scholarly journals Neutrophil Extracellular Traps Promote Joint Injury in Hemophilia

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 990-990
Author(s):  
Tomasz W. Kaminski ◽  
Tomasz Brzoska ◽  
Egemen Tutuncuoglu ◽  
Margaret V. Ragni ◽  
Prithu Sundd

Abstract Epidemiological evidence suggests that recurring episodes of joint-bleeding contribute to the development of hemophilic arthropathy (H) in 70-85% of hemophilia patients. Despite major advances in the treatment to prevent joint bleeding, HA continues to be a major morbidity affecting hemophilia patients and the etiological mechanism contributing to the progression of HA remains poorly understood. Recent evidence suggests that the accumulation of blood in the joints may lead to the release of erythrocyte-derived DAMPs (eDAMPs) such as heme and hemoglobin that can promote sterile inflammation, however, the innate immune pathways contributing to this pathophysiology remain unknown. In the study, we used a model of puncture-induced knee joint injury in FVIII-total knockout (F8TKO) mice and blood samples from hemophilia-A patients diagnosed with HA. Intravital multi-photon-excitation fluorescence intravital (in vivo) microscopy of injured synovium in live F8TKO or control mice was conducted to assess neutrophil-platelet aggregation and NETs generation in the knee-joint. Imaging-flow-cytometry and ELISA assays were used to estimate the number of circulating NETs in plasma of patients diagnosed with HA and mice after the knee-injury procedure. Scoring of the bleeding severity, histology, IHC and confocal imaging of joints were conducted to quantify the joint injury in mice. F8TKO but not control mice manifested knee-joint injury and severity of bleeding 5-days post knee-injury. Progression of knee-joint injury was associated with increased neutrophil accumulation and NETs shedding within the synovium of F8TKO mice. Circulating NETs were significantly abundant in the plasma of hemophilia patients diagnosed with HA and F8TKO mice following knee-injury but not plasma of control humans or mice. These findings are the first to suggest that NETs contribute to pathogenesis of HA in hemophilia. Currently, experiments are underway to identify the innate immune pathways that promote NETs shedding, leading to joint-damage in hemophilia. Disclosures Ragni: Takeda Therapeutics: Membership on an entity's Board of Directors or advisory committees; Bioverativ (Sanofi): Membership on an entity's Board of Directors or advisory committees; BioMarin Pharmaceutical: Membership on an entity's Board of Directors or advisory committees; Alnylam (Sanofi): Membership on an entity's Board of Directors or advisory committees; University of Pittsburgh: Research Funding; Spark Therapeutics: Membership on an entity's Board of Directors or advisory committees. Sundd: CSL Behring Inc: Research Funding; Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding; Bayer: Research Funding.

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 43-43
Author(s):  
Tomasz W. Kaminski ◽  
Tomasz Brzoska ◽  
Egemen Tutuncuoglu ◽  
Margaret V. Ragni ◽  
Prithu Sundd

Hemophilic arthropathy (HA) is the predominant pathophysiology resulting from recurrent joint bleeding in individuals with hemophilia. HA leads to permanent joint damage, chronic pain and reduced quality of life. Despite major advances in the treatment to prevent joint bleeding, HA continues to be a major morbidity affecting hemophilia patients and the etiological mechanism contributing to the progression of HA remains elusive. Recent evidence suggests that joint-bleeding may promote the release of erythrocyte and tissue-derived damage-associated-molecular-pattern molecules (DAMPs) that can trigger the sterile inflammation in the joints, however, the innate immune pathways contributing to the development of HA remain unclear. Here, we used a model of knee joint injury-induced HA in FVIII-total knockout (F8TKO) mice and blood samples from hemophilia patients diagnosed with HA. In vivo multi-photon-excitation (MPE) fluorescence imaging of injured synovial cavity in live F8TKO or control mice was used to assess NETs formation within joint capsule. Imaging-flow-cytometry and ELISA assays were used to evaluate the number of circulating NETs in patients diagnosed with HA and mice with knee-injury. Scoring of the bleeding severity, histology, IHC and confocal imaging of joints were conducted to assess the joint injury in mice. F8TKO but not control mice manifested knee-joint injury and severity of bleeding 5-days post knee-injury. Progression of knee-joint injury was associated