scholarly journals PSMB4 and PSMD4 Are Correlated with 1q21 Amplification in CD138 + Plasma Cells: New Potential Druggable Targets in Myeloma Patients

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2657-2657
Author(s):  
Jessica Burroughs-Garcia ◽  
Paola Storti ◽  
Luca Agnelli ◽  
Denise Toscani ◽  
Valentina Marchica ◽  
...  

Abstract The amplification of the 1q21 (amp1q21) region is one of the most acquired cytogenetic abnormalities (CA) in multiple myeloma (MM) associated with a worse patient outcome and disease progression. Moreover, different studies have demonstrated that the number of copies (CN) 1q21 (gain1q21: three copies or amp1q21: ≥ four copies) have a different impact in the response to anti-MM therapies. Particularly, it has been proposed that in MM patients, additional copies of 1q21 may be associated with the resistance to proteasome inhibitor (PI) treatment as bortezomib. A recent study showed that newly diagnosed MM (MMD) patients carrying amp1q21 but not gain1q21 receiving carfilzomib-based treatment have an early disease progression with shorter overall survival. Previous studies underlined that the amplification of 1q21 can lead to the overexpression and/or dysregulation of several candidate genes associated with cell proliferation, apoptosis, and drug resistance. Here we aim to identify 1q21 target genes possibly correlated to the response to PI therapy. We evaluated a total cohort of 29 primary plasma cells (PCs) purified from bone marrow (BM) blood aspirates from 11 smoldering MM (SMM) and 18 MMD. The median age of our cohort was 70 years (range: 38-86). Fluorescence in situ hybridization (FISH) analysis was performed to access the presence or absence of copy number alteration (CNA) in the 1q21 region in all patients. 14 out of 29 patients carried 1q21 CNA (5 with gain1q21 and 9 with amp1q21). A score reflecting the number of 1q21 copies was calculated based on the hybridization pattern. The transcriptional profiles of the 29 BM PCs samples were generated on GeneChip ClariomD Arrays (Affymetrix Inc., Santa Clara, CA, USA). The samr package was used in R for call genes as differentially expressed between 1q21 CN-altered and wild-type samples. The correlation between the 1q21 copy number score and the gene expression levels was performed. Moreover, we have evaluated by FISH the 1q21 CNA in a panel of human myeloma cell lines (HMCLs): OCY-MY5, JJN3, RPMI-8226, NCI-H929, and OPM2. JJN3 were transfected with a control vector and PSMB4 and PSMD4 short hairpin RNA (shRNA) lentivectors. The gene and protein expression levels of PSMB4 and PSMD4 in MM cell lines were analyzed by qRT-PCR and Western Blot, respectively. Cell viability and proliferation were assessed using MTT assay and flow cytometry. Our bioinformatic analyses highlighted the overexpression of different genes (IL6R, ILF2, BCL9, MCL1, CSk1B, ADAR1, ARNT, ANP32E) in the 1q21 CNA samples with respect to the controls, as already reported in the literature. Our analysis showed a significantly higher expression of two proteasome subunits (PSMB4 and PSMD4) in patients with 1q21 CNA when compared with patients without (PSMB4 p=0.0006; PSMD4 p=<0.0001). Patients with amp1q21 showed a higher expression of PSMB4 when compared to the patients with gain1q21 (p=0,007). In our cohort, gene expression profile analysis also showed a strong positive correlation between gene expression levels and 1q21 CN for the proteasome subunits PSMB4 (p=<0.0001, r=0.5631) and PSMD4 (p=<0.0001, r=0.6391). Interestingly, we found that the PSMB4 and PSMD4 expression level was independent of the disease stage (SMM vs MM) and was only driven by 1q21 CN. We have evaluated PSMB4 and PSMD4 mRNA and protein expression levels in a 1q21 wild-type cell line (OCY-MY5) and in a panel of MM cell lines carrying different degrees of 1q21 CN (in order: JJN3, U266, RPMI-8226, OPM2, and NCI-H929). The mRNA expression level of PSMB4 and PSMD4 was higher in cell lines carrying 1q21 amp, following a 1q21 copy number fashion. Similar results were obtained when protein levels of MM cell lines were analyzed by Western Blot. To further determine the potential role of both proteasome subunits in the pathogenesis of amp1q21, we generated a PSMB4-shRNA and PSMD4-shRNA knockdown stable MM cell lines. Functional studies showed that blockade of PSMB4 and PSMD4 decreased MM cell viability. In conclusion, our study identified proteasome subunits PSMB4 and PSMD4 to be significantly upregulated in MM patients carrying amp1q21, correlated with 1q21 copy number but not with disease stage. In addition, knockdown of both, PSMB4 and PSMD4 decreased MM cell proliferation. Therefore, targeting PSMB4 and PSMD4 could be a strategy to treat MM patients with ampq21 Disclosures Giuliani: Celgene: Membership on an entity's Board of Directors or advisory committees, Other: congress, Research Funding; Bristol Mayers Squibb: Other: congress; GSK: Other: clinical studies; Takeda: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees, Other: Clinical studies, congress, Research Funding; Millenium Pharmaceutical: Other: clincial studies.

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1852-1852 ◽  
Author(s):  
Malathi Kandarpa ◽  
Stephanie J Kraftson ◽  
Sean P Maxwell ◽  
Dilara McCauley ◽  
Sharon Shacham ◽  
...  

