scholarly journals Characterization of Philadelphia-Negative Myeloproliferative Neoplasms By the Bone Marrow Immune Microenvironment

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4593-4593
Author(s):  
Sung-Eun Lee ◽  
Seowon Choi ◽  
Gi June Min ◽  
Sung-Soo Park ◽  
Silvia Park ◽  
...  

Abstract Backgound The Philadelphia-negative myeloproliferative neoplasms (MPNs) share similar molecular characteristics, in which the excessive myeloproliferations are driven by mutations in JAK2, CALR, MPL, and uncommon variants. More recently, the biological basis on acquisition of somatic mutations have been accumulated. However, symptoms, histomorphologic characteristics, and natural histories are different between MPN subsets. Although there are increasing evidences that inflammation have a key role in promoting MPN initiation and influencing disease evolution, characteristics of the bone marrow immune microenvironment between MPN subsets remains unclear exactly. Aims To characterize the bone marrow immune microenvironment of Philadelphia-negative MPNs, we carried out immune-related gene expression profiling of bone marrow aspirates (BMAs) from 33 MPN patients (6 PV, 6 ET, 6 early PMF, and 15 overt MF including 10 primary MF, 5 post-PV/ET MF) using nCounter Immunology Panel. Methods BMA samples collected at diagnosis using EDTA-coated tubes. Those samples were processed within 24 hours from collection to obtain mononuclear cells by density centrifugation using Ficoll-Paque. NanoString analysis using a 594-gene nCounter Immunology panel (Human v2 - nanoString) was performed on RNAs extracted from 33 MPN bone marrow aspirates. Results First, to investigate whether there are distinct gene expression signatures of immune cells between three subcategories of MPNs, we compared gene expression profiles (GEPs) between ET, PV, and overt PMF. Using a P-value cutoff of ≤0.05 and fold-change ≥ 2, 10 upregulated and 32 downregulated differentially expressed genes (DEGs) were identified in ET than PMF, and 9 upregulated and 11 downregulated DEGs were identified in PV than PMF, while we found no significant DEGs between ET versus PV, except seven genes. Second, we investigated differences in GEPs between early PMF and overt PMF. Thirty-two downregulated and 4 upregulated DEGs were identified in early PMF than overt PMF. Gene set analysis revealed that the expression of genes related to almost processes decreased in early PMF than overt PMF. Then, we questioned differences between PMF and post-PV/ET MF. Using a P-value cutoff of ≤0.05 and fold-change ≥ 2, 12 upregulated and 12 downregulated DEGs were identified. Next, we computed relative abundances of immune cell subpopulations, estimated based on expression counts from the entire panel of surveyed genes, and compared them between the subcategories of MPNs. The abundance measurement of exhausted CD8 + T cell genes were significantly lower in ET and PV, compared with overt PMF, suggesting T cell exhaustion was distinct in overt PMF, compared to ET and PV. Conclusions The results demonstrated that immune microenvironment signature was distinguishable in the subcategories of MPNs. In addition, inflammatory signature was enriched in the bone marrow of overt PMF and exhausted CD8 + T cell genes were distinct in overt PMT. Further investigation is warranted to determine the immunological factors critical for potential therapeutic targets to alleviate progress to myelofibrosis. Disclosures Kim: AbbVie: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; AIMS Biosciense: Consultancy, Honoraria; Amgen: Consultancy, Honoraria; AML-Hub: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Astellas: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; BL & H: Research Funding; BMS & Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Boryung Pharm Co.: Consultancy; Daiichi Sankyo: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Janssen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Handok: Consultancy, Honoraria; LG Chem: Consultancy, Honoraria; Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Pfizer: Consultancy, Honoraria; Pintherapeutics: Consultancy, Membership on an entity's Board of Directors or advisory committees; Sanofi Genzyme: Honoraria, Speakers Bureau; SL VaxiGen: Consultancy, Honoraria; VigenCell: Consultancy, Honoraria. Lee: Alexion, AstraZeneca Rare Disease: Honoraria, Membership on an entity's Board of Directors or advisory committees.

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3409-3409 ◽  
Author(s):  
Maurizio Zangari ◽  
Caleb K Stein ◽  
Shmuel Yaccoby ◽  
Donghoon Yoon ◽  
Christoph Heuck ◽  
...  

Abstract Higher Expressions of PTH Receptor Type 1 and/or 2 in Bone Marrow is Associated to Longer Survival in Newly Diagnosed Myeloma Patients Enrolled in Total Therapy 3 INTRODUCTION: The Total Therapy 3 enrolled 303 newly diagnosed multiple myeloma patients at Myeloma Institute for Research and Therapy. Protocol included 2 cycles of VTD-PACE (bortezomib, thalidomide, and dexamethasone and 4-day continuous infusions of cisplatin, doxorubicin, cyclophosphamide, and etoposide) as induction and consolidation therapy after melphalan-based tandem transplantation, which is followed by 3 years of intended maintenance with VTD in year 1 and thalidomide/dexamethasone in years 2 and 3. As part of the protocol, gene expression profiling was performed from baseline bone marrow biopsy samples in 178 individuals. We have previously reported the clinical correlation between response to bortezomib and serum parathyroid hormone variations in myeloma patients as well as the interaction between receptor 1 and proteasome inhibitors function in cell line and myeloma mouse model. In this study we examine the PTH receptor 1 and 2 expression levels and their correlation to survival in total therapy 3 enrolled patients. METHOD: Gene expression profiling was performed using Affymetrix U133 plus 2.0 Microarrays (Santa Clara, CA) in baseline bone marrow biopsy samples from 178 patients enrolled on total therapy 3. Of these 178 patients, 108 were male. The overall median age of these patients was 59 years old at enrollment; 10 % of patients were considered to have high risk disease by 70 GEP model. Cox proportional hazards analysis was performed on the MAS5 normalized log 2 expression values of PTH1R and PTH2R using overall survival as the end point. Optimal dichotomous break points were found for PTH1R and PTH2R that corresponded to the maximum log rank test statistic from all cox proportional hazard models examined. To confirm PTH receptor expression in bone marrow, we performed real-time PCR using Taqman probes (PTH1R: Assay ID Hs00174895_m1 and PTH2R: Assay ID Hs00175044_m1) on subset of samples. RESULTS: Based on cox proportional hazards regression of PTH1R and PTH2R expression values, patients with higher PTH1R and PTH2R expression demonstrated better survival compared to lower expressing patients. PTH1R expression above optimal break point of 8.92 had a hazard ratio of 0.583 with a 95% confidence interval of (0.351, 0.969) and logrank test p-value of 0.035. PTH2R expression above optimal break point of 6.85 had a hazard ratio of 0.541 with a 95% confidence interval of (0.323, 0.905) and logrank test p-value of 0.018. Furthermore, the patients that were lower expressed in both PTH1R and PTH2R performed significantly poorer in outcome (n= 24 and median survival of 4.52 years logrank p-value+5.71e-05). Real-time PCR using Taqman probes was able to demonstrate relatively high levels of PTH1R and PTHR2 transcripts at bone marrow level. Figure 1 Figure 1. CONCLUSIONS: This is the first report indicating that PTH receptors type 1 and 2 gene expression levels are positively associated to overall survival in symptomatic multiple myeloma patients. Also we describe the presence of PTH2R at bone marrow level which function appear associated to myeloma control. These data confirm the correlation and close interaction between the survival of multiple myeloma patients and the parathyroid hormone axis. Disclosures Zangari: Norvartis: Membership on an entity's Board of Directors or advisory committees; Onyx: Research Funding; Millennium: Research Funding. Heuck:Celgene: Honoraria; Foundation Medicine: Honoraria; Millennium: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees. van Rhee:Janssen: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Millenium: Membership on an entity's Board of Directors or advisory committees; Sanofi: Membership on an entity's Board of Directors or advisory committees. Morgan:Celgene Corp: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees; Myeloma UK: Membership on an entity's Board of Directors or advisory committees; International Myeloma Foundation: Membership on an entity's Board of Directors or advisory committees; The Binding Site: Membership on an entity's Board of Directors or advisory committees; MMRF: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4496-4496 ◽  
Author(s):  
Luke Eastburg ◽  
David A. Russler-Germain ◽  
Ramzi Abboud ◽  
Peter Westervelt ◽  
John F. DiPersio ◽  
...  