with increased neutrophil accumulation and NETs shedding within the synovium of F8TKO mice. Circulating NETs were significantly abundant in the plasma of hemophilia patients diagnosed with HA and F8TKO following knee-injury but not plasma of control humans or mice. These findings are the first to suggest that NETs contribute to pathogenesis of HA in hemophilia. Currently, experiments are underway to identify the innate immune pathways that promote NETs shedding, leading to joint-damage in hemophilia. Disclosures Ragni: Alnylam/Sanofi, ATHN, BioMarin, Bioverativ, Sangamo, Spark: Research Funding; Alnylam/Sanofi, BioMarin, Bioverativ, Spark: Consultancy; BioMarin: Consultancy, Research Funding; Bioverativ: Consultancy, Research Funding; Spark: Consultancy, Research Funding; Takeda: Research Funding; Sangamo: Consultancy, Research Funding; Alnylam Pharmaceuticals Inc., Baxalta/Takeda, BioMarin, Bioverativ, and Spark Therapeutics: Membership on an entity's Board of Directors or advisory committees; American Thrombosis Hemostasis Network: Other: Committee work; Baxalta/Takeda, CSL Behring, Genentech, a member of the Roche Group, OPKO Biologics, and Vascular Medicine Institute: Research Funding.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4071-4071
Author(s):  
Patrick B Walter ◽  
Paul R Harmatz ◽  
Annie Higa ◽  
David Killilea ◽  
Nancy Sweeters ◽  
...  

Abstract Abstract 4071 Poster Board III-1006 Introduction Infection is the second most common cause of death in thalassemia. The innate immune system provides a first line of defense against infection and specificity depends on pattern recognition receptors (PRRs) specific to microbial pathogens. One class of PRR called the toll-like receptors (TLRs) are important for transducing the signal for bacterial Lipopolysaccharide (LPS), resulting not only in cytokine production, but also in the control of extracellular iron levels through production of neutrophil gelatinase associated Lipocalin (NGAL). However, the exact role that NGAL plays and the expression level of PRRs are unknown in thalassemia. Thus, the goal in these studies is to investigate the relationship of iron overload to the innate immune cell expression of PRRs and NGAL in thalassemia. Patients and Methods Fifteen transfusion dependent thalassemia patients (11 – 29 yrs old) participating in the combination trial of deferasirox (an oral iron chelator) and deferoxamine were enrolled (Novartis sponsored CICL670AUS24T). Fasting blood samples were obtained i) at baseline after a 72 hr washout of chelator, and ii) at 6 and 12 months on study. Five healthy controls (13 - 18 yrs old) were also enrolled. Fresh monocytes were isolated using antibody-linked magnetic microbeads (Miltenyi Biotec Inc). Highly enriched populations of CD14+ monocytes were verified by flow cytometry. The expression of TLR4, also examined by flow cytometry is reported as the mean fluorescent intensity (MFI). In patients with thalassemia, liver iron concentration (LIC) was analyzed by biomagnetic susceptibility (“SQUID”, Ferritometer®). The plasma levels of NGAL were analyzed by ELISA. Results At baseline the expression of monocyte TLR4 (mean 18.8 ± 3.5 MFI) was reduced 30% compared to the healthy controls (mean 26.9 ± 7.6 MFI, p<0.05). The expression of TLR4 over the follow-up period of 52 weeks in patients receiving intensive combination chelator therapy significantly increased 27% / year (7 MFI / year, p=0.005). Interestingly the expression of monocyte TLR4 was negatively correlated with LIC (r=-0.6, p=0.04). Finally, thalassemia patients at baseline have significantly higher levels of NGAL (80 ± 20 ng/ml) compared to controls (42 ± 15 ng/ml, p=0.01). Conclusions These preliminary studies support the hypothesis that iron burden has a negative impact on the innate immune response in thalassemia as demonstrated by the decreased expression of TLR4. After intensive chelation, the levels of TLR4 increased, indicating that decreased iron overload with chelation may improve innate immune responsiveness. Finally, the iron transport protein NGAL is significantly elevated in thalassemia possibly acting to prevent essential iron uptake by pathogenic bacteria. Disclosures: Harmatz: Novartis: Research Funding; Apotex : Membership on an entity's Board of Directors or advisory committees; Ferrokin: Membership on an entity's Board of Directors or advisory committees. Vichinsky:Novartis: Consultancy, Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3934-3934
Author(s):  
Katelyn M. Melgar ◽  
LaQuita M Jones ◽  
Mackenzie Walker ◽  
Lyndsey C Bolanos ◽  
Kathleen Hueneman ◽  
...  