Abstract Abstract 1852 Background: CRM1 (XPO1, exportin) is a nuclear export protein which controls the nuclear-cytoplasmic localization of multiple tumor suppressor proteins and cell proliferation pathways including p53, p21, PI3K/AKT/FOXO, Wnt/ß-catenin/APC, topoisomerase II, and NF-κB/I-κB. Transport of nuclear proteins to the cytoplasm can render them ineffective as tumor suppressors or as targets for chemotherapy. Small molecule, selective inhibitors of nuclear export (SINE) that block CRM1-dependent nuclear export can force the nuclear retention of tumor suppressor proteins, thus rendering cancer cells more susceptible to apoptosis and responsive to other chemotherapy. In this study we evaluated CRM1 as a potential target in MM and the effect of SINE on the activity of established anti-myeloma agents currently in use in treatment of MM. KPT-276 is the lead CRM1 inhibitor being investigated which will be submitted for IND in 2012. Methods: To evaluate expression of CRM1, bone marrow aspirates from MM patients and tonsil tissue from normal patients were enriched for plasma cells (PC) and proteins from cell lysates were separated by SDS-PAGE followed by immunoblotting with CRM1 antibodies. In functional experiments, isolated fresh MM PCs from patients, and NCI-H929, MM1.S, MM1.R and RPMI-8226 cell lines were cultured in RPMI-1640 with 10–15% serum. Cells were treated for 24–72 hrs with CRM1 inhibitors KPT-SINE compounds with or without bortezomib and dexamethasone and were analyzed for cytotoxicity by MTT assay. Drug concentrations for combination experiments were chosen to be at or below IC50 for each individual drug. Apoptosis induction in primary MM cells and cell lines was studied by Annexin V labeling and flow cytometry. Cell lysates from primary MM PCs and cell lines were prepared after treatment with KPT-SINE and were used to determine the expression of p53 and CRM1. Results: Primary MM plasma cells derived from naïve, previously untreated patients show 4–20 fold higher CRM1 protein expression, compared to normal peripheral blood mononuclear cells (PBMCs) and normal tonsilar PCs. Dose response analysis of KPT-SINE compounds in myeloma cell lines showed potent activity with IC50s in the range of 10–100nM. The lead compound KPT-276 had an IC50 of <100 nM in NCI-H929, MM1.S, MM1.R and RPMI-8226 cells. Functional studies in MM patient plasma cells showed that in vitro inhibition of CRM1 with related SINEs KPT-185, −225 or −276 increase apoptosis induction as measured by Annexin V assay. In addition, the inhibition of CRM1 with KPT-SINE results in a dose-dependent increase in levels of nuclear as well as total p53 in MM patient plasma cells within 48 hrs. When combined with proteasome inhibitors like bortezomib and/or dexamethasone, KPT-SINE compounds potently increase the cellular cytotoxicity of these drugs in MM cell lines. Mechanism of activity of drug combinations is under investigation in MM cell lines and MM patient plasma cells. Conclusions: MM plasma cells express CRM1 that is functionally active and therefore is a valid target in the treatment of myeloma. Moreover, higher expression of CRM1 in malignant plasma cells compared to normal PBMCs and normal PCs suggests possibility of therapeutic index. Early mechanistic studies indicate that CRM1 inhibition can lead to an increased expression of p53 (and other tumor suppressors) and its nuclear localization in myeloma cells and therefore might serve as a mechanism for the activity of CRM1 inhibitors in MM. Potentiation of cytotoxicity of bortezomib and dexamethasone by KPT-SINE suggests that these drugs might be useful in treating MM refractory to currently used agents and provide rationale for combining inhibitors of nuclear transport with other drugs. Disclosures: Off Label Use: KPT-SINE family of drugs are not approved for the treatment of multiple myeloma. These drugs have a novel mechanism and are in pre-clinical development for the treatment of several malignancies. McCauley:Karyopharm Therapeutic Inc.: Employment. Shacham:Karyopharm Therapeutics Inc.: Employment. Kauffman:Karyopharm Therapeutics Inc.: Employment. Jakubowiak:Exelixis: Consultancy, Honoraria; Bristol-Myers Squibb: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Onyx Pharmaceuticals: Consultancy, Membership on an entity's Board of Directors or advisory committees; Millennium Pharmaceuticals, Inc.: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Celgene: Consultancy, Honoraria, Speakers Bureau; Ortho Biotech: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 721-721
Author(s):  
Patrick Blaney ◽  
Eileen M Boyle ◽  
Yubao Wang ◽  
Hussein Ghamlouch ◽  
Jinyoung Choi ◽  
...  

