scholarly journals Single-Cell Transcriptional Profiling of Zebrafish Hematopoiesis Offers Insight into Early Lymphocyte Development and Reveals Novel Immune Cell Populations

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4294-4294
Author(s):  
Sara A. Rubin ◽  
Chloé S. Baron ◽  
Alexandra F. Corbin ◽  
Song Yang ◽  
Leonard I. Zon

Abstract The advent of single-cell RNA sequencing (scRNA-seq) has greatly expanded our appreciation for cell state diversity beyond classical developmental hierarchies and simple population subsets. In particular, rich transcriptional heterogeneity has been observed within immune cell populations leading to the identification of novel cell types. Except for a few notable exceptions, intensive work in this area has largely been confined to mammals. Much of the transcriptional profiling of blood cell development in zebrafish has failed to capture early stages of lymphocyte development as the majority of research has not included thymus datasets or captured sufficient marrow B cells to explore developmental trajectories. To gain insight into T and B cell development in the zebrafish and immune cell diversity more broadly, we performed scRNA-seq using 10x Genomics Next GEM technology on adult zebrafish kidney marrows (n = 5 biological replicates) in addition to whole juvenile thymi at 4 weeks post-fertilization (wpf) (n = 4 technical replicates) and whole adult thymi at 3-4 months post-fertilization (n = 4 biological replicates). After filtering out low quality cellular barcodes, 34,492 kidney marrow cells and 35,268 thymus cells remained for analysis. With respect to T cell development, we identified putative early thymic progenitors from their clustering with hematopoietic stem and progenitor cells and shared transcriptional signatures, including the enrichment of CD34, CSF1R, FLI1, and DNMT3B human orthologs. Multiple subsets of thymic and marrow T cells were characterized, including a subset of gamma delta T cells readily identified by their expression of T-cell receptor gamma and delta chain components and expression of a SOX13 ortholog in addition to a Th2-like population expressing IL4, IL13, and GATA3 orthologs. Among other immune cell populations, rich transcriptional diversity was present. Two distinct populations of B cells, largely mutually exclusive for ighd and ighz expression (dual detection <1%), were present across all datasets, including the 4 wpf thymi, a surprisingly early time point in zebrafish B cell ontogeny. A clustering of the adult datasets demonstrated ighz predominance in the thymus (63% of thymic B cells), whereas the majority of marrow B cells (85%) fell within the ighd cluster. Stages of B cell development were also clearly evident, with the earliest B cell progenitors expressing orthologs of human PAX5, DNTT, RAG1, and RAG2, in addition to sid1, an understudied gene proposed to be orthologous to VPREB1. The expression of dntt was notably absent from more mature subsets of rag1 and rag2+ B cell progenitors, analogous to its expression in mammals. Transcriptional signatures unique but reminiscent of mammalian dendritic cell subsets were identified: Plasmacytoid-like dendritic cells characterized by high expression of TLR7, TLR9, and IRF8 orthologs and conventional-like dendritic cells characterized by high expression of CKB, BATF3, and ZNF366 were present in both marrow and thymus datasets, suggestive of greater dendritic-like cell diversity in the zebrafish than previously appreciated. These findings illustrate the power of single-cell transcriptional profiling for illuminating immune cell development and heterogeneity in the zebrafish, demonstrating increasing parallels to the mammalian system. Disclosures Zon: Celularity: Consultancy; Branch Biosciences: Current holder of individual stocks in a privately-held company, Other: Founder; Scholar Rock: Current equity holder in publicly-traded company, Other: Founder; Amagma Therapeutics: Current holder of individual stocks in a privately-held company, Other: Founder; CAMP4 Therapeutics: Current holder of individual stocks in a privately-held company, Other: Founder; Fate Therapeutics: Current equity holder in publicly-traded company, Other: Founder; Cellarity: Consultancy.

2018 ◽  
Vol 236 (2) ◽  
pp. 99-109 ◽  
Author(s):  
Annica Andersson ◽  
Anna E Törnqvist ◽  
Sofia Moverare-Skrtic ◽  
Angelina I Bernardi ◽  
Helen H Farman ◽  
...  