The use of post-transplant cyclophosphamide (PTCy) in the context of haploidentical stem cell transplant (haplo-SCT) has led to drastically reduced rates of Graft-vs-Host (GvH) disease through selective depletion of highly allo-reactive donor T-cells. Early trials utilized a reduced-intensity Flu/Cy/TBI preparative regimen and bone marrow grafts; however, relapse rates remained relatively high (Luznik et al. BBMT. 2008). This led to the increased use of myeloablative (MA) regimens for haplo-SCT, which have been associated with decreased relapse rates (Bashey et al. J Clin Oncol. 2013). Most studies have used a MA total body irradiation (TBI) based regimen for haplo-SCT. Preparative regimens using fludarabine and melphalan (FluMel), with or without thiotepa, ATG, and/or low dose TBI have also been reported using bone marrow grafts. Reports on the safety and toxicity of FluMel in the haplo-SCT setting with PTCy and peripheral blood stem cell (PBSC) grafts are lacking. In this two-center retrospective analysis, the safety/toxicity of FluMel as conditioning for haplo-SCT was evaluated. We report increased early mortality and toxicity using standard FluMel conditioning and PBSC grafts for patients undergoing haplo-SCT with PTCy. 38 patients at the University of Rochester Medical Center and the Washington University School of Medicine underwent haplo-SCT with FluMel conditioning and PBSC grafts between 2015-2019. Outcomes were measured by retrospective chart review through July 2019. 34 patients (89.5%) received FluMel(140 mg/m2). Two patients received FluMel(100 mg/m2) and two patients received FluMel(140 mg/m2) + ATG. The median age at time of haplo-SCT was 60 years (range 21-73). 20 patients were transplanted for AML, eight for MDS, two for PMF, two for NHL, and five for other malignancies. The median Hematopoietic Cell Transplantation-specific Comorbidity Index (HCT-CI) score was 4 (≥3 indicates high risk). 11 patients had a history of prior stem cell transplant, and 16 patients had active disease prior to their haplo-SCT. Seven patients had sex mismatch with their stem cell donor. Median donor age was 42 (range 21-71). 20 patient deaths occurred by July 2019 with a median follow up of 244 days for surviving patients. Nine patients died before day +100 (D100, "early mortality"), with a D100 non-relapse mortality (NRM) rate of 24%. Median overall and relapse free survival (OS and RFS, respectively) were 197 days (95% CI 142-not reached) and 180 days (95% CI 141-not reached), respectively, for the entire cohort. The 1 year OS and NRM were 29% and 50%. The incidence of grades 2-4cytokine release syndrome (CRS) was 66%, and 52% of these patients were treated with tocilizumab. CRS was strongly associated with early mortality, with D100 NRM of 36% in patients with grade 2-4 CRS compared to 0% in those with grade 0-1. The incidence of acute kidney injury (AKI) was 64% in patients with grade 2-4 CRS, and 8% in those without (p < 0.001). 28% of patients with AKI required dialysis. Grade 2-4 CRS was seen in 54% of patients in remission prior to haplo-SCT and in 92% of those with active disease (p = 0.02). Of the 9 patients with early mortality, 89% had AKI, 44% needed dialysis, and 100% had grade 2-4 CRS, compared to 31%, 10%, and 55% in those without early mortality (p = 0.002, p = 0.02, p = 0.01). Early mortality was not significantly associated with age, HCT-CI score, second transplant, disease status at transplant, total dose of melphalan, volume overload/diuretic use, or post-transplant infection. In conclusion, we observed a very high rate of NRM with FluMel conditioning and PBSC grafts for haplo-SCT with PTCy. The pattern of toxicity was strongly associated with grade 2-4 CRS, AKI, and need for dialysis. These complications may be mediated by excessive inflammation in the context of allo-reactive donor T-cell over-activation. Consistent with this, multiple groups have shown that FluMel conditioning in haplo-SCT is safe when using bone marrow or T-cell depleted grafts. Based on our institutional experiences, we would discourage the use of FluMel as conditioning for haplo-SCT with PTCy with T-cell replete PBSC grafts. Alternative regimens or variations on melphalan-based regimens, such as fractionated melphalan dosing or inclusion of TBI may improve outcomes but further study and randomized controlled trials are needed. This study is limited in its retrospective design and sample size. Figure Disclosures DiPersio: WUGEN: Equity Ownership, Patents & Royalties, Research Funding; Karyopharm Therapeutics: Consultancy; Magenta Therapeutics: Equity Ownership; Celgene: Consultancy; Cellworks Group, Inc.: Membership on an entity's Board of Directors or advisory committees; NeoImmune Tech: Research Funding; Amphivena Therapeutics: Consultancy, Research Funding; Bioline Rx: Research Funding, Speakers Bureau; Macrogenics: Research Funding, Speakers Bureau; Incyte: Consultancy, Research Funding; RiverVest Venture Partners Arch Oncology: Consultancy, Membership on an entity's Board of Directors or advisory committees. Liesveld:Onconova: Other: Data safety monitoring board; Abbvie: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3620-3620
Author(s):  
Yang Liu ◽  
Min Ni ◽  
Aldo M. Roccaro ◽  
Xavier Leleu ◽  
Yong Zhang ◽  
...  