Abstract Introduction Copy number abnormalities (CNA) and structural variants (SV) are crucial to driving cancer progression and in multiple myeloma (MM). Chr1 CNA are seen in up to 40% of cases and associate with poor prognosis. Variants include deletions, gains, translocations and complex SV events such as chromothripsis (CT), chromoplexy (CP) and templated insertions (TI) which result in aberrant transcriptional patterns. Abnormal expression of genes on chr1 lead to the adverse clinical outcome and studies focussed on 1p12, 1p32.3 and 1q12-21 identified potential causal genes including TENT5C, CDKN2C, CKS1B, PDZK1, BCL9, ANP32E, ILF2, ADAR, MDM2 and MCL1 but none fully explain the clinical behavior. To address this deficiency and to relate chromatin structure to gene deregulation we present a multiomic bioinformatic analysis of SV, CNA, mutation and expression changes in relation to the chromatin structure of chr1. Methods We analysed data derived from 1,154 CoMMpass trial patients. We analyzed 972 NDMM patients with whole exome for mutations, and 752 whole genomes for copy number, translocations, complex rearrangements such as CP, CT and TI as previously described. Using GISTIC 2.0, we identified hotspots of CNA. This information was then analyzed in conjunction to the RNA-seq data derived from 643 patients to determine the aberrant transcriptional landscape of chr1. Using HiC data derived from U266 MM cell line, we associated these changes with TAD structures, A/B compartments, and histone marks along chr1, to gene expression changes, and recurrent SV. Using the cell line dependency map for CRISPR knockdown of the gene set on chr1 derived from 20 MM cell lines we related cell viability to chr1 copy number status. Results We identified 7 hotspots of deletion, 9 of gain, 3 of CT and 2 of templated-insertion across chr1. We mapped these regions to epigenetic plots and show that gained regions are hypomethylated compared to the rest of chr1 (Wilcoxon, p=0.0002). Overall 69% of gain(1q) and 45% of the non-gained hotspots were in A compartments (χ 2=11, p=0.0009) and had an overall higher compartment score (p=0.01).The recurrent regions of loss on 1p confirm the clinical relevance of this region. The critical importance of TENT5C, CDKN2C and RPL5 is identified by the impact of deletion, mutation and the rearrangement of superenhancers. Further this convergence of multiple oncogeneic mechanisms to a single locus points to a number of novel candidate drivers including FUB1 and NTRK1.We provide important new information on 1q21.1-1q25.2 encompassing 145-180Mb a transcriptionally dense region containing 6 GISTIC 2.0 hotspots of gain (G2-G7). The hotspots occur within TAD structures that correlate upregulation of known drivers listed above and also identified novel potential upregulated drivers including POU2F1, a transcription factor, CREG1, an adenovirus E1A protein that both activates and represses gene expression promoting proliferation and inhibiting differentiation (G6) and BTG2 a G1/S transition regulator (G8). These data for copy number gain provides strong evidence for the prognostic relevance of of multiple drivers within deregulated TADs rather than single candidate genes. It also highlights the importance of the chromatin structure of Chr1 in the generation of these events.Using dependency map CRISPR data we identified 320 essential genes for at least one cell line (&gt;1). A common set of 31 genes were identified including 3 proteasome subunits (PSMA5, PSMB2, PSMB4), three regulators of ubiquitin-protein transferase activity (RPL5, RPL11, CDC20), splicing (SF3B4, SF3A3, SFPQ, RNPC3, SRNPE, PRPF38A, PRPF38B) and DTL. A common dependency for 1q+ or 1p- was not identified but a number of dependencies were identified in more than one cell line including UQCRH, SLCA1, CLSPN in 1p- cell lines and IPO9, PPIAL4G, and MRPS2 in 1q+. Conclusion We present an elegant anatomic map of chr1 at the genetic and epigenetic levels providing an unprecedented level of resolution for the relationships of structural variants to epigenetic, expression and mutation status. The analysis highlights the importance of active chromatin in gene deregulation by SV and CNA where the importance of multiple gene deregulation within TAD structures is critical to MM pathogenesis. The implications are that we could improve prognostic assignment and identify new targets for therapy by further characterizing these relationships. Figure 1 Figure 1. Disclosures Braunstein: Jansen: Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Adaptive: Membership on an entity's Board of Directors or advisory committees; AstraZeneca: Membership on an entity's Board of Directors or advisory committees; Epizyme: Membership on an entity's Board of Directors or advisory committees; Karyopharm: Membership on an entity's Board of Directors or advisory committees; Pfizer: Membership on an entity's Board of Directors or advisory committees; Takeda: Membership on an entity's Board of Directors or advisory committees. Davies: Takeda: Membership on an entity's Board of Directors or advisory committees; Sanofi: Membership on an entity's Board of Directors or advisory committees; Oncopeptides: Membership on an entity's Board of Directors or advisory committees; Constellation: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees; Celgene/BMS: Consultancy, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 133-133 ◽  
Author(s):  
Patricia Maiso ◽  
AbdelKareem Azab ◽  
Yang Liu ◽  
Yong Zhang ◽  
Feda Azab ◽  
...  

Abstract Abstract 133 Introduction: Mammalian target of rapamycin (mTOR) is a downstream serine/threonine kinase of the PI3K/Akt pathway that integrates signals from the tumor microenvironment such as cytokines and growth factors, nutrients and stresses to regulate multiple cellular processes, including translation, autophagy, metabolism, growth, motility and survival. Mechanistically, mTOR operates in two distinct multi-protein complexes, TORC1 and TORC2. Activation of TORC1 leads to the phosphorylation of p70S6 kinase and 4E-BP1, while activation of TORC2 regulates phosphorylation of Akt and other AGC kinases. In multiple myeloma (MM), PI3K/Akt plays an essential role enhancing cell growth and survival and is activated by the loss of the tumor suppressor gene PTEN and by the bone marrow microenvironment. Rapamycin analogues such as RAD001 and CCI-779 have been tested in clinical trials in MM. Their efficacy as single agents is modest, but when used in combination, they show higher responses. However, total inhibition of Akt and 4E-BP1 signaling requires inactivation of both complexes TORC1 and TORC2. Consequently, there is a need for novel inhibitors that can target mTOR in both signaling complexes. In this study we have evaluated the role of TORC1 and TORC2 in MM and the activity and mechanism of action of INK128, a novel, potent, selective and orally active small molecule TORC1/2 kinase inhibitor. Methods: Nine different MM cell lines and BM samples from MM patients were used in the study. The mechanism of action was investigated by MTT, Annexin V, cell cycle analysis, Western-blotting and siRNA assays. For the in vivo analyses, Luc+/GFP+ MM.1S cells (2 × 106/mouse) were injected into the tail vein of 30 SCID mice and tumor progression was detected by bioluminescence imaging. Nanofluidic proteomic immunoassays were performed in selected tumors. Results: To examine activation of the mTOR pathway in MM, we performed kinase activity assays and protein analyses of mTOR complexes and its downstream targets in nine MM cell lines. We found mTOR, Akt, pS6R and 4E-BP1 are constitutively activated in all cell lines tested independently of the status of Deptor, PTEN, and PI3K. All cell lines expressed either Raptor, Rictor or both; excepting H929 and U266LR7 which were negative for both of them. Moreover, primary plasma cells from several MM patients highly expressed pS6R while normal cells were negative for this protein. We found that INK128 and rapamycin effectively suppressed phosphorylation of p6SR, but only INK128 was able to decrease phosphorylation of 4E-BP1. We observed that INK128 fully suppressed cell viability in a dose and time dependent manner, but rapamycin reached a plateau in efficacy at ± 60%. The IC50 of INK128 was in the range of 7.5–30 nM in the eight cell lines tested. Similar results were observed in freshly isolated plasma cells from MM patients. Besides the induction of apoptosis and cell cycle arrest, INK128 was more potent than rapamycin to induce autophagy, and only INK128 was able to induce PARP and Caspases 3, 8 and 9 cleavage. In the bone marrow microenvironment context, INK128 inhibited the proliferation of MM cells and decreased the p4E-BP1 induction. Importantly, treatment with rapamycin under such conditions did not affect cell proliferation. INK128 also showed a significantly greater effect inhibiting cell adhesion to fibronectin OPM2 MM1S, BMSCs and HUVECs compared to rapamycin. These results were confirmed in vivo. Oral daily treatment of NK128 (1.0 mg/kg) decreased tumor growth and improved survival of mice implanted with MM1S. Conclusion: Dual inhibition of TORC1 and TORC2 represent a new and promising approach in the treatment of MM and its microenvironment. The ability of INK128 to inhibit both TORC1 and TORC2 strongly supports the potential use of this compound in MM patients. Disclosures: Anderson: Millennium Pharmaceuticals: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau. Ghobrial:Celgene: Membership on an entity's Board of Directors or advisory committees; Millennium: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2424-2424
Author(s):  
Yang Liu ◽  
Yong Zhang ◽  
Phong Quang ◽  
Hai T Ngo ◽  
Feda Azab ◽  
...  

