scholarly journals Systematic Construction of an Autophagic Risk Model in Bone Marrow for Prognostic Prediction in Multiple Myeloma

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4713-4713
Author(s):  
Lingling Shu ◽  
Han-Ying Huang ◽  
Yang Liu ◽  
Yang Li ◽  
Weida Wang ◽  
...  

Abstract Autophagy is an intracellular self-degradative process that balances cell energy source and regulates tissue homeostasis, which plays critical role in the pathogenesis of multiple myeloma (MM). However, the prognostic role of autophagy-related genes (ARGs) in MM remains undefined. In the present study, the ARGs were obtained from Gene Expression Omnibus datasets (accession GSE24080, GSE136337, GSE57317), which contains 1038 samples of patients with MM. Univariate Cox regression analysis identified 38 ARGs that were significantly associated with overall survival of MM. Furthermore, a risk score model with 11 prognosis-associated ARGs was developed using multivariate Cox regression analysis, including ARNT, ATG4D, BIRC5, BNIP3L, CDKN1A, EIF2S1, IRGM, ITGA3, NCKAP1, NRG1 and TM9SF1. The 3-year area under the curve (AUC) values for the receiver operating characteristic curves were 0.717(0.662, 0.758), 0.646(0.587, 0.703) and 0.906(0.694, 1.000) for GSE24080, GSE136337, GSE57317 prognosis predictions, respectively (Figure A-C). Using this prognostic signature, patients with MM could be separated into high- and low-risk groups with distinct clinical outcomes (Figure D-F). Moreover, autophagy risk score was an independent prognostic factor by multivariate analysis. KEGG revealed that most pathways were related to autophagy and metabolism. Furthermore, we validated the expression of 11 genes and ARNT in bone marrow of MM patients (Figure G-I) and showed the critical role of ARNT-mediated autophagy in the proliferation and drug resistance of bortezomib in myeloma cells (Figure J-M). In conclusion, we constructed ARGs-based prognostic model to predict the prognosis of MM, targeting specific autophagic gene such as ARNT might provide therapeutic clues for MM treatment. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.

2021 ◽  
Vol 1 (3) ◽  
pp. 77-87
Author(s):  
Gong Xiao ◽  
Qiongjing Yuan ◽  
Wei Wang

Background: Multiple myeloma (MM) is one of the most common cancers of the blood system. N6-methyladenosine (m6A) plays an important role in cancer progression. We aimed to investigate the prognostic relevance of the m6A score in multiple myeloma through a series of bioinformatics analyses. Methods: The microarray dataset GSE4581 and GSE57317 used in this study were downloaded from the Gene Expression Omnibus (GEO) database. The m6A score was calculated using the GSVA package. The Random forests, univariate Cox regression analysis and Lasso analyses were performed for the differentially expressed genes (DEGs). Kaplan–Meier analysis and an ROC curve were used to diagnose the effectiveness of the model. Results: The GSVA R software package was used to predict the function. A total of 21 m6A genes were obtained, and 286 DEGs were identified between high and low m6A score groups. The risk model was constructed and composed of PRX, LBR, RB1, FBXL19-AS1, ARSK, MFAP3L, SLC44A3, UNC119 and SHCBP1. Functional analysis of risk score showed that with the increase in the risk score, Activated CD4 T cells, Memory B cells and Type 2 T helper cells were highly infiltrated. Conclusions: Immune checkpoints such as HMGB1, TGFB1, CXCL9 and HAVCR2 were significantly positively correlated with the risk score. We believe that the m6A score has a certain prognostic value in multiple myeloma.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12554
Author(s):  
Liming Zheng ◽  
Xi Gu ◽  
Guojun Zheng ◽  
Xin Li ◽  
Meifang He ◽  
...  