Abstract Abstract 3620 Introduction: Waldenstrom macroglobulinemia (WM) is a rare indolent non-Hodgkin lymphoma, characterized by bone marrow infiltration of clonal lymphoplasmacytic cells. Despite recent advances in understanding the pathogenesis of this disease, the molecular basis of WM etiology has not been clearly defined. We therefore performed genome-wide analysis of RNA polymerase II (pol II) binding sites and gene expression profiling in primary WM cells in order to comprehensively define the aberrant transcriptional regulation and related genes in WM. Methods: Primary CD19+ bone marrow derived WM cells and normal primary bone marrow were used. Genomic DNA was extracted using genome isolation kit (QIAGEN) after cross linking. All the DNA samples were sent for Chip assay and human promoter 1.0R array (Genepathway Inc.) which comprised of over 4.6 million probes tiled through over 25.500 human promoter regions. Each promoter region covers approximately 7.6kb upstream through 2.45kb downstream of the transcription start sites. For over 1,300 cancer associated genes, coverage of promoter regions was expanded to additional genomic content; for selected genes total coverage spans from 10kb upstream through 2.45kb downstream of transcription start sites. The published gene expression datasets (GDS2643) which included 10 CD19+ B cell from bone marrow of 10 WM patients and 8 normal controls was analyzed by d-chip software and normalized to normal control. The motif analysis was performed using Cistrome online tools from the Dana Farber Cancer Institute. The gene sets enrichment analysis (GSEA) was performed using GSEA online software from Broad institute. Results: A total of 13,546 high-confidence pol II sites were identified in WM samples and share a small percentage of overlap (11.5%) with the binding sites identified in normal controls. Combining the expression microarray data of WM patient samples and normal controls, we demonstrated a significant correlation between high levels of gene expression and enriched promoter binding of pol II. Notably, we also observed that the WM-unique pol II binding sites are localized in the promoters of 5,556 genes which are involved in important signaling pathways, such as Jak/STAT and MAPK pathways by applying gene set enrichment analysis (GSEA). Interestingly, we found that STAT, FOXO and IRF family binding sites motifs were enriched in the pol II-bound promoter region of IL-6 which plays a crucial role in cell proliferation and survival of WM cells. Moreover, the CpG island associated c-fos promoter was enriched for Pol II binding as compared to the normal control. Conclusion: The presence of increased Pol II binding and the identification of transcription factor motifs in the promoters of key oncogenes may lead to a better understanding of WM. Our findings suggest that altered transcriptional regulation may play an important role in the pathogenesis of WM. In addition, this study will provide novel insights into the molecular mechanism of WM etiology, and may lead to discovery of novel diagnostic molecular biomarkers and therapeutic targets for WM. Disclosures: Leleu: Celgene: Consultancy, Research Funding; Janssen Cilag: Consultancy, Research Funding; Leo Pharma: Consultancy; Amgen: Consultancy; Chugai: Research Funding; Roche: Consultancy, Research Funding; Novartis: Consultancy, Research Funding. Ghobrial:Celgene: Membership on an entity's Board of Directors or advisory committees; Millennium: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2424-2424
Author(s):  
Yang Liu ◽  
Yong Zhang ◽  
Phong Quang ◽  
Hai T Ngo ◽  
Feda Azab ◽  
...  

Abstract Abstract 2424 Introduction Tumor necrosis factor receptor super families (TNFRSFs) play an important role in activation of lymphocyte and cell apoptosis. However the function of TNFRSFs in multiple myeloma (MM) remains unknown. Loss of function mutation of Fas antigen (TNFRSF6) was identified in MM cells, thus suggesting the possible role of TNFRSFs in regulating MM pathogenesis. We therefore investigated the epigenetic mechanisms that may mediate inactivation of TNFRSFs and its functional role in MM. Methods Dchip software was utilized for analyzing gene expression dataset. DNA was extracted from both primary CD138+ MM plasma cells and MM cell lines using blood & tissue DNA isolation kit (Qiagen, Inc.). Expression of GITR in primary CD138+ plasma cells was detected by Imunohistochemistry (IHC) DNA methylation was analyzed by methylated DNA immunoprecipitation (Medip) assay and bisulfate sequencing. 5'azacytidine was used to demethylate genomic DNA. Gene expression was detected by qRT-PCR and confirmed at the protein level by flow cytometry and western-blot. Over-expression of GITR was obtained in MM1.S cells by using GITR recombinant plasmid and electroporation. Apoptosis was determined using Annexin/PI staining and flow cytometry analysis. Activation of apoptotic signaling was studied by western blot. Cell survival and proliferation were analyzed by MTT and BrdU assay, respectively. Recombinant GITR-lentivirus was obtained from the supernatant of culture medium after 72 hours transfection in 293 cells. GFP positive MM cells were sorted and analyzed by flow cytometry. In vivo effect of GITR on MM tumor growth was determined by injection of GITR over-expressing MM cells in null mice. Mice skull, femur and vertebrae were isolated after 4 weeks injection. Anti-human CD138+ mAb microbead was used to detect MM cells extracted from mice tissue by flow cytometry. Results Gene-expression profiling showed down-regulation of TNFRSFs, including TNFRSF11A, TNFRSF11B, TNFRSF8, TNFRSF10C, TNFRSF9, TNFRSF21, TNFRSF1B, TNFRSF1A and TNFRSF18, compared to normal plasma cells. Moreover, Our IHC results also showed that GITR expression was positive in primary CD138+ plasma cells from 9 normal bone marrow, but negative in 9 MM samples. Importantly, we found that low GITR expression significantly correlated with MM progression. Indeed, GITR gene levels were lower in smoldering and active MM patients compared to MGUS patients and normal donors. Promoter CpG island (CGI) methylation of GITR was indentified in 5 out of 7 MM primary bone marrow (BM)-derived CD138+ cells but not in normal BM-derived plasma cells. Bisulfate sequencing and Medip assay showed that methylation of GITR was significantly associated with GITR expression in 5 MM cell lines, including MM1.S, OPM1, U266, RPMI and INA6. Promoter CGI of GITR was highly methylated leading to complete silencing of GITR in MM1.S cell line. GITR expression was significantly up-regulated in MM cells upon treatment with the 5'azacytidine. MTT and BrdU assay revealed that the proliferation and survival of MM1.S cells was disrupted in the GITR over-expressing MM1.S cells, notably with inhibition of cell proliferation compared to control vector infected cells. Moreover induction of cytotoxicity in GITR over-expressing cells was confirmed by using GFP competition assay. GITR-induced apoptosis was supported by induction of caspase 8 and 3 cleavage. The inhibition of human CD138+ plasma cell growth in the bone marrow of SCID mice using a disseminated MM xenograft model was observed in the experimental group injected with GITR expressing cells compared to the control group after 4 weeks injection. Conclusion Our findings uncovered a novel epigenetic mechanism contributing to MM pathogenesis, showing the role of GITR methylation as a key regulator of MM cell survival. Disclosures: Roccaro: Roche:. Ghobrial:Novartis: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Millennium: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Bristol-Myers Squibb: Research Funding; Noxxon: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 646-646 ◽  
Author(s):  
Owen A. O'Connor ◽  
Enrica Marchi ◽  
Kelly Zullo ◽  
Luigi Scotto ◽  
Jennifer E. Amengual ◽  
...  