Apart from the role of sex steroids in reproduction, sex steroids are also important regulators of the immune system. 17β-estradiol (E2) represses T and B cell development, but augments B cell function, possibly explaining the different nature of immune responses in men and women. Both E2 and selective estrogen receptors modulators (SERM) act via estrogen receptors (ER). Activating functions (AF)-1 and 2 of the ER bind to coregulators and thus influence target gene transcription and subsequent cellular response to ER activation. The importance of ERαAF-1 and AF-2 in the immunomodulatory effects of E2/SERM has previously not been reported. Thus, detailed studies of T and B lymphopoiesis were performed in ovariectomized E2-, lasofoxifene- or raloxifene-treated mice lacking either AF-1 or AF-2 domains of ERα, and their wild-type littermate controls. Immune cell phenotypes were analyzed with flow cytometry. All E2 and SERM-mediated inhibitory effects on thymus cellularity and thymic T cell development were clearly dependent on both ERαAFs. Interestingly, divergent roles of ERαAF-1 and ERαAF-2 in E2 and SERM-mediated modulation of bone marrow B lymphopoiesis were found. In contrast to E2, effects of lasofoxifene on early B cells did not require functional ERαAF-2, while ERαAF-1 was indispensable. Raloxifene reduced early B cells partly independent of both ERαAF-1 and ERαAF-2. Results from this study increase the understanding of the impact of ER modulation on the immune system, which can be useful in the clarification of the molecular actions of SERMs and in the development of new SERM.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lixing Huang ◽  
Ying Qiao ◽  
Wei Xu ◽  
Linfeng Gong ◽  
Rongchao He ◽  
...  

Fish is considered as a supreme model for clarifying the evolution and regulatory mechanism of vertebrate immunity. However, the knowledge of distinct immune cell populations in fish is still limited, and further development of techniques advancing the identification of fish immune cell populations and their functions are required. Single cell RNA-seq (scRNA-seq) has provided a new approach for effective in-depth identification and characterization of cell subpopulations. Current approaches for scRNA-seq data analysis usually rely on comparison with a reference genome and hence are not suited for samples without any reference genome, which is currently very common in fish research. Here, we present an alternative, i.e. scRNA-seq data analysis with a full-length transcriptome as a reference, and evaluate this approach on samples from Epinephelus coioides-a teleost without any published genome. We show that it reconstructs well most of the present transcripts in the scRNA-seq data achieving a sensitivity equivalent to approaches relying on genome alignments of related species. Based on cell heterogeneity and known markers, we characterized four cell types: T cells, B cells, monocytes/macrophages (Mo/MΦ) and NCC (non-specific cytotoxic cells). Further analysis indicated the presence of two subsets of Mo/MΦ including M1 and M2 type, as well as four subsets in B cells, i.e. mature B cells, immature B cells, pre B cells and early-pre B cells. Our research will provide new clues for understanding biological characteristics, development and function of immune cell populations of teleost. Furthermore, our approach provides a reliable alternative for scRNA-seq data analysis in teleost for which no reference genome is currently available.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 673-673
Author(s):  
Reema Baskar ◽  
Patricia Favaro ◽  
Warren D. Reynolds ◽  
Pablo Domizi ◽  
Albert G Tsai ◽  
...  