Targeted inhibitors to oncogenic kinases demonstrate encouraging clinical responses early in the treatment course, however, most patients will relapse due to target-dependent mechanisms that mitigate enzyme-inhibitor binding or through target-independent mechanisms, such as alternate activation of survival and proliferation pathways, known as adaptive resistance. One example involves the FMS-like receptor tyrosine kinase (FLT3). Activating mutations of FLT3 result in its autophosphorylation and initiation of intracellular signaling pathways, which induce abnormal survival and proliferation of leukemic cells.One of the most common mutations in acute myeloid leukemia (AML) involves the internal tandem duplication (ITD) of FLT3, which occurs in ~25% of all cases of newly diagnosed AML and confers a particularly poor prognosis. FLT3 inhibitors (FLT3i) evaluated in clinical studies as monotherapy and combination therapies have shown good initial response rates; however, patients eventually relapse with FLT3i-resistant disease. The absence of durable remission in patients treated with potent and selective FLT3i highlights the need to identify resistance mechanisms and develop additional treatment strategies. Several mechanisms contribute to resistance to selective FLT3i, including mutations in the tyrosine kinase domain of FLT3 (20-50%) or activation of parallel signaling mechanisms that bypass FLT3 signaling, referred to as adaptive resistance (30-50%). Here we describe mechanisms of adaptive resistance in FLT3-mutant AML by examining in-cell kinase and gene regulatory network responses after oncogenic signaling blockade by FLT3 inhibitors (FLT3i). Through this integrative approach, we identified activation of innate immune stress response pathways after treatment of FLT3-mutant AML cells with FLT3i. Utilizing genetic approaches, we demonstrated that innate immune pathway activation via IRAK1 and IRAK4 contributes to adaptive resistance in FLT3-mutant AML cells. The immediate nature of IRAK1/4 activation in adaptively resistant FLT3-ITD AML cells requires concomitant inhibition of these targets to avoid compensatory signaling and cell survival. Achieving optimal multi-drug combination regimens that yield extended overlapping exposure while avoiding unwanted toxicities is challenging. Therefore, we desired a small molecule inhibitor that simultaneously targeted the FLT3 and IRAK1/4 kinases to eradicate adaptively resistant FLT3-ITD AML. To overcome this adaptive resistance mechanism, we developed and optimized a novel small molecule that simultaneously inhibits FLT3 and IRAK1/4 kinases. The FLT3-IRAK1/4 inhibitor exhibited potent binding affinity for IRAK1 (KD= 2.9 nM), IRAK4 (KD= 0.3 nM), and FLT3 (KD= 0.3 nM), as well as acceptable pharmacokinetic properties in mice. Moreover, a high-resolution crystal structure demonstrates that the FLT3-IRAK1/4 inhibitor binds as a type I inhibitor (ATP-competitive binding to the active state). The FLT3-IRAK1/4 inhibitor eliminated adaptively resistant FLT3-mutant AML cell lines and patient-derived samples in vitro and in vivo, and displayed superior efficacy as compared to current targeted FLT3 therapies. Our study demonstrates that therapies that simultaneously inhibit FLT3 signaling and compensatory IRAK1/4 activation have the potential to improve the therapeutic efficacy in patients with FLT3-mutant AML. In conclusion, these findings reveal that inflammatory stress response pathways contribute to adaptive resistance in FLT3-mutant AML and suggests that this mechanism may extend to other malignant cells undergoing a stress-induced response to therapy. Disclosures Hoyt: Kurome Therapeutics: Consultancy. Berman:Astellas: Membership on an entity's Board of Directors or advisory committees, Research Funding. Levine:Qiagen: Membership on an entity's Board of Directors or advisory committees; Prelude Therapeutics: Research Funding; Amgen: Honoraria; Lilly: Honoraria; Gilead: Consultancy; C4 Therapeutics: Membership on an entity's Board of Directors or advisory committees; Novartis: Consultancy; Roche: Consultancy, Research Funding; Imago Biosciences: Membership on an entity's Board of Directors or advisory committees; Isoplexis: Membership on an entity's Board of Directors or advisory committees; Celgene: Consultancy, Research Funding; Loxo: Membership on an entity's Board of Directors or advisory committees. Rosenbaum:Kurome Therapeutics: Consultancy, Employment. Perentesis:Kurome Therapeutics: Consultancy. Starczynowski:Kurome Therapeutics: Consultancy.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yue Yu ◽  