Abstract Both HDAC inhibitors (HDACIs) and DNA methyltransferase inhibitors (DNMTIs) are known to influence global expression patterns in hematologic malignancies. Little is known about the combination of these two drug classes in lymphoid malignancies. HDACIs have marked single agent activity in the T- cell lymphomas (TCL), although the mechanism of action is not well defined. DNMTIs affect cytosine methylation of genomic DNA and have activity mainly restricted to the myeloid derived hematologic malignancies. The single agent efficacy and synergistic interaction of a panel of HDACIs (panobinostat, belinostat, romidepsin and vorinostat) and DNMTIs (decitabine (DEC), 5-azacytadine (5-AZA)) was evaluated in models of TCL. The molecular basis for the synergistic effect of HDACIs and DNMTIs was evaluated by gene expression profiling (GEP) and CpG methylation CTCL. Single agent concentration and time effect relationships were generated for 2 CTCL (HH, H9) and 2 T-ALL (P12, PF382) cell lines. Romidepsin and belinostat were the most potent HDACIs with the mean 48 hour IC50 of 8.8 nM (range 1.7-2.7 nM) and 85 nM (range 36-136 nM), respectively. Cell viability was not affected by treatment with DEC or 5-AZA at 24 and 48 hours at concentrations as high as 20 μM. Reduction in viability was first demonstrated after 72 hours of exposure to DEC, with the mean IC50 of 14.8 μM (range 0.4 μM- >20uM). Simultaneous exposure of combinations of DEC plus romidepsin or DEC plus belinostat at their IC10, IC20, and IC50 produced marked synergy in all TCL derived cell lines. Simultaneous exposure of DEC plus romidepsin demonstrated the deepest synergy at 72 hours with synergy coefficients in the range of 0.3. Cells treated with the combination of DEC plus romidepsin also demonstrated significant induction of apoptosis as evaluated by annexinV/propridium iodide via FACS analysis and an increase in acetylated histone 3 by immunoblot. The in vivo activity of the combination of DEC plus belinostat was investigated in a xenograft model of CTCL using HH, the most resistant TCL derived cell line. Mice were treated with DEC 1.5 mg/kg (day 29, 33, 35, 37, 39, 41, 43) and/or belinostat 100 mg/kg (day 29-day 47). The combination mouse cohort demonstrated statistically significant tumor growth delay compared to DEC alone (p=0.002) and belinostat alone (p=0.001). The interaction of DEC and romidepsin was analyzed by GEP and methylation array. Interestingly, the baseline malignant phenotype seen in the CTCL cell-lines was reversed. A significant down-regulation of genes involved in biosynthetic pathways including protein and lipid synthesis, and a significant up-regulation of genes responsible for cell cycle arrest were seen. The vast majority (114/138; 92%) of genes modulated by the single agents were similarly modulated by the combination. However, the latter induced a further significant change in the transcriptome, affecting an additional 390 genes. Similarly, methylation array data was analyzed following treatment of these drugs alone and in combination. DEC induced de-methylation of 190 different gene regions corresponding to 175 genes and an additional 335 loci. Interestingly, when combined with romidepsin the number of demethylated gene regions decreased to 85 corresponding to 79 genes, 78 of which were common with DEC and 148 additional loci. The comparison of gene expression and methylation demonstrated a significant inverse relationship (R2 = 0.657) with genes found to be differentially expressed in GEP and methylation analysis. (Figure 1)Figure 1Summary of gene expression and methylation analysis.Figure 1. Summary of gene expression and methylation analysis. These data support the observation that DNMTIs in combination with HDACIs produces significant synergistic activity in models of TCL. Further evaluation of the mechanism of action with DNMTIs in combination with HDACIs is ongoing, and a clinical trial of the combination is now open. Disclosures: O'Connor: Celgene Pharmaceuticals: Consultancy; Spectrum Pharmaceuticals: Membership on an entity’s Board of Directors or advisory committees; Allos Therapeutics: Consultancy, Membership on an entity’s Board of Directors or advisory committees. Off Label Use: Hypomethylating Agents in T-cell lymphoma. Amengual:Acetylon Pharmacueticals, INC: Membership on an entity’s Board of Directors or advisory committees, Research Funding.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3222-3222
Author(s):  
Bruno A Cardoso ◽  
Helio Belo ◽  
Antonio Almeida

Abstract Background: The classical BCR-ABL-negative myeloproliferative neoplasms (MPN) are characterized by increased proliferation of hematopoietic precursors in the bone marrow resulting in an elevated number of terminally differentiated cells. Despite the recent description of JAK2 activating mutations and other mutations, these do not completely explain the pathophysiology and clinical heterogeneity of MPN. Epigenetic modifications, particularly histone acetylation, play pivotal roles in the pathogenesis of several hematological malignancies, and treatment of such disorders with histone deacetylase inhibitors results cell death and proliferation arrest. Importantly, epigenetic agents have proven to be effective in several hematological malignancies. Aims: HDAC inhibition has demonstrated some efficacy in patients with MPN. In order to investigate the effects of HDAC inhibitors in MPN, we analyzed the impact of Vorinostat on the cellular biology of MPN cell lines and primary bone marrow samples. Material and Methods: MPN bone marrow samples were collected at diagnosis following informed consent in the course of routine clinical laboratory tests. Mononuclear cells were isolated by gradient separation were used for culture experiments and lysed for RNA extraction. RNA extracted from MPN primary samples was used to synthetize cDNA and the transcript levels of genes associated with Apoptosis, Proliferation, Epigenetic modifications and several Signaling pathways were analyzed by quantitative-PCR. MPN primary cells and MPN derived cell lines were incubated with Vorinostat and at different time points the cells were harvest, lysed for gene expression analysis and stained with different antibodies, Annexin-V/PI and DCF-DA to analyze cellular differentiation, apoptosis and Reactive Oxygen Species (ROS) respectively. Results: We performed a targeted-genome wide screen and compared the transcript levels of a defined set of genes between normal bone marrow and MPN primary samples. We identified 9 genes (BIRC3, TNFRSF9, DLL4, IL1B, CDKN1A, FOSL1, CREL, SERPINB9 