Abstract Human B cell development in adult human bone marrow (BM) is tightly regulated through well-defined stages to produce adaptive immune cells with assembled and functional B cell antigen receptor (BCR)(Martin et al., 2016). To produce mature B cells with functional immunoglobulin receptors, B cell progenitors must undergo multiple stages of highly regulated chromatin remodelling and transcriptional reprogramming which correspond to unique patterns of surface protein expression (Nutt and Kee, 2007). This complex process is frequently dysregulated in B cell neoplasia such as B cell Acute Lymphoblastic Leukemia (B-ALL). B-ALL is highly heterogenous in its phenotypic and clinical presentation, as well as in its underlying molecular features such as DNA methylation patterns and genetic aberrations (Cobaleda and Sánchez-García, 2009). The lack of general mechanism of leukemogenesis has made it difficult to identify when and where adult and pediatric B-ALL blasts diverge from normal B cell development. Here we show that across 5 B-ALL patients and 3 cell lines with diverse phenotypic and clinical presentations, blasts are epigenetically arrested at a conserved point within healthy human B cell development. First, we sought to establish a trajectory of normal B cell development to delineate the phenotypic and concomitant epigenetic changes occurring in BM progenitors as they differentiate into naïve B cells. To capture phenotype, function, and epigenetic state via single cell chromatin content (chromotype) of developing B cells in BM, we developed a multiplexed, high throughput, single cell proteomic method (chromotyping) to simultaneously measure cell surface markers, intracellular regulators such as transcription factors and chromatin structure regulators such as histone post-translational modifications (i.e. H3K4me3, H3K27me3, H2AK119ubi) and chromatin re-modelers (i.e. CTCF, DNMT1, MLL1). Using these surrogates for single cell, global chromatin content, we notably identified 3 coordinated epigenetic inflection or switch (S) points in healthy B cell development corresponding to previously characterized phenotypic landmarks of STAT5 signalling and active re-arrangement of IgH loci (S1), CD24 expression-linked high translation and proliferation (S2), and IgM and CD20 expression-linked BCR assembly completion (S3) (Bendall et al., 2014). To determine how these coordinated chromotypes translated to chromatin accessibility and primed gene regulation networks, we isolated BM B cell population from these chromatin content transition points and analysed them with our modified ATAC-seq protocol, InTAC-seq (Baskar et al., 2021). Strikingly, the chromatin accessibility landscape revealed putative oncogenic priming with high activity of leukemic TFs such as PAX5, TCF3, ZEB1 and ID4 predominantly at S2 and some at S3 switch points. By integrating our InTAC-seq data with publicly available single cell ATAC and RNA seq data on BM, we located this oncogenic primed state as existing from S2 to before S3 (IgH rearranged, late pro- / Pre-B cell stage) in healthy B cell development. This integration further associated this state with high activity of ASCL1 (role in chromatin remodelling) and high expression of STMN1 (Leukaemia-associated phosphoprotein 18). Finally we showed that across B-ALL patients (n=5) and cell lines (REH, NALM6, SUBP15), chromatin accessibility of neoplastic B cells indeed continue to occupy this point of oncogenic vulnerability in the B cell developmental space from S2 to right before S3 in our integrated scATAC map, despite variable immunophenotypes. This corresponds to a coordinated minima in our chromotyping map (lowest, coordinated abundance of chromatin structure regulators across trajectory). Further analysis of B-ALL patients reinforced the divergence between immunophenotypic and epigenetic heterogeneity within and between samples. Taken together, our findings identify key epigenetic switch points in B cell development and their underlying chromatin accessibility and gene expression patterns. Consequently, we reveal a point of epigenetic vulnerability in healthy B cell development that could be predisposed to leukemic transformation. This work opens up the possibility for new diagnostic strategies for B-ALL utilizing chromatin content and could pave the way for epigenetic modulation-based treatments beyond DNA methylation inhibition. Disclosures Davis: Novartis Pharmaceuticals: Honoraria; Jazz Pharmaceuticals: Research Funding.


Author(s):  
Wen Wen ◽  
Wenru Su ◽  
Hao Tang ◽  
Wenqing Le ◽  
Xiaopeng Zhang ◽  
...  

AbstractCOVID-19, caused by SARS-CoV-2, has recently affected over 300,000 people and killed more than 10,000. The manner in which the key immune cell subsets change and their states during the course of COVID-19 remain unclear. Here, we applied single-cell technology to comprehensively characterize transcriptional changes in peripheral blood mononuclear cells during the recovery stage of COVID-19. Compared with healthy controls, in patients in the early recovery stage (ERS) of COVID-19, T cells decreased remarkably, whereas monocytes increased. A detailed analysis of the monocytes revealed that there was an increased ratio of classical CD14++ monocytes with high inflammatory gene expression as well as a greater abundance of CD14++IL1B+ monocytes in the ERS. CD4+ and CD8+ T cells decreased significantly and expressed high levels of inflammatory genes in the ERS. Among the B cells, the plasma cells increased remarkably, whereas the naïve B cells decreased. Our study identified several novel B cell-receptor (BCR) changes, such as IGHV3-23 and IGHV3-7, and confirmed isotypes (IGHV3-15, IGHV3-30, and IGKV3-11) previously used for virus vaccine development. The strongest pairing frequencies, IGHV3-23-IGHJ4, indicated a monoclonal state associated with SARS-CoV-2 specificity. Furthermore, integrated analysis predicted that IL-1β and M-CSF may be novel candidate target genes for inflammatory storm and that TNFSF13, IL-18, IL-2 and IL-4 may be beneficial for the recovery of COVID-19 patients. Our study provides the first evidence of an inflammatory immune signature in the ERS, suggesting that COVID-19 patients are still vulnerable after hospital discharge. Our identification of novel BCR signaling may lead to the development of vaccines and antibodies for the treatment of COVID-19.Highlights-The immune response was sustained for more than 7 days in the early recovery stage of COVID-19, suggesting that COVID-19 patients are still vulnerable after hospital discharge.-Single-cell analysis revealed a predominant subset of CD14++ IL1β+ monocytes in patients in the ERS of COVID-19.-Newly identified virus-specific B cell-receptor changes, such as IGHV3-23, IGHV3-7, IGHV3-15, IGHV3-30, and IGKV3-11, could be helpful in the development of vaccines and antibodies against SARS-CoV-2.-IL-1β and M-CSF were discovered as novel mediators of inflammatory cytokine storm, and TNFSF13, IL-2, IL-4, and IL-18 may be beneficial for recovery.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1352-1352
Author(s):  
Marit E. Hystad ◽  
Trond H. Bo ◽  
Edith Rian ◽  
June H. Myklebust ◽  
Einar Sivertsen ◽  
...  