Background Early recurrence of hepatocellular carcinoma (HCC) is a major obstacle to improving the prognosis, and no widely accepted adjuvant therapy guideline for patients post-liver resection is available. Currently, all available methods and biomarkers are insufficient to accurately predict post-operation HCC patients’ risk of early recurrence and their response to adjuvant therapy. Methods In this study, we downloaded four gene expression datasets (GSE14520, GSE54236, GSE87630, and GSE109211) from the Gene Expression Omnibus database and identified 34 common differentially expressed genes associated with HCC dysregulation and response to adjuvant sorafenib. Then, we constructed a novel 11-messenger RNA predictive model by using ROC curves analysis, univariate Cox regression analysis, and LASSO Cox regression analysis. Furthermore, we validated the predictive values of the risk model in GSE14520 and TCGA-LIHC cohorts by using Kaplan–Meier survival analysis, multivariable Cox regression analysis, and decision curve analysis, respectively. Results The risk score model could identify patients with a high risk of HCC recurrence at the early stage and could predict the response of patients to adjuvant sorafenib. Patients with a high risk score had a worse recurrence rate in training cohorts (2-year: p < 0.0001, hazard ratio (HR): 4.658, confidence interval 95% CI [2.895–7.495]; 5-year: p < 0.0001, HR: 3.251, 95% CI [2.155–4.904]) and external validation cohorts (2-year: p < 0.001, HR: 3.65, 95% CI [2.001–6.658]; 5-year: p < 0.001, HR: 3.156, 95% CI [1.78–5.596]). The AUC values of the risk score model for predicting tumor early recurrence were 0.746 and 0.618, and that of the risk score model for predicting the response to adjuvant sorafenib were 0.722 and 0.708 in the different cohort, respectively. Multivariable Cox regression analysis and decision curve analysis also showed that the risk score model was superior to and independent of other clinicopathologic characteristics. Moreover, the risk score model had excellent abilities to predict the overall survival and HCC recurrence of patients with the same tumor stage category. Conclusions Our risk model is a reliable and superior predictive tool. With this model, we could optimize the risk stratification based on early tumor recurrence and could evaluate the response of patients to adjuvant sorafenib after liver resection.


2021 ◽  
Vol 11 ◽  
Author(s):  
Rui Liu ◽  
Ying Shen ◽  
Jinsong Hu ◽  
Xiaman Wang ◽  
Dong Wu ◽  
...  

BackgroundN6-methyladenosine is the most abundant RNA modification, which plays a prominent role in various biology processes, including tumorigenesis and immune regulation. Multiple myeloma (MM) is the second most frequent hematological malignancy.Materials and MethodsTwenty-two m6A RNA methylation regulators were analyzed between MM patients and normal samples. Kaplan–Meier survival analysis and least absolute shrinkage and selection operator (LASSO) Cox regression analysis were employed to construct the risk signature model. Receiver operation characteristic (ROC) curves were used to verify the prognostic and diagnostic efficiency. Immune infiltration level was evaluated by ESTIMATE algorithm and immune-related single-sample gene set enrichment analysis (ssGSEA).ResultsHigh expression of HNRNPC, HNRNPA2B1, and YTHDF2 and low expression of ZC3H13 were associated with poor survival. Based on these four genes, a prognostic risk signature model was established. Multivariate Cox regression analysis demonstrated that the risk score was an independent prognostic factor of MM. Enrichment analysis showed that cell cycle, immune response, MYC, proteasome, and unfold protein reaction were enriched in high-risk MM patients. Furthermore, patients with higher risk score exhibited lower immune scores and lower immune infiltration level.ConclusionThe m6A-based prognostic risk score accurately and robustly predicts the survival of MM patients and is associated with the immune infiltration level, which complements current prediction models and enhances our cognition of immune infiltration.


2021 ◽  
Author(s):  
Yanan Shan ◽  
Ran He ◽  
Xiaowei Yang ◽  
Siwen Zang ◽  
Shan Yao ◽  
...  

Abstract Thyroid cancer (TC) is the most common malignancy of the endocrine system and its incidence is gradually rising. Research has demonstrated a close link between autophagy and thyroid cancer. We constructed a prognostic model of autophagy-related long noncoding RNA (lncRNA) in thyroid cancer and explored its prognostic value. A total of 14,142 lncRNAs and 212 autophagy-related genes (ATGs) were obtained from the Cancer Genome Atlas (TCGA) database and the Human Autophagy Database (HADb), respectively. We performed lncRNA-ATGs correlation analysis and finally obtained 1166 autophagy-associated lncRNAs. Subsequently we conducted univariate Cox regression analysis and multivariate Cox regression analysis, a nine-autophagy-related lncRNAs (AC092279.1, AC096677.1, DOCK9-DT, LINC02454, AL136366.1, AC008063.1, AC004918.3, LINC02471, AL162231.2) significantly associated with prognosis was identified. Based on these autophagy-related lncRNAs, a risk model was constructed. The area under the curve (AUC) of the risk score was 0.905, proving that the accuracy of risk signature was superior. In addition, multiple regression analysis showed that risk score was a significant independent prognostic risk factor for thyroid cancer. In this study, a nine autophagy-related lncRNAs in thyroid cancer were established to predict the prognosis of thyroid cancer patients.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Didi Zuo ◽  
Chao Li ◽  
Tao Liu ◽  
Meng Yue ◽  
Jiantao Zhang ◽  
...  

