Chunyan Gu

Purpose: In recent years, with the emergence of targeted proteasome inhibitors (PIs), the treatment of multiple myeloma (MM) has made great progress and significantly improves the survival rate of patients. However, MM remains an incurable disease, mainly due to the recurrence of drug resistance. The constitutive photomorphogenic 1 (RFWD2, also known as COP1), is closely related to the occurrence and development of tumors, but its role in MM is largely unknown. This study was aimed to explore the mechanism of RFWD2 on cell proliferation and resistance to proteasome inhibitor in MM. Experimental Design: Using gene expression profiling (GEP) samples, we verified the relation of RFWD2 to MM patients' survival and drug-resistance. The effect of RFWD2 on cell proliferation was confirmed by MTT and cell cycle analysis in RFWD2-overexpressed and RFWD2-knockdown MM cells. MTT and apoptosis experiments were performed to evaluate whether RFWD2 influenced the sensitivity of MM cells to several chemotherapy drugs. MM xenografts were established in immunodeficient NOD/SCID mice by injecting wild-type or RFWD2 over-expression MM cells with drug intervention. The mechanism of drug resistance was elucidated by analyzing the association of RFWD2 with E3 ligase of p27. Bortezomib-resistant RPMI 8226 cells were used to construct RFWD2 knockdown cells, which were injected into NOD/SCID mice to assess the effect of RFWD2 on bortezomib resistance in vivo. Results: RFWD2 expression was closely related to poor outcome, relapse and bortezomib resistance in MM patients' GEP cohorts. Elevated RFWD2 induced cell proliferation, while decreased RFWD2 inhibited cell proliferation and induced apoptosis in MM cells. RFWD2-overexpression MM cells resulted in PIs resistance, however, no chemotherapy resistance to adriamycin and dexamethasone was observed in vitro. In addition, overexpressing RFWD2 in MM cells led to bortezomib resistance rather than adriamycin resistance in myeloma xenograft mouse model. RFWD2 regulated the ubiquitination degradation of P27 by interacting with RCHY1 ubiquitin ligase. The knockdown of RFWD2 in bortezomib-resistant RPMI 8226 cells overcame bortezomib resistance in vivo. Conclusions: Our data demonstrate that elevated RFWD2 induces MM cell proliferation and resistance to PIs, but not to adriamycin and dexamethasone both in vitro and in vivo through mediating the ubiquitination of p27. Collectively, RFWD2 is a novel promising therapeutic target in MM. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3066-3066
Author(s):  
Aisha Masood ◽  
Kasyapa Chitta ◽  
Kiersten M Miles ◽  
Nazmul H Khan ◽  
Remi Adelaiye ◽  
...  

Abstract Abstract 3066 Targeting the proteasome has proven to be one of the most effective therapeutic strategies in the treatment of multiple myeloma (MM), and the proteasome inhibitor bortezomib is approved for treatment of MM. However its clinical efficacy is compromised by the acquired resistance in patients, necessitating the development of new therapeutics. Several new proteasome inhibitors are under investigation for their therapeutic efficacy in MM. MLN9708 (Millennium Pharmaceuticals, Inc., Cambridge, MA) is a proteasome inhibitor which shows refined pharmacokinetic and pharmacodynamic properties in preclinical studies and is currently in Phase I clinical development. Upon exposure to aqueous solutions or plasma, MLN9708 rapidly hydrolyzes to MLN2238, the biologically active form. MLN2238 was used for all of the studies reported here, in which we report the efficacy of MLN2238 on three established MM cell lines-KMS11, OPM2 and U266. MLN2238 was found to inhibit the chymotrypsin-like proteasomal activity of all MM cell lines in a dose dependent manner. Investigation of the IC50 of MLN2238 on these cell lines demonstrated that KMS11 is the most sensitive (IC50 of 15.9 nM) while U266 was found to be the least sensitive cell line (IC50 of 511 nM). OPM2 cells also showed intermediate sensitivity with an IC50 of 58.6 nM. MLN2238 induced apoptosis in KMS11 cells as evidenced by annexin V staining and PARP-1 cleavage. Cleavage of caspases 9 and 3 suggested activation of the intrinsic apoptotic pathway by MLN2238. Furthermore, MLN2238 treatment was shown to increase the mitochondrial outer membrane permeability (MOMP) and decrease BCL-2 levels. Evaluation of the expression of PSMB5, the preferred proteasomal subunit target for both bortezomib and MLN2238, revealed that it is expressed at approximately 3 fold more in KMS11 cells as compared to U266, suggesting a possible mechanism for higher sensitivity of KMS11 to the proteasomal inhibitor, MLN2238. This preclinical evaluation confirms the anti-myeloma effects of MLN2238, warranting further in-depth evaluation in both in vitro and in vivo models of MM. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4427-4427
Author(s):  
Morihiko Sagawa ◽  
Tatsuki Tomikawa ◽  
Tomoe Anan ◽  
Takayuki Tabayashi ◽  
Reiko Watanabe ◽  
...  