Zi Ye

It is important to predict the potential harm to the knee joint in order to prevent football players from inflicting numerous injuries to the knee during activity. Numerous professionals have been drawn to this subject, and many viable prediction systems have been developed. Prediction of potential knee joint injury is critical to effectively avoid knee joint injury during exercise. The current prediction algorithms are mainly implemented through expert interviews, medical reports, and historical documents. The algorithms have problems with low prediction accuracy or precision values. There is a need to understand more knee injury factors and improve the prediction accuracy; hence, the intelligent prediction algorithm for potential injury of knee joints of football players is proposed in this paper. Firstly, the characteristics of the knee joint injury and the injury factors of the football players are gathered and analyzed. Then, the damage is predicted by the similarity measurement. The experimental results show that the proposed algorithm has higher prediction accuracy and shorter time. According to the findings of a survey that collected healthcare data, several key factors contribute to football knee injuries. To a degree, this algorithm can predict the likelihood of a football player’s knee injury.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4797-4797
Author(s):  
Austin Kulasekararaj ◽  
Wynne Weston-Davies ◽  
Tadeusz Robak ◽  
Miles Nunn ◽  
Agnieszka Piekarska ◽  
...  

BACKGROUND Nomacopan, a small protein biologic previously known as Coversin (AK576), is in Phase III clinical development for PNH. Patients completing COBALT, a three-month Phase II trial in complement inhibitor naïve PNH patients, were eligible to move into CONSERVE, a long-term safety and efficacy surveillance study. Seven of 8 patients completed COBALT and all moved into the long-term safety study and received treatment with nomacopan for between 20 and 28 months. Six of the patients were transfusion dependent prior to treatment with nomacopan. METHODS The haematological, clinical and safety results of patients in CONSERVE have been analysed. RESULTS: All patients showed reduction of intravascular haemolysis as evidenced by significant fall of lactate dehydrogenase (LDH) levels and stabilisation of haemoglobin between 1 to 19 months. Of 6 patients who were transfusion dependent prior to entry to COBALT 3 (50%) became transfusion independent during the 12 week trial and 1 became transfusion independent in the 6 months following the trial. All 4 of these patients have remained transfusion independent. Since January 2019 both of the last two transfusion-dependent patients have been transfusion independent for more than 6 months. Patients in COBALT and CONSERVE have had no drug related serious adverse events, no major adverse vascular events, complete inhibition of terminal complement activity at all time points and the drug has been well tolerated. SUMMARY AND CONCLUSIONS: Long term complement inhibition with eculizumab is known to result in reduction of transfusion requirements in patients with PNH. In a 66-month long-term study of PNH patients treated with eculizumab, 64 of 78 (82.1%) previously transfusion dependent patients achieved transfusion independence. [i] In this, much smaller study, 6 of 6 previously transfusion dependent patients stabilised their haemoglobin and became transfusion independent (defined here as no transfusion for 6 or more months), two of these finally reaching this point between 18 and 21 months after starting treatment. The data indicate that nomacopan is safe and well tolerated for long term treatment of PNH by patient self-administration and offers significant therapeutic benefit to patients in terms of transfusion independence, an outcome of key importance to clinicians. It is possible that nomacopan may assist in improving bone marrow activity through its inhibition of LTB4 and the effect on the innate immune system which has been linked to bone marrow failure and clonal deletion and recovery. [ii] [iii] [i] Hillmen P et al. Long-term safety and efficacy of sustained eculizumab treatment in patients with paroxysmal nocturnal haemoglobinuria. Br J Haematol 2013 162(1) 62-73 [ii] Bagby GC. The Role of Innate Immune Dysfunction in Inherited Bone Marrow Failure. Blood 2014 124:SCI-19; [iii] Trompouki E et al. Inflammatory signaling in bone marrow failure and hematopoietic malignancy (Editorial) Front. Immunol. 