AbstractMetabolic genes have played a significant role in tumor development and prognosis. In this study, we constructed a metabolic risk model to predict the prognosis of colon cancer based on The Cancer Genome Atlas (TCGA) and validated the model by Gene Expression Omnibus (GEO). We extracted 753 metabolic genes and identified 139 differentially expressed genes (DEGs) from TCGA database. Then we conducted univariate cox regression analysis and Least Absolute Shrinkage and Selection Operator Cox regression analysis to identify prognosis-related genes and construct the metabolic risk model. An eleven-gene prognostic model was constructed after 1000 resamples. The gene signature has been proved to have an excellent ability to predict prognosis by Kaplan–Meier analysis, time-dependent receiver operating characteristic, risk score, univariate and multivariate cox regression analysis based on TCGA. Then we validated the model by Kaplan–Meier analysis and risk score based on GEO database. Finally, we performed a weighted gene co-expression network analysis and protein–protein interaction network on DEGs, and Kyoto Encyclopedia of Genes and Genomes pathways and Gene Ontology enrichment analyses were conducted. The results of functional analyses showed that most significantly enriched pathways focused on metabolism, especially glucose and lipid metabolism pathways.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chunlei Wu ◽  
Quanteng Hu ◽  
Dehua Ma

AbstractLung adenocarcinoma (LUAD) is the main pathological subtype of Non-small cell lung cancer. We downloaded the gene expression profile and immune-related gene set from the TCGA and ImmPort database, respectively, to establish immune-related gene pairs (IRGPs). Then, IRGPs were subjected to univariate Cox regression analysis, LASSO regression analysis, and multivariable Cox regression analysis to screen and develop an IRGPs signature. The receiver operating characteristic curve (ROC) was applied for evaluating the predicting accuracy of this signature by calculating the area under ROC (AUC) and data from the GEO set was used to validate this signature. The relationship of 22 tumor-infiltrating immune cells (TIICs) to the immune risk score was also investigated. An IRGPs signature with 8 IRGPs was constructed. The AUC for 1- and 3-year overall survival in the TCGA set was 0.867 and 0.870, respectively. Similar results were observed in the AUCs of GEO set 1, 2 and 3 (GEO set 1 [1-year: 0.819; 3-year: 0.803]; GEO set 2 [1-year: 0.834; 3-year: 0.870]; GEO set 3 [1-year: 0.955; 3-year: 0.827]). Survival analysis demonstrated high-risk LUAD patients exhibited poorer prognosis. The multivariable Cox regression indicated that the risk score was an independent prognostic factor. The immune risk score was highly associated with several TIICs (Plasma cells, memory B cells, resting memory CD4 T cells, and activated NK cells). We developed a novel IRGPs signature for predicting 1- and 3- year overall survival in LUAD, which would be helpful for prognosis assessment of LUAD.


Author(s):  
Yongmei Wang ◽  
Guimin Zhang ◽  
Ruixian Wang

Background: This study aims to explore the prognostic values of CT83 and CT83-related genes in lung adenocarcinoma (LUAD). Methods: We downloaded the mRNA profiles of 513 LUAD patients (RNA sequencing data) and 246 NSCLC patients (Affymetrix Human Genome U133 Plus 2.0 Array) from TCGA and GEO databases. According to the median expression of CT83, the TCGA samples were divided into high and low expression groups, and differential expression analysis between them was performed. Functional enrichment analysis of differential expression genes (DEGs) was conducted. Univariate Cox regression analysis and LASSO Cox regression analysis were performed to screen the optimal prognostic DEGs. Then we established the prognostic model. A Nomogram model was constructed to predict the overall survival (OS) probability of LUAD patients. Results: CT83 expression was significantly correlated to the prognosis of LUAD patients. A total of 59 DEGs were identified, and a predictive model was constructed based on six optimal CT83-related DEGs, including CPS1, RHOV, TNNT1, FAM83A, IGF2BP1, and GRIN2A, could effectively predict the prognosis of LUAD patients. The nomogram could reliably predict the OS of LUAD patients. Moreover, the six important immune checkpoints (CTLA4, PD1, IDO1, TDO2, LAG3, and TIGIT) were closely correlated with the Risk Score, which was also differentially expressed between the LUAD samples with high and low-Risk Scores, suggesting that the poor prognosis of LUAD patients with high-Risk Score might be due to the immunosuppressive microenvironments. Conclusion: A prognostic model based on six optimal CT83 related genes could effectively predict the prognosis of LUAD patients.