Abstract Abstract 2424 Introduction Tumor necrosis factor receptor super families (TNFRSFs) play an important role in activation of lymphocyte and cell apoptosis. However the function of TNFRSFs in multiple myeloma (MM) remains unknown. Loss of function mutation of Fas antigen (TNFRSF6) was identified in MM cells, thus suggesting the possible role of TNFRSFs in regulating MM pathogenesis. We therefore investigated the epigenetic mechanisms that may mediate inactivation of TNFRSFs and its functional role in MM. Methods Dchip software was utilized for analyzing gene expression dataset. DNA was extracted from both primary CD138+ MM plasma cells and MM cell lines using blood & tissue DNA isolation kit (Qiagen, Inc.). Expression of GITR in primary CD138+ plasma cells was detected by Imunohistochemistry (IHC) DNA methylation was analyzed by methylated DNA immunoprecipitation (Medip) assay and bisulfate sequencing. 5'azacytidine was used to demethylate genomic DNA. Gene expression was detected by qRT-PCR and confirmed at the protein level by flow cytometry and western-blot. Over-expression of GITR was obtained in MM1.S cells by using GITR recombinant plasmid and electroporation. Apoptosis was determined using Annexin/PI staining and flow cytometry analysis. Activation of apoptotic signaling was studied by western blot. Cell survival and proliferation were analyzed by MTT and BrdU assay, respectively. Recombinant GITR-lentivirus was obtained from the supernatant of culture medium after 72 hours transfection in 293 cells. GFP positive MM cells were sorted and analyzed by flow cytometry. In vivo effect of GITR on MM tumor growth was determined by injection of GITR over-expressing MM cells in null mice. Mice skull, femur and vertebrae were isolated after 4 weeks injection. Anti-human CD138+ mAb microbead was used to detect MM cells extracted from mice tissue by flow cytometry. Results Gene-expression profiling showed down-regulation of TNFRSFs, including TNFRSF11A, TNFRSF11B, TNFRSF8, TNFRSF10C, TNFRSF9, TNFRSF21, TNFRSF1B, TNFRSF1A and TNFRSF18, compared to normal plasma cells. Moreover, Our IHC results also showed that GITR expression was positive in primary CD138+ plasma cells from 9 normal bone marrow, but negative in 9 MM samples. Importantly, we found that low GITR expression significantly correlated with MM progression. Indeed, GITR gene levels were lower in smoldering and active MM patients compared to MGUS patients and normal donors. Promoter CpG island (CGI) methylation of GITR was indentified in 5 out of 7 MM primary bone marrow (BM)-derived CD138+ cells but not in normal BM-derived plasma cells. Bisulfate sequencing and Medip assay showed that methylation of GITR was significantly associated with GITR expression in 5 MM cell lines, including MM1.S, OPM1, U266, RPMI and INA6. Promoter CGI of GITR was highly methylated leading to complete silencing of GITR in MM1.S cell line. GITR expression was significantly up-regulated in MM cells upon treatment with the 5'azacytidine. MTT and BrdU assay revealed that the proliferation and survival of MM1.S cells was disrupted in the GITR over-expressing MM1.S cells, notably with inhibition of cell proliferation compared to control vector infected cells. Moreover induction of cytotoxicity in GITR over-expressing cells was confirmed by using GFP competition assay. GITR-induced apoptosis was supported by induction of caspase 8 and 3 cleavage. The inhibition of human CD138+ plasma cell growth in the bone marrow of SCID mice using a disseminated MM xenograft model was observed in the experimental group injected with GITR expressing cells compared to the control group after 4 weeks injection. Conclusion Our findings uncovered a novel epigenetic mechanism contributing to MM pathogenesis, showing the role of GITR methylation as a key regulator of MM cell survival. Disclosures: Roccaro: Roche:. Ghobrial:Novartis: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Millennium: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Bristol-Myers Squibb: Research Funding; Noxxon: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1407-1407
Author(s):  
Antonio R Lucena-Araujo ◽  
Rafael Henriques Jacomo ◽  
Haesook T Kim ◽  
Raul A Melo ◽  
Rosane Bittencourt ◽  
...  