2017: 8(660). Disclosures Kulasekararaj: Alnylam: Membership on an entity's Board of Directors or advisory committees; Ra Pharma: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Achillion: Consultancy; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Amgen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Akari: Honoraria, Membership on an entity's Board of Directors or advisory committees; Alexion: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau. Weston-Davies:Akari Therapeutics Plc: Employment, Equity Ownership. Robak:Acerta: Research Funding; Morphosys AG: Research Funding; Takeda: Consultancy, Research Funding; UCB: Honoraria, Research Funding; Janssen: Consultancy, Honoraria, Other: Travel grant, Research Funding; Amgen: Consultancy, Other: Travel grant; Roche: Consultancy, Other: Travel grant, Research Funding; Abbvie: Consultancy, Honoraria, Other: Travel grant, Research Funding; Gilead: Consultancy, Research Funding; BeiGene: Consultancy, Research Funding. Nunn:Akari Therapeutics Plc: Employment, Equity Ownership. Szmigielska-Kaplon:Novartis: Consultancy, Honoraria; Alexion: Honoraria; Sanofi: Consultancy, Honoraria. Hill:Apellis: Honoraria; Alexion: Honoraria; Akari: Honoraria; Ra Pharma: Honoraria; Bioverativ: Honoraria; Roche: Honoraria; Regeneron: Honoraria; Novartis: Honoraria.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 30-31
Author(s):  
Hanyin Wang ◽  
Shulan Tian ◽  
Qing Zhao ◽  
Wendy Blumenschein ◽  
Jennifer H. Yearley ◽  
...  

Introduction: Richter's syndrome (RS) represents transformation of chronic lymphocytic leukemia (CLL) into a highly aggressive lymphoma with dismal prognosis. Transcriptomic alterations have been described in CLL but most studies focused on peripheral blood samples with minimal data on RS-involved tissue. Moreover, transcriptomic features of RS have not been well defined in the era of CLL novel therapies. In this study we investigated transcriptomic profiles of CLL/RS-involved nodal tissue using samples from a clinical trial cohort of refractory CLL and RS patients treated with Pembrolizumab (NCT02332980). Methods: Nodal samples from 9 RS and 4 CLL patients in MC1485 trial cohort were reviewed and classified as previously published (Ding et al, Blood 2017). All samples were collected prior to Pembrolizumab treatment. Targeted gene expression profiling of 789 immune-related genes were performed on FFPE nodal samples using Nanostring nCounter® Analysis System (NanoString Technologies, Seattle, WA). Differential expression analysis was performed using NanoStringDiff. Genes with 2 fold-change in expression with a false-discovery rate less than 5% were considered differentially expressed. Results: The details for the therapy history of this cohort were illustrated in Figure 1a. All patients exposed to prior ibrutinib before the tissue biopsy had developed clinical progression while receiving ibrutinib. Unsupervised hierarchical clustering using the 300 most variable genes in expression revealed two clusters: C1 and C2 (Figure 1b). C1 included 4 RS and 3 CLL treated with prior chemotherapy without prior ibrutinib, and 1 RS treated with prior ibrutinib. C2 included 1 CLL and 3 RS received prior ibrutinib, and 1 RS treated with chemotherapy. The segregation of gene expression profiles in samples was largely driven by recent exposure to ibrutinib. In C1 cluster (majority had no prior ibrutinb), RS and CLL samples were clearly separated into two subgroups (Figure 1b). In C2 cluster, CLL 8 treated with ibrutinib showed more similarity in gene expression to RS, than to other CLL samples treated with chemotherapy. In comparison of C2 to C1, we identified 71 differentially expressed genes, of which 34 genes were downregulated and 37 were upregulated in C2. Among the upregulated genes in C2 (majority had prior ibrutinib) are known immune modulating genes including LILRA6, FCGR3A, IL-10, CD163, CD14, IL-2RB (figure 1c). Downregulated genes in C2 are involved in B cell activation including CD40LG, CD22, CD79A, MS4A1 (CD20), and LTB, reflecting the expected biological effect of ibrutinib in reducing B cell activation. Among the 9 RS samples, we compared gene profiles between the two groups of RS with or without prior ibrutinib therapy. 