2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Xu Wang ◽  
Yuanmin Xu ◽  
Ting Li ◽  
Bo Chen ◽  
Wenqi Yang

Abstract Background Autophagy is an orderly catabolic process for degrading and removing unnecessary or dysfunctional cellular components such as proteins and organelles. Although autophagy is known to play an important role in various types of cancer, the effects of autophagy-related genes (ARGs) on colon cancer have not been well studied. Methods Expression profiles from ARGs in 457 colon cancer patients were retrieved from the TCGA database (https://portal.gdc.cancer.gov). Differentially expressed ARGs and ARGs related to overall patient survival were identified. Cox proportional-hazard models were used to investigate the association between ARG expression profiles and patient prognosis. Results Twenty ARGs were significantly associated with the overall survival of colon cancer patients. Five of these ARGs had a mutation rate ≥ 3%. Patients were divided into high-risk and low-risk groups based on Cox regression analysis of 8 ARGs. Low-risk patients had a significantly longer survival time than high-risk patients (p < 0.001). Univariate and multivariate Cox regression analysis showed that the resulting risk score, which was associated with infiltration depth and metastasis, could be an independent predictor of patient survival. A nomogram was established to predict 1-, 3-, and 5-year survival of colon cancer patients based on 5 independent prognosis factors, including the risk score. The prognostic nomogram with online webserver was more effective and convenient to provide information for researchers and clinicians. Conclusion The 8 ARGs can be used to predict the prognosis of patients and provide information for their individualized treatment.


2021 ◽  
Author(s):  
Shaopei Ye ◽  
Wenbin Tang ◽  
Ke Huang

Abstract Background: Autophagy is a biological process to eliminate dysfunctional organelles, aggregates or even long-lived proteins. . Nevertheless, the potential function and prognostic values of autophagy in Wilms Tumor (WT) are complex and remain to be clarifed. Therefore, we proposed to systematically examine the roles of autophagy-associated genes (ARGs) in WT.Methods: Here, we obtained differentially expressed autophagy-related genes (ARGs) between healthy and Wilms tumor from Therapeutically Applicable Research To Generate Effective Treatments(TARGET) and The Cancer Genome Atlas (TCGA) database. The functionalities of the differentially expressed ARGs were analyzed using Gene Ontology. Then univariate COX regression analysis and multivariate COX regression analysis were performed to acquire nine autophagy genes related to WT patients’ survival. According to the risk score, the patients were divided into high-risk and low-risk groups. The Kaplan-Meier curve demonstrated that patients with a high-risk score tend to have a poor prognosis.Results: Eighteen DEARGs were identifed, and nine ARGs were fnally utilized to establish the FAGs based signature in the TCGA cohort. we found that patients in the high-risk group were associated with mutations in TP53. We further conducted CIBERSORT analysis, and found that the infiltration of Macrophage M1 was increased in the high-risk group. Finally, the expression levels of crucial ARGs were verifed by the experiment, which were consistent with our bioinformatics analysis.Conclusions: we emphasized the clinical significance of autophagy in WT, established a prediction system based on autophagy, and identified a promising therapeutic target of autophagy for WT.


2020 ◽  
Author(s):  
Hong GuoHu ◽  
Guan Qing ◽  
Luo XinHua

AbstractCutaneous melanoma is quite often encountered in dermato-oncology. This paper describes a new genetic method to predict the prognostic outcome of melanoma. Data were collected from the TCGA databases. According to tumor progression status, the data were divided into two groups to evaluate the significant biological processes and key genes influencing the outcome of melanoma using a bioinformatics method. By adopting a statistical regression analysis method, a novel score based on the contributing genes was developed. Cox regression analysis was used to validate the effectiveness of the genetic risk score in predicting the outcome. Seven biological processes associated with melanocytes were identified. A protein-protein interactions network showed that 27 functional genes were associated with the outcome of melanoma. Among these, three genes (COL17A1, ITGA6, and SPRR2F) were used to calculate the genetic risk score, which was regarded as an independent and effective risk factor for disease progression or overall survival in melanoma.


Sign in / Sign up

Export Citation Format

Share Document