Abstract B cells develop from hematopoietic stem cells (HSC) in the bone marrow (BM) through a number of distinct stages before they migrate to the periphery as naïve mature B lymphocytes. These developmental stages can be identified by expression of cell surface antigens and Ig gene rearrangement status. The aim of this study was to characterize the earliest steps of normal human B cell development by gene expression profiling. Immunomagnetic selection and subsequent fluorescence-activated cell sorting (FACS) were used to isolate five populations from adult human BM: CD34+CD38− (HSC), CD34+CD10+CD19− early lymphoid progenitor cells (ELP), CD34+CD10+CD19+IgM− progenitor B cells (pro-B), CD34−CD10+CD19+IgM− precursor B cells (pre-B) and CD34−CD10+CD19+IgM+ immature B cells (IM). Total RNA was extracted from the purified cell populations, amplified and hybridized to Lymphochip cDNA microarrays. Six independent experiments from different donors were performed for each cell population. Expression of the genes encoding the selection markers confirmed the validity of the approach. Interestingly, genes necessary for the V(D)J-recombination such as RAG-1, RAG-2, TdT and ADA showed higher gene expression in the ELP population than in the HSC. In contrast, the transcription factors E2A, EBF, and Pax-5, which are all essential for early B-cell development, were first turned on in pro-B cells, in accordance with the B-cell lineage commitment. The ELP did not express B, T or NK lineage markers, except for a higher expression level of CD2 in the ELP population than in the four other cell populations. Taken together, the expression pattern of CD2 and the V(D)J-recombination genes in the ELP population, indicate that these cells have developed a lymphocyte potential, but are not fully committed to B-lineage cells. Hierarchical cluster analysis of the 758 differentially expressed genes (differences in relative expression by a factor of two or more and with maximum10% FDR) revealed a pattern that clearly separated the five consecutive cell populations. Furthermore, we created expression signatures based on information from Gene Ontology (GO) http://source.stanford.edu/cgi-bin/source/sourceSearch. One of the clearest distinctions between the gene expressions of the five developmental populations involved genes associated with proliferation, and showed that the HSC and IM populations are relatively indolent while the pro-B and pre-B populations comprised high expression levels of nearly all the proliferation associated genes. Finally, we examined in further detail the transitions between HSC, ELP and pro B cells. We found 25 genes to be differently expressed in the ELP population in comparison to the HSC and pro-B populations, including IGJ, BCL2 and BLNK. To identify combinations of markers that could better discriminate the ELP population, we also performed a gene pair class separation test. This resulted in 68 gene pairs with score above 10 that were denoted very good discriminators. For several of the markers the differences in gene expression were verified at the protein level by five colour FACS analysis. Taken together, these results provide new insight into the molecular processes that take place in the early human B cell differentiation, and in particular provide new information regarding expression of genes in the ELP population.