38 downregulated genes and 10 upregulated genes were found in the 4 RS treated with ibrutinib in comparison with 5 RS treated with chemotherapy. The top upregulated genes in the ibrutinib-exposed group included PTHLH, S100A8, IGSF3, TERT, and PRKCB, while the downregulated genes in these samples included MS4A1, LTB and CD38 (figure 1d). In order to delineate the differences of RS vs CLL, we compared gene expression profiles between 5 RS samples and 3 CLL samples that were treated with only chemotherapy. RS samples showed significant upregulation of 129 genes and downregulation of 7 genes. Among the most significantly upregulated genes are multiple genes involved in monocyte and myeloid lineage regulation including TNFSF13, S100A9, FCN1, LGALS2, CD14, FCGR2A, SERPINA1, and LILRB3. Conclusion: Our study indicates that ibrutinib-resistant, RS-involved tissues are characterized by downregulation of genes in B cell activation, but with PRKCB and TERT upregulation. Furthermore, RS-involved nodal tissues display the increased expression of genes involved in myeloid/monocytic regulation in comparison with CLL-involved nodal tissues. These findings implicate that differential therapies for RS and CLL patients need to be adopted based on their prior therapy and gene expression signatures. Studies using large sample size will be needed to verify this hypothesis. Figure Disclosures Zhao: Merck: Current Employment. Blumenschein:Merck: Current Employment. Yearley:Merck: Current Employment. Wang:Novartis: Research Funding; Incyte: Research Funding; Innocare: Research Funding. Parikh:Verastem Oncology: Honoraria; GlaxoSmithKline: Honoraria; Pharmacyclics: Honoraria, Research Funding; MorphoSys: Research Funding; Ascentage Pharma: Research Funding; Genentech: Honoraria; AbbVie: Honoraria, Research Funding; Merck: Research Funding; TG Therapeutics: Research Funding; AstraZeneca: Honoraria, Research Funding; Janssen: Honoraria, Research Funding. Kenderian:Sunesis: Research Funding; MorphoSys: Research Funding; Humanigen: Consultancy, Patents & Royalties, Research Funding; Gilead: Research Funding; BMS: Research Funding; Tolero: Research Funding; Lentigen: Research Funding; Juno: Research Funding; Mettaforge: Patents & Royalties; Torque: Consultancy; Kite: Research Funding; Novartis: Patents & Royalties, Research Funding. Kay:Astra Zeneca: Membership on an entity's Board of Directors or advisory committees; Acerta Pharma: Research Funding; Juno Theraputics: Membership on an entity's Board of Directors or advisory committees; Dava Oncology: Membership on an entity's Board of Directors or advisory committees; Oncotracker: Membership on an entity's Board of Directors or advisory committees; Sunesis: Research Funding; MEI Pharma: Research Funding; Agios Pharma: Membership on an entity's Board of Directors or advisory committees; Bristol Meyer Squib: Membership on an entity's Board of Directors or advisory committees, Research Funding; Tolero Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees, Research Funding; Abbvie: Research Funding; Pharmacyclics: Membership on an entity's Board of Directors or advisory committees, Research Funding; Rigel: Membership on an entity's Board of Directors or advisory committees; Morpho-sys: Membership on an entity's Board of Directors or advisory committees; Cytomx: Membership on an entity's Board of Directors or advisory committees. Braggio:DASA: Consultancy; Bayer: Other: Stock Owner; Acerta Pharma: Research Funding. Ding:DTRM: Research Funding; Astra Zeneca: Research Funding; Abbvie: Research Funding; Merck: Membership on an entity's Board of Directors or advisory committees, Research Funding; Octapharma: Membership on an entity's Board of Directors or advisory committees; MEI Pharma: Membership on an entity's Board of Directors or advisory committees; alexion: Membership on an entity's Board of Directors or advisory committees; Beigene: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3433-3433
Author(s):  
Caitlin Siebenaller ◽  
Madeline Waldron ◽  
Kelly Gaffney ◽  
Brian P. Hobbs ◽  
Ran Zhao ◽  
...  