and EGR1) whose expression increased for at least 4 fold and 2 genes (HIP1 and DTX1) whose expression decreased by at least 0.5 fold in MPN patients relative to normal bone marrow samples. Interestingly, incubation of Vorinostat in MPN cell lines at physiological concentrations increases the expression of such genes, and also the expression of genes associated with apoptosis and growth arrest while decreasing the expression of genes associated with proliferation, growth arrest and JAK-STAT signaling pathway. Regarding cellular physiology, Vorinostat induces apoptosis in MPN cultured cell lines in a time- and dose-dependent manner. Furthermore, incubation of primary MPN bone marrow samples with Vorinostat induced apoptosis, blocked differentiation and also diminished ROS levels in a dose dependent manner. These effects were most marked in the monocytic lineage, a population which expresses the highest levels of ROS. Vorinostat also reduced the levels of GPA and CD61, markers of erythroid and megakaryocytic differentiation, respectively. Summary/Conclusions: Here, we show that Vorinostat incubation impairs MPN cellular differentiation and reduces ROS and cellular viability, possibly through the down-regulation of genes associated with cellular proliferation, particularly the JAK-STAT target genes, and up-regulation of genes important for apoptosis and growth arrest. Interestingly, the genes that we identified to be up-regulated in MPN primary samples relative to normal controls, are further increased by Vorinostat treatment, suggesting that these could act as potential biomarkers for Vorinostat effectiveness in the MPN context. Furthermore, these results hold therapeutic promise as Vorinostat reduced differentiation markers associated with Polycythemia Vera and Essential Thrombocytosis. The observation that Vorinostat is particularly effective against the monocytic lineage is interesting in the context of the recently described role of bone marrow monocytes in the pathogenesis of Polycythemia Vera in mouse models. Our results point towards the potential role of Vorinostat (and possibly other HDAC inhibitors) in the treatment of MPN. This potential would require clinical trials to investigate its efficacy. Disclosures Almeida: Celgene: Consultancy; Novartis: Consultancy; Amgen: Membership on an entity's Board of Directors or advisory committees; Shire: Membership on an entity's Board of Directors or advisory committees; Bristol-Meyer Squibb: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4587-4587
Author(s):  
Ali Tabarroki ◽  
Daniel Lindner ◽  
Valeria Visconte ◽  
Nikolaos Papandantonakis ◽  
Jing Ai ◽  
...  

Abstract Bone marrow (BM) fibrosis is a key pathomorphologic feature of patients (pts) with primary myelofibrosis (PMF) and the fibrotic phases of essential thrombocythemia (post-ET MF) and polycythemia vera (post-PV MF). The degree of BM fibrosis appears to correlate with survival. Indeed worse survival has been associated with increased BM fibrosis. The BM stromal microenvironment is important in the pathogenesis of BM fibrosis. Cellular components (fibroblasts, macrophages, endothelial cells, adipocytes), structural fibrils (collagen, reticulin) and extracellular matrix components are all forming elements of the BM stroma. Increased stromal fibrosis has been linked to abnormalities in the number/ function of megakaryocytes and platelets in hematologic diseases. Several cytokines like Platelet Derived Growth Factor (PDGF) and Transforming Growth Factor-Beta (TGF-b) have been also linked to the pathophysiology of BM fibrosis. PDGF has been shown to increase fibroblast growth in megakaryocytes and platelets although increased PDGF did not correlate with increased production of either reticulin or collagenous fibrosis. Moreover, PMF pts have increased TGF-b levels in platelets, megakaryocytes, and monocytes. Nitric Oxide (NO) is a ubiquitous gas important in physiologic processes particularly vasodilatation. Dysregulation of NO levels has been implicated in pulmonary hypertension (PH), hemoglobinopathies, and cardiovascular diseases. In Peyronie’s disease, a localized fibrosis of the penile tunica albuginea, increased NO production by expression of iNOS decreases collagen deposition by neutralization of profibrotic reactive oxygen species and decreased myofibroblast formation. Aside from its role in maintaining normal vascular tone, NO also plays a role in fibroblast formation and collagen biosynthesis. We previously reported that ruxolitinib, a JAK1/2 inhibitor restores NO levels leading to improvement of PH in MF pts (Tabarroki et al., Leukemia 2014). We now hypothesize that plasma/serum NO level is a key regulator of BM fibrosis in MF and that ruxolitinib treatment (Tx) leads to improvement of BM fibrosis by NO modulation. Using a Sievers 280i NO analyzer we measured the plasma/serum NO level of a large cohort (n=75) of pts with myeloid and myeloproliferative neoplasms (MPN) [MDS, RARS/RCMD=8; MPN, ET=8, PV=8, MF=24, Mastocytosis=7; MDS/MPN, CMML=11, MDS/MPN-U, RARS-T=9]. Healthy subjects (n=10) were used as a control. MPN pts had low NO (nM) levels among the pts studied with the lowest level found in MF pts: MF=30.31±11.8, PV=39.0±16.1, ET=36±20.3, RARS=74.6±41.7 (P=.01), CMML=84.4±89.2 (P=.04), RCMD=163.4±103.8 (P<.001), RARS-T=131.1±99.8 (P<.001). In total, NO levels were lower in classic MPN (n=40, 35.3±16.6) compared to MDS (n=8, 119±62.8; P=.001) and MDS/MPN (n=20, 105±94.6; P=.008). When we looked at the correlation between NO levels and BM fibrosis grade we found that there is an inverse correlation between NO levels and worsening BM fibrosis grade from grade MF1 to MF3. NO levels in normal (n=10) vs MF1 (n=3) were 53.3 vs 39.1, P=.025; normal vs MF2 (n=7) were 53.3 vs 37, P=.021; normal vs MF3 (n=12) were 53.3 vs 34.4, P=.006. A total of 8 pts who were treated with ruxolitinib and had at least 1 pre and 1 post Tx (≥3 months from initiation of ruxolitinib) were tested for NO levels. Among the 8 pts, 4 pts who demonstrated improvement in BM scores had a trend towards improved NO levels after ruxolitinib Tx [NO pre vs post; pt #1: 6 vs 10.5; pt#2: 4.3 vs 6.4; pt#3 49.7 vs 52.1; pt#4 36 vs 41.3; P=.02] while 4 had worsening or had no change in BM fibrosis grade and had a minimal change or decline in the NO (pt#5: 18.4 vs 23, pt#6: 14.29 vs 12.1, pt#7: 32.7 vs 32.1, pt#8: 110.9 vs 40.4). One pt who had improvement in BM fibrosis grade after ruxolitinib Tx had increased iNOS expression by Western blotting (pt#1) while no iNOS expression (pt#5) was noted in the pt who did not have improvement in BM fibrosis. Of note, multi-analytic cytokines profile also showed an overall decrease in cytokines especially a 2.8 fold-decrease in IL8 levels post-Tx in the pt with improvement in BM fibrosis. In conclusion, NO is decreased in MPN particularly in MF and may be a key mediator of BM fibrosis in MF. Pharmacologic therapies such as JAK inhibitors may mediate improvement of BM fibrosis by modulation of NO levels in MF. Disclosures Tiu: Gilead: Membership on an entity's Board of Directors or advisory committees; Novartis: Speakers Bureau; Incyte : Membership on an entity's Board of Directors or advisory committees, Speakers Bureau.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4819-4819