Blood ◽  
2002 ◽  
Vol 100 (13) ◽  
pp. 4629-4639 ◽  
Author(s):  
Nancy D. Borson ◽  
Martha Q. Lacy ◽  
Peter J. Wettstein

Multiple myeloma (MM) is a plasma cell disorder that potentially initiates during an early stage of B-cell development. We encountered an unidentified isoform of B cell–specific activator protein (BSAP, or Pax5) in MM cells while performing differential analyses to compare mRNA expression in malignant and normal plasma cells. Pax5 is a transcription factor that plays a central role throughout B-cell development until the point of terminal differentiation. Our finding of this unique isoform prompted us to investigate Pax5 isoform usage in plasma cells and B-cell populations in other MM and healthy subjects. In contrast to normal Pax5 expression, we observed multiple isoforms of Pax5 in conjunction with low levels of expression of the full-length Pax5 in B cells from MM patients. The expressed isoforms in MM varied considerably from patient to patient, with no clear pattern. We also performed semiquantitative analyses of the mRNA expression levels of B lymphocyte–induced maturation protein (Blimp-1), because expression levels of Pax5 and Blimp-1 have been shown to be inversely correlated. We observed the expression of Blimp-1 in the B-cell populations in all 11 MM patients but in none of 11 healthy subjects. We hypothesize that premature Blimp-1 expression coupled to altered and deficient Pax5 expression causes some proliferating B cells to prematurely differentiate to plasma cells in MM.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Robin D. Lee ◽  
Sarah A. Munro ◽  
Todd P. Knutson ◽  
Rebecca S. LaRue ◽  
Lynn M. Heltemes-Harris ◽  
...  

AbstractIntegration of external signals and B-lymphoid transcription factor activities organise B cell lineage commitment through alternating cycles of proliferation and differentiation, producing a diverse repertoire of mature B cells. We use single-cell transcriptomics/proteomics to identify differentially expressed gene networks across B cell development and correlate these networks with subtypes of B cell leukemia. Here we show unique transcriptional signatures that refine the pre-B cell expansion stages into pre-BCR-dependent and pre-BCR-independent proliferative phases. These changes correlate with reciprocal changes in expression of the transcription factor EBF1 and the RNA binding protein YBX3, that are defining features of the pre-BCR-dependent stage. Using pseudotime analysis, we further characterize the expression kinetics of different biological modalities across B cell development, including transcription factors, cytokines, chemokines, and their associated receptors. Our findings demonstrate the underlying heterogeneity of developing B cells and characterise developmental nodes linked to B cell transformation.


2017 ◽  
Author(s):  
Daniel A. Skelly ◽  
Galen T. Squiers ◽  
Micheal A. McLellan ◽  
Mohan T. Bolisetty ◽  
Paul Robson ◽  
...  

INTRODUCTORY PARAGRAPHCharacterization of the cardiac cellulome—the network of cells that form the heart—is essential for understanding cardiac development and normal organ function, and for formulating precise therapeutic strategies to combat heart disease. Recent studies have challenged assumptions about both the cellular composition1 and functional significance of the cardiac non-myocyte cell pool, with unexpected roles identified for resident fibroblasts2 and immune cell populations3,4. In this study, we characterized single-cell transcriptional profiles of the murine non-myocyte cardiac cellular landscape using single-cell RNA sequencing (scRNA-Seq). Detailed molecular analyses revealed the diversity of the cardiac cellulome and facilitated the development of novel techniques to isolate understudied cardiac cell populations such as mural cells and glia. Our analyses also revealed networks of intercellular communication as well as extensive sexual dimorphism in gene expression in the heart, most notably demonstrated by the upregulation of immune-sensing and pro-inflammatory genes in male cardiac macrophages. This study offers new insights into the structure and function of the mammalian cardiac cellulome and provides an important resource that will stimulate new studies in cardiac cell biology.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1577-1577
Author(s):  
Xuehai Wang ◽  
Deanne Gracias ◽  
Michael Nissen ◽  
Elizabeth Chavez ◽  
Gabriela Cristina Segat ◽  
...  