Background: Younger patients (pts) with acute myeloid leukemia (AML) who enter a remission after intensive induction chemotherapy routinely receive at least one cycle of consolidation therapy with high dose cytarabine (HiDAC). This is commonly administered over a five-day inpatient stay, after which pts are discharged home as their blood counts nadir. It is thus a natural consequence of therapy that readmission for febrile neutropenia (FN) occurs, which can impact measures of quality and value in this population. Precise descriptions of incidence, type, and severity of infection, if identified, are lacking, and thus it is unknown to what standard cancer centers should be held for anticipated readmission. We measured these rates, and attempted to identify predictive factors for readmission. Methods: Adult AML pts ≥ 18 years of age who received at least one cycle of HiDAC consolidation (1000-3000 mg/m2 for six doses) in 2009-2019 were included. Our primary aim was to identify predictive factors for readmission after the first cycle of consolidation chemotherapy. The following pt characteristics and co-morbid conditions were analyzed: age, gender, body mass index (BMI), smoking status, AML cytogenetic risk status, history of diabetes, peripheral vascular disease, cardiovascular disease, chronic pulmonary disease, hepatic impairment, and other cancers. Secondary aims included: estimating rates of all-cause readmissions among all HiDAC cycles, defining the rate of FN readmissions, estimating rates of intensive care unit (ICU) admissions, clinical (e.g., probable pneumonia per imaging) and microbiologically-documented infections, prophylactic (ppx) medications used, and mortality. Statistical analyses interrogated potential risk factors for evidence of association with hospital readmission after the first cycle of consolidation chemotherapy. Results: We identified 182 AML pts who fit inclusion criteria. The median age was 50 years (range 19-73); 55% were female and 45% were male. Statistical analyses revealed no association with readmission after cycle 1 for cytogenetic risk (p=0.85), history of heart failure (p= 0.67), chronic pulmonary disease (p=1), connective tissue disease (p=0.53), cerebrovascular accident (p=0.63), diabetes (p=0.63), gender (p=0.07), history of lymphoma (p=0.53), other solid tumors (p=0.53), liver disease (p=1), myocardial infarction (p=0.71), peripheral vascular disease (p=1), or smoking status (p= 0.52). For 480 HiDAC cycles analyzed (88% at 3000 mg/m2), the overall readmission rate was 50% (242/480), of which 85% (205/242) were for FN. Those readmissions which were not FN were for cardiac complications (chest pain, EKG changes), non-neutropenic fevers or infections, neurotoxicity, bleeding or clotting events, or other symptoms associated with chemotherapy (nausea/vomiting, pain, etc.). Median time to FN hospital admission was 18 days (range 6-27) from the start of HiDAC. Of the 205 FN readmissions, 57% had documented infections. Of these infections, 41% were bacteremia, 23% fungal, 16% sepsis, 12% other bacterial, and 8% viral. Of 480 HiDAC cycles, ppx medications prescribed included: 92% fluoroquinolone (442/480), 81% anti-viral (389/480), 30 % anti-fungal (142/480), and 3% colony stimulating factor (14/480). Only 7% (14/205) of FN readmissions resulted in an ICU admission, and 1% (3/205) resulted in death. Conclusions: Approximately half of patients treated with consolidation therapy following intensive induction therapy can be expected to be readmitted to the hospital. The majority of FN readmissions were associated with clinical or microbiologically documented infections and are not avoidable, however ICU admission and death associated with these complications are rare. Readmission of AML pts following HiDAC is expected, and therefore, should be excluded from measures of value and quality. Disclosures Waldron: Amgen: Consultancy. Hobbs:Amgen: Research Funding; SimulStat Inc.: Consultancy. Advani:Macrogenics: Research Funding; Abbvie: Research Funding; Kite Pharmaceuticals: Consultancy; Pfizer: Honoraria, Research Funding; Amgen: Research Funding; Glycomimetics: Consultancy, Research Funding. Nazha:Incyte: Speakers Bureau; Abbvie: Consultancy; Daiichi Sankyo: Consultancy; Jazz Pharmacutical: Research Funding; Novartis: Speakers Bureau; MEI: Other: Data monitoring Committee; Tolero, Karyopharma: Honoraria. Gerds:Imago Biosciences: Research Funding; Roche: Research Funding; Celgene Corporation: Consultancy, Research Funding; Pfizer: Consultancy; CTI Biopharma: Consultancy, Research Funding; Incyte: Consultancy, Research Funding; Sierra Oncology: Research Funding. Sekeres:Syros: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Millenium: Membership on an entity's Board of Directors or advisory committees. Mukherjee:Partnership for Health Analytic Research, LLC (PHAR, LLC): Consultancy; McGraw Hill Hematology Oncology Board Review: Other: Editor; Projects in Knowledge: Honoraria; Celgene Corporation: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Pfizer: Honoraria; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Bristol-Myers Squibb: Speakers Bureau; Takeda: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4619-4619
Author(s):  
Jee Yon Shin ◽  
Sung-Soo Park ◽  
Gi June Min ◽  
Silvia Park ◽  
Sung-Eun Lee ◽  
...  