Abstract Abstract 1407 Background: Aberrant expression of MLL5, BAALC, ID1, and WT1 genes is frequently associated with inferior outcome in cytogenetically normal acute myeloid leukemia patients (Damm et al. Blood 2011; 117(17):4561–8). The expression levels of these genes vary in patients with acute promyelocytic leukemia (APL), but the clinical significance of these findings remains unclear. Objective: (1) to determine if the gene expression levels of MLL5, BAALC, ID1, and WT1 are associated with clinical outcome of APL patients treated with ATRA and anthracycline-based chemotherapy, (2) to generate an integrative score (IS) based on these potential prognostic factors and clinical parameters and (3) to use this score for outcome prediction in APL. Design and Methods: One hundred and fifty APL patients (age, 15–73y) from seven different Brazilian institutions and treated according to the IC-APL protocol were included. The treatment schedule was identical to the PETHEMA-LPA 2005, except for the replacement of idarubicin by daunorubicin; ATRA treatment was initiated immediately in all cases in which the diagnosis of APL was suspected based on morphology. Gene expression profile was analyzed by Real-time PCR. Integer weights for the IS were derived from Cox proportional hazard model, using overall survival (OS) as outcome parameter. Hazard ratios (HR) for OS were calculated for each variable separately (Table 1). Variables with P<0.05 in univariate analyses were included in the model. Variables considered for the model inclusion consisted in 2 clinical (WBC counts, albumin levels) and 5 molecular markers (FLT3-ITD status and gene expression levels of MLL5, BAALC, ID1, and WT1). Other candidates, such as age, platelet count, gender, ECOG performance status, PML breakpoint and FAB subtype were not significant and not included in the score. The HR were converted to integer weights according to the following: variables with HR < 1 were excluded from analyses; variables with HR 3 1 and < 1.5 were assigned a weight of 1; variables with HR 3 1.5 and < 2.5 were assigned a weight of 2; variables with HR 3 2.5 were assigned a weight of 3. The final score was the sum of these integer weights. Based on maximally selected rank statistics, the scores were grouped into 3 risk-groups: 0–5 (low-IS), 6–9 (intermediate-IS), and > 9 (high-IS). Results: The integrative weights of variables analyzed are summarized in Table 1. The IS was modeled in 137 patients (median score: 6; range, 1–17). According to PETHEMA-GIMEMA relapse risk criteria, 22%, 23% and 70% of patients assigned in the low-IS (n=46), intermediate-IS (n=57) and high-IS (n=34) groups were deemed high-risk of relapse (P<0.001). Overall, 118 (86%) patients achieved CR; the remaining 19 patients (14%) experienced early death due to hemorrhage (n=12), therapy-related infection (n=6) and differentiation syndrome (n=1). Induction mortality was significantly higher in the high-IS group (low: 2%; intermediate: 15%; high: 26%) (P=0.001). CR was achieved in the low-, intermediate-, and high-IS group in 98%, 84%, and 73% of the patients, respectively (P=0.007). With a follow-up of 24 months among survivors, patients assigned in the high-IS group had a lower 2-y OS rate (63%) compared with those in the intermediate- (80%) and low-IS groups (97%; P<0.001). Eight relapses were recorded. The IS was not predictive of relapses (P=0.351). Conclusions: Our results suggest that MLL5, BAALC, ID1, and WT1 expression levels are associated with clinical outcome and that the IS may become a useful tool for outcome prediction in APL. Disclosures: Lo-Coco: Cephalon: Speakers Bureau; Boehringer Ingelheim: Membership on an entity's Board of Directors or advisory committees. Löwenberg:Skyline Diagnostics: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 273-273
Author(s):  
Salomon Manier ◽  
John T Powers ◽  
Antonio Sacco ◽  
Michaela R Reagan ◽  
Michele Moschetta ◽  
...  

Abstract Background MicroRNAs (miRNAs) play a pivotal role in tumorigenesis, due to their ability to target mRNAs involved in the regulation of cell proliferation, survival and differentiation. Lin28B is an RNA binding protein that regulates Let-7 miRNA maturation. Lin28B and Let-7 have been described to act as oncogenes or tumor suppressor genes, respectively, as demonstrated both in solid cancer and hematologic malignancies. However, the role of the Lin28B/Let-7 axis in Multiple Myeloma (MM) has not been studied. Method Lin28B level expression in MM patients was studied using previously published gene expression profiling (GEP) datasets. Let-7 expression levels were assessed in CD138+ primary MM cells and bone marrow stromal cells (BMSCs) by using PCR, as well as in circulating exosomes using miRNA array (Nanostring® Technology). Exosomes were collected from both normal and MM peripheral blood, using ultracentrifugation; and further studied by using electron microscopy and immunogold labeling for the detection of CD63 and CD81. The knockdown of Lin28B was performed on MM cell lines (U266, MM.1S, MOLP-8) by using a lentiviral Lin28B shRNA. Gain- and loss-of function studies for Let-7 were performed using Let-7 mimic and anti-Let-7 transfection in MM cell lines (MM1S, U266) and primary BMSCs. Cell proliferation has been evaluated by using thymidine assays. Effects of Let-7 and Lin28B on signaling cascades have been evaluated by western blot. Results Two independent GEP datasets (GSE16558; GSE2658) were analyzed for Lin28B expression, showing a significantly higher level in MM patients compared to healthy controls. In addition, high Lin28B levels correlated with a shorter overall survival (p = 0.0226). We next found that the Let-7 family members are significantly down-regulated in MM primary cells, particularly Let-7a and b (5 fold change, p < 0.05), as demonstrated by using qRT-PCR. Similarly, miRNA arrays showed a lower expression of Let-7-related miRNAs in circulating exosomes obtained from MM patients compared to healthy individuals. We further dissected the functional relevance of Lin28B in MM cells, by performing Lin28 knockdown (KD) in MM cell lines (U266, MOLP-8). This led to a significant decrease in MM cell proliferation associated with G1 phase cell cycle arrest. This was supported by up-regulation of Let-7 and down-regulation of c-Myc, Ras and Cyclin D1 in Lin28 KD MM cells. To further prove that Lin28B-dependent effects on MM cells are mediated by Let7, we next showed that let-7 gain- and loss-of-function studies regulate MM cell proliferation and Myc expression. Lin28B regulation in MM cells is dependent on Let-7, as demonstrated by an increase of both cell proliferation and c-Myc expression after anti-Let-7 transfection in the Lin28B KD cells. We therefore studied the regulation of Let-7 in MM cells through the interaction with BMSCs. Let-7 expression levels were significantly lower in BMSCs obtained from MM patients compared to healthy donors. Interestingly, the Let-7 expression level in MM cells was increased after co-culture with Let-7 over-expressing BMSCs, associated with a decrease of both cell proliferation and c-Myc expression. This suggests a potential transfer of Let-7 from BMSCs to MM cells. Conclusion This work describes a new signaling pathway involving Lin28B, Let-7, Myc and Ras in MM. Let-7 expression in MM cells is also regulated through the interaction of MM cells with BMSCs, leading to cell proliferation and Myc regulation in MM. Interference with this pathway might offer therapeutic perspectives. Disclosures: Leleu: CELGENE: Honoraria; JANSSEN: Honoraria. Daley:Johnson and Johnson: Consultancy, Membership on an entity’s Board of Directors or advisory committees; MPM Capital: Consultancy, Membership on an entity’s Board of Directors or advisory committees; Verastem: Consultancy, Membership on an entity’s Board of Directors or advisory committees; Epizyme: Consultancy, Membership on an entity’s Board of Directors or advisory committees; iPierian: Consultancy, Membership on an entity’s Board of Directors or advisory committees; Solasia, KK: Consultancy, Membership on an entity’s Board of Directors or advisory committees. Ghobrial:Onyx: Advisoryboard Other; BMS: Advisory board, Advisory board Other, Research Funding; Noxxon: Research Funding; Sanofi: Research Funding.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2520-2520
Author(s):  
Hua Wang ◽  
Veerabhadran Baladandayuthapani ◽  
Zhiqiang Wang ◽  
Jiexin Zhang ◽  
Heather Yan Lin ◽  
...  