Author(s):  
Monzr M. Al Malki ◽  
Sumithira Vasu ◽  
Dipenkumar Modi ◽  
Miguel-Angel Perales ◽  
Lucy Y Ghoda ◽  
...  

Abstract Patients who relapse after allogeneic HCT have a poor prognosis and few effective treatment options. Responses to salvage therapy with donor lymphocyte infusions (DLI) are driven by a graft versus leukemia (GvL) effect. However, relapses and moderate to severe graft versus host disease (GVHD) are common. Therapies that increase the GvL effect without inducing GVHD are needed. The NEXI-001 study is a prospective, multicenter, open-label phase 1/2 trial designed to characterize the safety, immunogenic, and antitumor activity of the NEXI-001 antigen specific T-cell product. This product is a donor-derived non-genetically engineered therapy that consists of populations of CD8+ T cells that recognize HLA 02.01-restricted peptides from the WT1, PRAME, and Cyclin A1 antigens. These T cells consist of populations with key memory phenotypes, including stem-like memory, central memory, and effector memory cells, with a low proportion (&lt;5%) of potentially allogeneic-reactive T-naïve cells. Patients enrolled into the first cohort of the dose escalation phase received a single infusion of 50 million (M) to 100M cells of the NEXI-001 product. Bridging anti-AML treatment was permitted during the manufacture of the cellular product with a wash-out period of at least 14 days prior to lymphodepletion (LD) chemotherapy (intravenous fludarabine 30 mg/m 2 and cyclophosphamide 300 mg/m 2) that was administered on Days -5, -4, and -3 prior to the infusion of the NEXI-001 product up to 72 hours later (Day1). Lymphocyte recovery to baseline levels occurred as early as three days after the NEXI-001 product infusion with robust CD4 and CD8 T cell reconstitution after LD chemotherapy. NEXI-001 antigen specific T cells were detectable in peripheral blood (PB) by multimer staining and were found to proliferate over time and to traffic to bone marrow. The phenotype composition of detectable antigen specific T cells at both sites was that of the infused product. T-cell receptor (TCR) sequencing assays revealed T cell clones in the NEXI-001 product that were not detected in PB of patients tested at baseline. These unique clones subsequently expanded in PB and bone marrow (BM) and persisted over time. Neutrophil recovery, decreased transfusion burden of platelets and red blood cells, and increased donor chimerism were observed. Decreases in myeloblasts and reduction in the size of an extramedullary myeloid sarcoma were suggestive of clinical activity. One patient, a 23-year- old with MRD+ disease at baseline, received two doses of 200M NEXI-001 cells separated by approximately 2 months. Following the first infusion, antigen specific CD8+ T cells increased gradually in PB to 9% of the total CD3+ T cell population just prior to the second infusion and were found to have trafficked to bone marrow. By Day 2 following the second infusion, which was not preceded by LD chemotherapy, the antigen specific CD8+ T cells again increased to 9% of the total CD3+ T cell population in PB and remained at ≥5% until the end of study visit a month later. The absolute lymphocyte count increased by 50% highlighting continued expansion of the NEXI-001 T cells. These cells also maintained significant Tscm populations. Treatment related adverse events, including infusion reactions, GVHD, CRS, and neurotoxicity (ICANS), have not developed in these patients who have received 50M to 200M T cells of the NEXI-001 product either as single or repeat infusions. In conclusion, these results show that infusion of the NEXI-001 product is safe and capable of generating a cell-mediated immune response with early signs of clinical activity. A second infusion is associated with increasing the level of antigen specific CD8+ T cells and their persistence in PB and BM. TCR sequencing and RNA Seq transcriptional profiling of the CD8+ T cells are planned, and these data will be available for presentation during the ASH conference. At least two cycles of 200M NEXI-001 cells weekly x 3 weeks of a 4-week cycle is planned for the next dose-escalation cohort. Early data suggest that the NEXI-001 product has the potential to enhance a GvL effect with minimal GVHD-associated toxicities. Disclosures Al Malki: Jazz Pharmaceuticals, Inc.: Consultancy; Neximmune: Consultancy; Hansa Biopharma: Consultancy; CareDx: Consultancy; Rigel Pharma: Consultancy. Vasu: Boehringer Ingelheim: Other: Travel support; Seattle Genetics: Other: travel support; Kiadis, Inc.: Research Funding; Omeros, Inc.: Membership on an entity's Board of Directors or advisory committees. Modi: MorphoSys: Membership on an entity's Board of Directors or advisory committees; Seagen: Membership on an entity's Board of Directors or advisory committees; Genentech: Research Funding. Perales: Sellas Life Sciences: Honoraria; Novartis: Honoraria, Other; Omeros: Honoraria; Merck: Honoraria; Takeda: Honoraria; Karyopharm: Honoraria; Incyte: Honoraria, Other; Equilium: Honoraria; MorphoSys: Honoraria; Kite/Gilead: Honoraria, Other; Bristol-Myers Squibb: Honoraria; Celgene: Honoraria; Medigene: Honoraria; NexImmune: Honoraria; Cidara: Honoraria; Nektar Therapeutics: Honoraria, Other; Servier: Honoraria; Miltenyi Biotec: Honoraria, Other. Edavana: Neximmune, Inc: Current Employment. Lu: Neximmune, Inc: Current Employment. Kim: Neximmune, Inc: Current Employment. Suarez: Neximmune, Inc: Current Employment. Oelke: Neximmune, Inc: Current Employment. Bednarik: Neximmune, Inc: Current Employment. Knight: Neximmune, Inc: Current Employment. Varela: Kite: Speakers Bureau; Nexlmmune: Current equity holder in publicly-traded company, Honoraria, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1462-1462
Author(s):  
Lindsay Meg Gurska ◽  
Rachel Okabe ◽  
Meng Maxine Tong ◽  
Daniel Choi ◽  
Kristina Ames ◽  
...  