Abstract Follicular lymphoma (FL) is an indolent, but incurable malignancy as most patients eventually experience progressive disease. We hypothesized that clonal heterogeneity and patient-specific immune responses would contribute to variable clinical outcomes and that understanding the complexity of the entire tumor "ecosystem" would allow us to better match patients with specific types of tumor- and immune-targeted therapies. In this study, we performed 38-dimensional single-cell phenotyping by mass cytometry (CyTOF) to simultaneously characterize both the substructure of malignant B cell populations as well as the T cell microenvironment in a cohort of 77 diagnostic patient FL biopsies and 35 benign reactive LN (rLN) biopsies. We first applied the t-distributed Stochastic Neighbour Embedding (t-SNE) algorithm to explore intra- and inter- tumoral heterogeneity among malignant B cell populations. t-SNE mapping of individual samples showed that more than a third of FL samples contain at least two phenotypically distinct tumor subpopulations, supporting the notion of multi-clonal tumor architectures presumably due to ongoing clonal evolution. Batched analysis combining all 77 FL cases together with 35 rLN samples revealed two distinct tumor subtypes comprising about 25% (type "A") and 10% (type "B") of total FL samples, respectively, with individual tumors within each subtype showing highly similar and partially overlapping phenotypes. Mapping the same data using Uniform Manifold Approximation and Projection (UMAP), a dimensional reduction algorithm similar to t-SNE but preserves global structure more accurately, revealed that type A tumors localized in close proximity to normal germinal center (GC) B cells, thus fulfilling conventional expectations as to the histogenesis of FL. In contrast, type B tumors localized more closely to pre-GC B cells, implying the existence of an alternate histogenic path in FL. Importantly, we also performed single-cell RNA-Seq on a subset of FL cases which independently confirmed the type A vs type B distinction in whole transcriptomic space. We next analyzed matching T cell data using a modified Statistical Scaffold algorithm in order to place distinct subsets in context with conventionally defined normal T cell populations. Clustering analysis using multi-layer phenograph performed on T cells from all FL and rLN samples combined yielded hundreds of small, but phenotypically distinct populations that were then annotated according to the nearest conventionally defined T cell subset. These imputed designations were used as features to perform hierarchical clustering of samples which revealed 3 major clusters. Cluster1 was characterized by mostly naive T cell populations and contained the majority of rLN samples. Cluster2 was characterized by more differentiated effector T cell populations and was dominated by FL samples. Samples within Cluster2 could be further divided into Tfh, Treg and Th1-rich subgroups. Cluster3 was characterized by a diverse T cell environment including naive, memory and differentiated effector subsets and contained a mixture of rLN and FL samples. Integrative analysis correlating B- and T- cell features revealed type B FL tumors were associated with a Tfh-rich immune landscape. Taken together, these data reveal pervasive phenotypic heterogeneity in both malignant and immune cell compartments of patient FL samples and suggest that defining tumoral subtypes as well as the status of the local immune response within individual samples will support more refined diagnostic classification and highlight functional interactions most amenable to therapeutic targeting. Disclosures Gascoyne: NanoString: Patents & Royalties: Named Inventor on a patent licensed to NanoString Technologies. Scott:Celgene: Consultancy, Honoraria; Roche: Research Funding; NanoString: Patents & Royalties: Named Inventor on a patent licensed to NanoString Technologies, Research Funding; Janssen: Research Funding. Steidl:Juno Therapeutics: Consultancy; Seattle Genetics: Consultancy; Nanostring: Patents & Royalties: patent holding; Bristol-Myers Squibb: Research Funding; Tioma: Research Funding; Roche: Consultancy.


Blood ◽  
2009 ◽  
Vol 114 (14) ◽  
pp. 2909-2916 ◽  
Author(s):  
Fukun Guo ◽  
Chinavenmeni S. Velu ◽  
H. Leighton Grimes ◽  
Yi Zheng

Cdc42 is a member of the Rho GTPase family that has been implicated in several cell functions including proliferation and migration, but its physiologic role needs to be dissected in each cell type. We achieved B-cell and hematopoietic stem cell deletion of Cdc42 by conditional gene targeting in mice. Deletion of Cdc42 from proB/preB-cell stage significantly blocked B-cell development at T1 and later stages, resulting in reduced mature B-cell populations and reduced antigen-specific immunoglobulin M (IgM), IgG1, and IgG3 production. The Cdc42−/− B cells, themselves, were abnormal with impaired proliferation and survival. The mutant B cells were further characterized by a B-cell receptor (BCR) signaling defect with increased Erk and decreased Akt activation, as well as a defect in BCR-mediated B-cell–activating factor (BAFF) receptor up-regulation and subsequent BAFF receptor signaling in mature resting B cells. Surprisingly, Cdc42 was dispensable for stromal cell–derived factor-1α (SDF-1α)– or B-lymphocyte chemoattractant (BLC)–induced B-cell migration. Finally, loss of Cdc42 from hematopoietic stem cells did not alter common lymphoid progenitor production but severely reduced proB/preB- and immature B-cell populations, indicating that Cdc42 is also involved in B-cell precursor differentiation. These results reveal multifaceted roles of Cdc42 in B-cell development and activation.


Sign in / Sign up

Export Citation Format

Share Document