Abstract Background Proteasome inhibitors such as bortezomib and carfilzomib are an important part of our current chemotherapeutic armamentarium against multiple myeloma, and have improved outcomes in the up-front, relapsed, and relapsed/refractory settings. Their efficacy has been demonstrated both as single agents, and as part of rationally designed combination regimens, but they are at this time used empirically, since biomarkers to identify patients who would most or least benefit from their application have not been clinically validated. Moreover, the vast majority of patients eventually develop drug-resistant disease which precludes further proteasome inhibitor use through mechanisms that have not been fully elucidated. Methods We compared gene expression profiles (GEPs) of a panel of bortezomib-resistant myeloma cell lines and their vehicle-treated, drug-naïve counterparts to identify significant changes associated with drug resistance. The list of genes whose expression was changed by at least 2-fold was compared with independent RNA interference studies whose goal was to identify genes whose suppression conferred drug resistance. Further validation of genes of interest was pursued in a panel of myeloma cell lines, and in clinically annotated GEP databases. Results Suppression of PTPROt expression was noted in bortezomib-resistant RPMI 8226 and ANBL-6 myeloma cells compared to isogenic, drug-naïve controls, and this was confirmed by quantitative PCR. Overexpression of PTRPOt in RPMI 8226, ANBL-6 and other myeloma cell lines was by itself sufficient to increase the level of apoptotic, sub-G0/G1 cells compared to vector controls, or cells expressing a phosphatase-dead PTPROt mutant. Moreover, PTPROt enhanced the ability of bortezomib to reduce myeloma cell viability, in association with increased activation of caspases 8 and 9. Exogenous over-expression of PTPROt was found to reduce the activation status of Akt, a known anti-apoptotic pathway that reduces bortezomib activity, based on Western blotting with antibodies to phospho-Akt (Ser473), and Akt kinase activity assays. Notably, we also found that exogenous over-expression of PTPROt resulted in increased expression levels of p27Kip1. Interestingly, array CGH data from studies of myeloma cell lines and primary cells showed that the PTPROt gene was located in a genomic region with a high propensity for loss. Analysis of the Total Therapy databases of GEP and patient outcomes available on the Multiple Myeloma Genomics Portal showed that higher than median expression of PTPROt was associated with better long-term survival (P=0.0175). Finally, analysis of the Millennium Pharmaceuticals database of studies of bortezomib in the relapsed and relapsed/refractory setting showed high PTRPOt expression was more frequently seen in patients who achieved complete remission (P<0.01), and was associated with a better median overall survival (P=0.0003). Conclusions Taken together, the data support the possibility that high expression of PTPROt is a good prognostic factor for response to bortezomib-containing therapies, and that this may occur through modulation by PTPROt of the Akt pathway. Moreover, they suggest that strategies to enhance the expression of PTPROt should be investigated to restore bortezomib sensitivity in patients with proteasome inhibitor-resistant disease. Disclosures: Orlowski: Bristol-Myers Squibb: Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding; Celgene: Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding; Millennium: The Takeda Oncology Company: Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding; Onyx: Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding; Resverlogix: Research Funding; Array Biopharma: Honoraria, Membership on an entity’s Board of Directors or advisory committees; Genentech: Honoraria, Membership on an entity’s Board of Directors or advisory committees; Merck: Membership on an entity’s Board of Directors or advisory committees.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 646-646 ◽  
Author(s):  
Owen A. O'Connor ◽  
Enrica Marchi ◽  
Kelly Zullo ◽  
Luigi Scotto ◽  
Jennifer E. Amengual ◽  
...  

Abstract Both HDAC inhibitors (HDACIs) and DNA methyltransferase inhibitors (DNMTIs) are known to influence global expression patterns in hematologic malignancies. Little is known about the combination of these two drug classes in lymphoid malignancies. HDACIs have marked single agent activity in the T- cell lymphomas (TCL), although the mechanism of action is not well defined. DNMTIs affect cytosine methylation of genomic DNA and have activity mainly restricted to the myeloid derived hematologic malignancies. The single agent efficacy and synergistic interaction of a panel of HDACIs (panobinostat, belinostat, romidepsin and vorinostat) and DNMTIs (decitabine (DEC), 5-azacytadine (5-AZA)) was evaluated in models of TCL. The molecular basis for the synergistic effect of HDACIs and DNMTIs was evaluated by gene expression profiling (GEP) and CpG methylation CTCL. Single agent concentration and time effect relationships were generated for 2 CTCL (HH, H9) and 2 T-ALL (P12, PF382) cell lines. Romidepsin and belinostat were the most potent HDACIs with the mean 48 hour IC50 of 8.8 nM (range 1.7-2.7 nM) and 85 nM (range 36-136 nM), respectively. Cell viability was not affected by treatment with DEC or 5-AZA at 24 and 48 hours at concentrations as high as 20 μM. Reduction in viability was first demonstrated after 72 hours of exposure to DEC, with the mean IC50 of 14.8 μM (range 0.4 μM- >20uM). Simultaneous exposure of combinations of DEC plus romidepsin or DEC plus belinostat at their IC10, IC20, and IC50 produced marked synergy in all TCL derived cell lines. Simultaneous exposure of DEC plus romidepsin demonstrated the deepest synergy at 72 hours with synergy coefficients in the range of 0.3. Cells treated with the combination of DEC plus romidepsin also demonstrated significant induction of apoptosis as evaluated by annexinV/propridium iodide via FACS analysis and an increase in acetylated histone 3 by immunoblot. The in vivo activity of the combination of DEC plus belinostat was investigated in a xenograft model of CTCL using HH, the most resistant TCL derived cell line. Mice were treated with DEC 1.5 mg/kg (day 29, 33, 35, 37, 39, 41, 43) and/or belinostat 100 mg/kg (day 29-day 47). The combination mouse cohort demonstrated statistically significant tumor growth delay compared to DEC alone (p=0.002) and belinostat alone (p=0.001). The interaction of DEC and romidepsin was analyzed by GEP and methylation array. Interestingly, the baseline malignant phenotype seen in the CTCL cell-lines was reversed. A significant down-regulation of genes involved in biosynthetic pathways including protein and lipid synthesis, and a significant up-regulation of genes responsible for cell cycle arrest were seen. The vast majority (114/138; 92%) of genes modulated by the single agents were similarly modulated by the combination. However, the latter induced a further significant change in the transcriptome, affecting an additional 390 genes. Similarly, methylation array data was analyzed following treatment of these drugs alone and in combination. DEC induced de-methylation of 190 different gene regions corresponding to 175 genes and an additional 335 loci. Interestingly, when combined with romidepsin the number of demethylated gene regions decreased to 85 corresponding to 79 genes, 78 of which were common with DEC and 148 additional loci. The comparison of gene expression and methylation demonstrated a significant inverse relationship (R2 = 0.657) with genes found to be differentially expressed in GEP and methylation analysis. (Figure 1)Figure 1Summary of gene expression and methylation analysis.Figure 1. Summary of gene expression and methylation analysis. These data support the observation that DNMTIs in combination with HDACIs produces significant synergistic activity in models of TCL. Further evaluation of the mechanism of action with DNMTIs in combination with HDACIs is ongoing, and a clinical trial of the combination is now open. Disclosures: O'Connor: Celgene Pharmaceuticals: Consultancy; Spectrum Pharmaceuticals: Membership on an entity’s Board of Directors or advisory committees; Allos Therapeutics: Consultancy, Membership on an entity’s Board of Directors or advisory committees. Off Label Use: Hypomethylating Agents in T-cell lymphoma. Amengual:Acetylon Pharmacueticals, INC: Membership on an entity’s Board of Directors or advisory committees, Research Funding.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1572-1572
Author(s):  
Shiqiao Ye ◽  
Yu Chen ◽  
Bo Hu ◽  
Huayu Huang ◽  
Yuxiao Sun ◽  
...  