Abstract The Philadelphia-chromosome negative myeloproliferative neoplasms (MPNs), including polycythemia vera (PV), essential thrombocytosis (ET), and primary myelofibrosis (PMF), are clonal hematopoietic stem cell disorders characterized by the proliferation of one or more myeloid lineage compartments. Activation of JAK/STAT signaling is a major driver of all Ph-negative MPNs. During disease progression, MPN patients experience increased pro-inflammatory cytokine secretion, leading to remodeling of the bone marrow microenvironment and subsequent fibrosis. The JAK inhibitor ruxolitinib is an approved targeted therapy for MPN patients and has shown promise in its ability to reduce splenomegaly and the cytokine storm observed in patients. However, JAK inhibitors alone are not sufficient to reduce bone marrow fibrosis or to eliminate the JAK2-mutated clone. Furthermore, JAK inhibitor persistence, or reactivation of JAK/STAT signaling upon chronic JAK inhibitor treatment, has been observed in both MPN mouse models and MPN patients. Therefore, there is an urgent need for new treatment options in MPN. The tyrosine kinase RON, a member of the MET kinase family, has well-characterized roles in erythroblast proliferation and pro-inflammatory cytokine production. RON can be phosphorylated by JAK2 to stimulate erythroblast proliferation. However, the role of RON in MPN pathogenesis is unknown. We found that the ALK/MET/RON/ROS1 inhibitor crizotinib inhibited colony formation by MPN patient CD34+ cells, regardless of their disease subtype, mutation status, or JAK2 inhibitor treatment history (Figure 1A). To determine whether this is due to inhibition of the JAK/STAT signaling pathway, we performed phospho-flow cytometry of STAT3 and STAT5 in myelofibrosis patient erythroblasts treated with crizotinib ex vivo as well as Western blot analysis in the JAK2-mutated cell lines SET2 and HEL. We found that crizotinib inhibits the phosphorylation of JAK2, STAT3, and STAT5 (Figure 1B). Since crizotinib has not been reported to directly inhibit JAK2, we asked whether these effects of crizotinib in MPN cells could be explained by RON inhibition. Consistent with this hypothesis, we observed that shRNA knockdown of multiple RON isoforms also decreases the phosphorylation of JAK2, STAT5, and STAT3 in HEL cells (Figure 1C-D). To determine whether crizotinib can alter the MPN disease course in vivo, we tested crizotinib by oral gavage in the MPLW515L bone marrow transplant murine model of myelofibrosis at 100mg/kg daily for 2 weeks. We showed that crizotinib decreased the disease burden of MPL-W515L mice, as evidenced by decreased spleen and liver weights (Figure 1E). To determine the effects of RON genetic deletion on MPN pathogenesis, we tested whether genetic deletion of Stk (mouse gene for RON) impairs disease progression in the JAK2V617F bone marrow transplant MPN model by transplanting Stk-/- c-Kit+ bone marrow cells transduced with the JAK2V617F-GFP retrovirus into lethally irradiated recipients. We observed a significant delay in disease onset in Stk-/- transplant recipients compared to WT controls (Figure 1F). However, we found that Stk-/- mice have normal numbers of hematopoietic stem and progenitor cells, and normal bone marrow myeloid colony forming capacity, suggesting that RON is a safe therapeutic target. To determine whether RON plays a role in the JAK inhibitor persistence phenotype, we generated persistent cells by treating SET2 cells with increasing doses of ruxolitinib over 8 weeks, and confirmed persistent proliferation and JAK/STAT activation. Interestingly, we found that RON phosphorylation is enhanced in JAK inhibitor persistent cells, and that dual inhibition of RON and JAK2 overcomes JAK inhibitor persistence in SET2 cells (Figure 1G-H), suggesting that RON may potentiate the JAK2 persistence phenotype in response to ruxolitinib. Importantly, we showed by immunoprecipitation that phospho-RON and phospho-JAK2 physically interact in JAK inhibitor persistent SET2 cells, and that this interaction is disrupted by crizotinib (Figure 1I). In summary, our data demonstrate that RON kinase is a novel mediator of JAK/STAT signaling in MPNs, and that it plays a particularly important role in JAK inhibitor persistence. Our work suggests that therapeutic strategies to inhibit RON, such as crizotinib, should be investigated in MPN patients. Figure 1 Figure 1. Disclosures Halmos: Guardant Health: Membership on an entity's Board of Directors or advisory committees; Apollomics: Membership on an entity's Board of Directors or advisory committees; TPT: Membership on an entity's Board of Directors or advisory committees; Eli-Lilly: Research Funding; Advaxis: Research Funding; Blueprint: Research Funding; Elevation: Research Funding; Mirati: Research Funding; Pfizer: Membership on an entity's Board of Directors or advisory committees, Research Funding; GSK: Research Funding; Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding; Boehringer-Ingelheim: Membership on an entity's Board of Directors or advisory committees, Research Funding; AbbVie: Research Funding; Amgen: Membership on an entity's Board of Directors or advisory committees, Research Funding; Astra-Zeneca: Membership on an entity's Board of Directors or advisory committees, Research Funding; Bristol Myers Squibb: Membership on an entity's Board of Directors or advisory committees, Research Funding; Merck: Membership on an entity's Board of Directors or advisory committees, Research Funding. Gritsman: iOnctura: Research Funding.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1882-1882 ◽  
Author(s):  
Samuel A Danziger ◽  
Mark McConnell ◽  
Jake Gockley ◽  
Mary Young ◽  
Adam Rosenthal ◽  
...  