Although the introduction of bortezomib and immunomodulatory drugs (IMiDs) has led to improved outcomes in patients with multiple myeloma (MM), the disease remains incurable. Bortezomib, a proteasome inhibitor, is widely used in the treatment of MM and has resulted in marked therapeutic effects; however, this therapy is often complicated by peripheral neuropathy (PN), of which grade ≥3 PN is dose-limiting toxicity and can necessitate cessation of therapy. Subcutaneous administration of bortezomib can reduce the incidence of PN; however, among cases of PN that still occur, 24% are grade 2 PN and 6% are grade 3 PN. These data suggest that the incidence of PN higher than grade 2 is not attenuated by the subcutaneous delivery of bortezomib. In addition, patients often become refractory to bortezomib after long-term use. In an effort to identify potent and well-tolerated agents, clinical trials of novel agents (e.g., carfilzomib, pomalidomide, and monoclonal antibody against CS-1) are being conducted both in patients with newly diagnosed MM and in those with relapsed/refractory disease. We previously reported that 1’-acetoxychavicol acetate (ACA) obtained from the rhizomes of the plant Languas galanga induces cell death of MM cells in vitro and in vivo through inhibition of NF-κB-related functions (Cancer Res, 2005; 65: 4417). Subsequently, we developed several ACA analogs based on quantitative structure-activity relationship (QSAR) analysis to develop more potent NF-κB inhibitors, and successfully synthesized a novel benzhydrol-type analog of ACA, named TM-233, that exerted potent growth inhibition against various MM cells (U266, RPMI8226, and MM-1S cells) in a dose- and time-dependent manner when compared with ACA (Chem Pharm Bull., 2008; 56: 1490). Further, TM-233 inhibited constitutive phosphorylation of JAK2 and STAT3 and down-regulated the expression of anti-apoptotic Mcl-1 protein. TM-233 directly bound and activated the transcription of the Mcl-1 gene promoter. Mcl-1 is the downstream molecule of STAT3; therefore, these results suggest that TM-233 induces cell death in MM cells with down-regulated Mcl-1 via modulation of the JAK/STAT pathway. In addition, we examined the DNA-binding activity of NF-κB in TM-233-treated MM cells and found that NF-κB was inhibited by TM-233. Further, Western blotting showed that TM-233 rapidly decreased the nuclear expression of NF-κB but increased the accumulation of NF-κB in the cytosol, suggesting that TM-233 inhibits the translocation of NF-κB from the cytosol to the nucleus. Immunohistochemical analysis confirmed that the p50/RelA dimer of NF-κB was located in the cytosol and not in the nucleus in TM-233-treated MM cells. We then examined the effects of TM-233 on bortezomib-resistant MM cells. Bortezomib-resistant MM cell lines (i.e., KMS-11/BTZ and OPM-2/BTZ) were established by limiting dilution. We found that these cells have a unique point mutation, G322A, in the gene encoding the proteasome β5 subunit (Leukemia 2010; 24: 1506). TM-233, but not bortezomib, inhibited cellular growth and induced cell death in KMS-11/BTZ and OPM-2/BTZ cells in a time- (0-48 hours) and dose- (0-5 μM) dependent manner. Furthermore, the combination of low-dose TM-233 (less than 2 μM) and bortezomib (10 nM) significantly induced cell death in bortezomib-resistant MM cells via inhibition of NF-κB activity. These results indicate that TM-233 could overcome bortezomib resistance in MM cells by acting via different mechanisms from those of bortezomib. In conclusion, TM-233 induced cell death in MM cells, and this effect was mediated through the JAK/STAT and NF-κB dual-signaling pathways. These data indicate that TM-233 might be a more potent and more specific NF-κB inhibitor than that of original compound (ACA), and might be able to overcome bortezomib-resistance in MM cells. Therefore, further studies investigating clinical approaches, including combination therapy, are warranted. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document