Abstract Introduction: Inappropriate activation of Wnt/β-catenin signaling plays a role in some cancers. β-catenin (β-cat) levels in the cell can be regulated by a cadherin-mediated sequestration into membrane-bound and free cytosolic pools, with the later translocating to the nucleus and driving TCF-mediated transcriptional activity following Wnt signal transduction. While sequencing has shown that MM lacks the mutations that typically lead to constitutive β-cat activation seen in other cancers, we and others have demonstrated that Wnt/β-catenin signaling is nonetheless activated in MM and can regulate MM growth. The mechanism driving β-cat stabilization and activation in MM is unclear. E- and N-cadherin (N-cad) expression is elevated in MM compared to plasma cells from healthy donors. We hypothesized that that cadherins can regulate Wnt/β-catenin signaling in MM. Materials and Methods: We detected different forms of β-cat expression in a panel of human MM cell lines (HMCLs) and CD138 PC from MM patients by several approaches. Cadherin gain- or loss-of-function MM models were produced by expressing wild-type N-cad in MMS1 and ARP1 (lack endogenous N-cadherin expression) using a lentiviral system to create stable cell lines (N-Cad/MMS1 and N-cad/ARP1) and empty vector control (EV/MMS1, and EV-ARP1). We knocked down N-cadherin in the JJN3 cell line expressing high level of endogenous N-cadherin using shRNA specific for N-cad (shNcad/JJN3) or scrambled control shRNA (shCont/JJN3) by lentiviral-mediated transfection. We used a TCF reporter system to evaluate β-cat transcriptional activity as previously described. Results: We surveyed 25 HMCLs and CD138-selected plasma cells from 72 newly diagnosed MM for active β-cat with an antibody that specifically recognizes the unphosphorylated active form of β-cat. Higher levels of cytosolic and/or nuclear β-cat protein were seen in 13 of 25 (52%) HMCLs and 36 of 72 (50%) primary MM PC. Correlation of β-cat protein levels with global mRNA expression levels in primary PC revealed significant correlation with only one gene, CDH2 (N-cad). Remarkably, those primary MM with high β-cat levels but low CDH2 levels expressed high levels of E-cadherin/CHD1 mRNA. This posed the question of whether CDH2 is a direct target of TCF/β-cat transcriptional activity or whether high levels of CDH2 lead to increased levels of β-cat protein via sequestration. Both CDH2 mRNA and protein were correlated with β-cat protein but not β-cat mRNA in 23/25 HMCLs. Co-immunoprecipitation revealed that N-cad and β-cat complexes could be identified in HMCLs and primary MM. Consistent with N-cad-mediated stabilization of β-cat both total and unphosphorylated β-cat levels and TCF activity were significantly elevated in N-cad/MMS1 and N-Cad/ARP1 cells relative to controls. In contrast, shRNA mediated knockdown of N-cad led to a loss of both N-cad and β-cat protein levels and TCF-dependent transcription activity relative to controls. These findings provide evidence that β-cat/TCF signaling can be regulated by N-cad in MM. CDH2 mRNA is significantly elevated in the MS and HY subgroups of MM. To search for a potential mechanism of CDH2 transcriptional regulation in MS MM, we compared TCF activity and β-cat protein levels in MS versus non-MS HMCLs. TCF activity and active β-cat were elevated in MS versus non-MS forms of MM and B-cell lymphoma lacking N-cadherin. To determine if MMSET is required to up-regulate N-cad expression, we depleted the full-length MMSET protein in KMS11 cells. The results revealed a dramatic loss of total and unphosphorylated β-cat protein, but not mRNA, and loss of both CDH2 mRNA and protein relative to controls. These data suggest that MMSET can regulate the transcription of the CDH2 gene. MMS1 and ARP1 cells stably expressing N-cad exhibited enhanced adhesion to bone marrow stromal cells and decreased sensitivity to bortezomib (Bzb). In contrast, blocking N-cadherin-mediated adhesion by CDH2 shRNA increased sensitivity to Bzb. These results suggests that N-cad/β-cat complexes can contribute to adhesion-mediated drug resistance in MM. Conclusion: Taken together, these findings establish that β-cat is stabilized by N-cadherin-, and likely E-cadherin-, adhesins junction formation in MM. This in turn leads to an increased pool of β-cat that can drive TCF transcriptional activation as well participate in cadherin-mediated cell adhesion and drug resistance. Disclosures Davies: Amgen: Consultancy, Honoraria; BMS: Consultancy, Honoraria; Abbvie: Consultancy, Honoraria; Takeda: Consultancy, Honoraria; Janssen: Consultancy, Honoraria; Roche: Consultancy, Honoraria. Morgan: BMS: Membership on an entity's Board of Directors or advisory committees; Jansen: Membership on an entity's Board of Directors or advisory committees; Karyopharm: Membership on an entity's Board of Directors or advisory committees; Oncopeptides: Membership on an entity's Board of Directors or advisory committees. Walker: Bristol Myers Squibb: Research Funding; Sanofi: Speakers Bureau.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2733-2733 ◽  
Author(s):  
Jorge E. Cortes ◽  
Akil Merchant ◽  
Catriona Jamieson ◽  
Daniel A Pollyea ◽  
Michael Heuser ◽  
...  