Abstract Introduction The multiple myeloma (MM) tumor microenvironment (TME) strongly influences patient outcomes as evidenced by the success of immunomodulatory therapies. To develop precision immunotherapeutic approaches, it is essential to identify and enumerate TME cell types and understand their dynamics. Methods We estimated the population of immune and other non-tumor cell types during the course of MM treatment at a single institution using gene expression of paired CD138-selected bone marrow aspirates and whole bone marrow (WBM) core biopsies from 867 samples of 436 newly diagnosed MM patients collected at 5 time points: pre-treatment (N=354), post-induction (N=245), post-transplant (N=83), post-consolidation (N=51), and post-maintenance (N=134). Expression profiles from the aspirates were used to infer the transcriptome contribution of immune and stromal cells in the WBM array data. Unsupervised clustering of these non-tumor gene expression profiles across all time points was performed using the R package ConsensusClusterPlus with Bayesian Information Criterion (BIC) to select the number of clusters. Individual cell types in these TMEs were estimated using the DCQ algorithm and a gene expression signature matrix based on the published LM22 leukocyte matrix (Newman et al., 2015) augmented with 5 bone marrow- and myeloma-specific cell types. Results Our deconvolution approach accurately estimated percent tumor cells in the paired samples compared to estimates from microscopy and flow cytometry (PCC = 0.63, RMSE = 9.99%). TME clusters built on gene expression data from all 867 samples resulted in 5 unsupervised clusters covering 91% of samples. While the fraction of patients in each cluster changed during treatment, no new TME clusters emerged as treatment progressed. These clusters were associated with progression free survival (PFS) (p-Val = 0.020) and overall survival (OS) (p-Val = 0.067) when measured in pre-transplant samples. The most striking outcomes were represented by Cluster 5 (N = 106) characterized by a low innate to adaptive cell ratio and shortened patient survival (Figure 1, 2). This cluster had worse outcomes than others (estimated mean PFS = 58 months compared to 71+ months for other clusters, p-Val = 0.002; estimate mean OS = 105 months compared with 113+ months for other clusters, p-Val = 0.040). Compared to other immune clusters, the adaptive-skewed TME of Cluster 5 is characterized by low granulocyte populations and high antigen-presenting, CD8 T, and B cell populations. As might be expected, this cluster was also significantly enriched for ISS3 and GEP70 high risk patients, as well as Del1p, Del1q, t12;14, and t14:16. Importantly, this TME persisted even when the induction therapy significantly reduced the tumor load (Table 1). At post-induction, outcomes for the 69 / 245 patients in Cluster 5 remain significantly worse (estimate mean PFS = 56 months compared to 71+ months for other clusters, p-Val = 0.004; estimate mean OS = 100 months compared to 121+ months for other clusters, p-Val = 0.002). The analysis of on-treatment samples showed that the number of patients in Cluster 5 decreases from 30% before treatment to 12% after transplant, and of the 63 patients for whom we have both pre-treatment and post-transplant samples, 18/20 of the Cluster 5 patients moved into other immune clusters; 13 into Cluster 4. The non-5 clusters (with better PFS and OS overall) had higher amounts of granulocytes and lower amounts of CD8 T cells. Some clusters (1 and 4) had increased natural killer (NK) cells and decreased dendritic cells, while other clusters (2 and 3) had increased adipocytes and increases in M2 macrophages (Cluster 2) or NK cells (Cluster 3). Taken together, the gain of granulocytes and adipocytes was associated with improved outcome, while increases in the adaptive immune compartment was associated with poorer outcome. Conclusions We identified distinct clusters of patient TMEs from bulk transcriptome profiles by computationally estimating the CD138- fraction of TMEs. Our findings identified differential immune and stromal compositions in patient clusters with opposing clinical outcomes and tracked membership in those clusters during treatment. Adding this layer of TME to the analysis of myeloma patient baseline and on-treatment samples enables us to formulate biological hypotheses and may eventually guide therapeutic interventions to improve outcomes for patients. Disclosures Danziger: Celgene Corporation: Employment, Equity Ownership. McConnell:Celgene Corporation: Employment. Gockley:Celgene Corporation: Employment. Young:Celgene Corporation: Employment, Equity Ownership. Schmitz:Celgene Corporation: Employment, Equity Ownership. Reiss:Celgene Corporation: Employment, Equity Ownership. Davies:MMRF: Honoraria; Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Amgen: Consultancy, Membership on an entity's Board of Directors or advisory committees; TRM Oncology: Honoraria; Abbvie: Consultancy; ASH: Honoraria; Takeda: Consultancy, Membership on an entity's Board of Directors or advisory committees; Janssen: Consultancy, Honoraria. Copeland:Celgene Corporation: Employment, Equity Ownership. Fox:Celgene Corporation: Employment, Equity Ownership. Fitch:Celgene Corporation: Employment, Equity Ownership. Newhall:Celgene Corporation: Employment, Equity Ownership. Barlogie:Celgene: Consultancy, Research Funding; Dana Farber Cancer Institute: Other: travel stipend; Multiple Myeloma Research Foundation: Other: travel stipend; International Workshop on Waldenström's Macroglobulinemia: Other: travel stipend; Millenium: Consultancy, Research Funding; European School of Haematology- International Conference on Multiple Myeloma: Other: travel stipend; ComtecMed- World Congress on Controversies in Hematology: Other: travel stipend; Myeloma Health, LLC: Patents & Royalties: : Co-inventor of patents and patent applications related to use of GEP in cancer medicine licensed to Myeloma Health, LLC. Trotter:Celgene Research SL (Spain), part of Celgene Corporation: Employment, Equity Ownership. Hershberg:Celgene Corporation: Employment, Equity Ownership, Patents & Royalties. Dervan:Celgene Corporation: Employment, Equity Ownership. Ratushny:Celgene Corporation: Employment, Equity Ownership. Morgan:Takeda: Consultancy, Honoraria; Bristol-Myers Squibb: Consultancy, Honoraria; Celgene: Consultancy, Honoraria, Research Funding; Janssen: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document