Abstract Background: In a previously reported Phase 2 randomized study of patients with acute myeloid leukemia (AML), addition of the investigational agent glasdegib (PF-04449913) to low-dose cytarabine (LDAC) improved overall survival (OS) when compared with LDAC alone. In a non-randomized study arm, glasdegib together with 7+3 chemotherapy was well tolerated and associated with clinical activity. We used a comprehensive biomarker analysis, evaluating gene expression, circulating cytokine levels, and gene mutations, to identify molecular drivers that predict overall response (OR) and OS. Methods: In this Phase 2 multicenter study (NCT01546038), patients with AML who were suitable for non-intensive therapy were randomized (2:1) to LDAC + glasdegib 100 mg QD or LDAC alone, and patients suitable for intensive therapy were assigned 7+3 plus glasdegib 100 mg QD. Whole blood, serum, and bone marrow aspirate samples were collected at baseline, and used to assess 19 genes for expression analysis, 38 analytes for circulating cytokine levels, and 109 genes for mutation analysis. Gene expression was analyzed using TaqMan Low Density Array Cards (TLDCs), cytokine levels were analyzed using quantitative, multiplexed immunoassays (Myriad RBM), and mutation analysis was performed using the Illumina® MiSeq instrument (San Diego, CA). All correlations were performed either for OS or for OR. For gene expression and cytokine analysis, a cut-off value above or below the median expression level for each treatment arm was used to separate samples into two subgroups (< or ≥ the median value) to explore the relationship of expression levels with OS data. Criteria for significance in the non-intensive cohort required one subgroup to have a p-value of <0.05 in the between-treatment arms comparison and the HR difference between the two subgroups to be ≥2 fold. Responses were defined as patients with a complete remission (CR), CR with incomplete blood count recovery (CRi), morphologic leukemia-free state, partial remission (PR), or PRi. For response correlations, genes or cytokines were considered to be differentially expressed if they had a p-value <0.05 and were differentially expressed by ≥2-fold. Results: Within the non-intensive arm (LDAC + glasdegib, n=68; LDAC alone, n=30), expression levels of several genes correlated with improved OS with glasdegib plus LDAC. Lower levels of expression of FOXM1 and MSI2, and higher expression levels of BCL2 and CCND2 correlated with improved OS with the combination. Additionally, lower levels of the cytokines 6CKINE (CCL21), ICAM-1, MIP-1α, and MMP-3 correlated with improved OS. An analysis of correlations of gene expression and cytokine levels with OR could not be completed due to the low number of responders in the LDAC only group (n=2). In the intensive treatment arm (glasdegib and 7+3, n=59), higher PTCH1 expression correlated with improved OS (p=0.0219, median OS 10.8 versus 39.5 months). In this cohort, lower levels of IL-8 (p=0.0225) and MIP-3β (p=0.0403) correlated with lower OS. Expression levels of no genes or cytokines significantly correlated with OR in this arm. We also examined correlations between gene mutation status and OS in both study arms. In the non-intensive arm (LDAC + glasdegib, n=58; LDAC alone, n=25), no genes mutated in at least 5 patients correlated with OS. In the intensive treatment arm (n=47), mutations in FLT3, TP53, CEP170, NPM1, and ANKRD26 correlated with OS (all p<0.05). Patients in this arm with FLT3 mutations responded better than patients with wild type FLT3 (p=0.0336, median OS of 13.1 months versus unreached for FLT3 mutant). Conclusions: In this biomarker analysis, we found that expression levels of a select number of genes and circulating cytokines implicated in AML correlated with OS in the non-intensive and the intensive arms. The improved response for patients with FLT3 mutations and high PTCH1 expression levels in the intensive arm deserves further investigation. These findings need to be verified in larger controlled studies, which are ongoing. Disclosures Cortes: Novartis: Consultancy, Research Funding; Daiichi Sankyo: Consultancy, Research Funding; Pfizer: Consultancy, Research Funding; Astellas Pharma: Consultancy, Research Funding; Arog: Research Funding. Pollyea:Argenx: Consultancy, Membership on an entity's Board of Directors or advisory committees; Pfizer: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Gilead: Consultancy; Celyad: Consultancy, Membership on an entity's Board of Directors or advisory committees; AbbVie: Consultancy, Research Funding; Curis: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Karyopharm: Membership on an entity's Board of Directors or advisory committees; Agios: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding. Heuser:Astellas: Research Funding; Daiichi Sankyo: Research Funding; Sunesis: Research Funding; Tetralogic: Research Funding; Bayer Pharma AG: Consultancy, Research Funding; StemLine Therapeutics: Consultancy; Janssen: Consultancy; Pfizer: Consultancy, Honoraria, Research Funding; Novartis: Consultancy, Honoraria, Research Funding; BergenBio: Research Funding; Karyopharm: Research Funding. Chan:Pfizer: Employment, Equity Ownership. Wang:Pfizer: Employment, Equity Ownership. Ching:Pfizer Inc: Employment, Equity Ownership. Johnson:Pfizer Inc: Employment, Equity Ownership. O'Brien:Pfizer Inc: Employment, Equity Ownership.


Sign in / Sign up

Export Citation Format

Share Document