Background Either allogeneic hematopoietic stem cell transplantation (SCT) from HLA-matched sibling donor or immunosuppressive therapy (IST) has been recommended as one of the standard treatments for severe aplastic anemia (SAA). Regarding only 30% of chance finding HLA‐matched sibling donor, SCT from an alternative donor including unrelated (URD) or haplo-identical related donor (HAPLO) is considered to be a treatment option after failure to IST in patients who lack of a HLA-matched sibling donor. The aim of this study was to compare the outcomes of URD SCT and HAPLO SCT for SAA patients. Method Consecutive 152 adult patients with SAA who received first SCT between March 2002 and May 2018 were included: 73 of HLA-well-matched (8/8) URD (WM-URD), 34 of HLA-mismatched URD (MM-URD), and 45 of HAPLO. With the intention to have a follow-up period at least 1 year, data were analyzed at May 2019. A conditioning regimen with total body irradiation (TBI) and cyclophosphamide was used for URD-SCT, whereas that with TBI and fludarabine was administered for HAPLO-SCT (Lee et al, BBMT 2011;17:101, Park et al, BBMT 2017;23:1498, Lee et al, Am J Hematol 2018;93:1368). The combination of tacrolimus and methotrexate were used as graft-versus-host disease (GVHD) prophylaxis. Results The median follow-up was 53.4 (range, 0.2-174.1) months. The median age of URD and HAPLO cohort was 30 (range 18-59) and 34 (range 18-59) years, respectively. Except for one and three patients who failed respective a neutrophil and platelet engraftment, other patients achieved neutrophil and platelet engraftments with median 11 and 15 days for WM-URD, 13 and 16.5 days for MM-URD, and 12 and 14 days for HAPLO, respectively. The five-years overall survival (OS), failure-free survival (FFS), and cumulative incidences (CIs) of graft-failure and transplant-related mortality were similar among three groups: 88.3%, 85.5%, 2.7%, and 11.7% for WM-URD; 81.7%, 81.7%, 0%, and 18.3% for MM-URD, and 86.3%, 84.1%, 6.7%, and 9.2% for HAPLO. The 180-days CI of grade II-IV acute GVHD in WM-URD, MM-URD and HAPLO were 35.6%, 52.9%, and 28.9%, respectively; and moderate to severe chronic GVHD were 28.7%, 38.7% and 11.8% in respective cohort. The CI of grade II-IV acute GVHD and moderate to severe chronic GVHD were significantly higher in MM-URD than those in HAPLO (both, p=0.026). ATG is the only factor affecting both grade II-IV acute GVHD (Hazard ratio 0.511, p=0.01) and moderate to severe chronic GVHD (Hazard ratio 0.378, p=0.003) in multivariate analysis. Other complications including CMV DNAemia, hemorrhagic cystitis, invasive fungal disease, secondary malignancy, and sinusoidal obstruction syndrome were similar among three groups. Survival outcomes of a subgroup of ≥ 2 allele MM-URD (n=16) extracted form MM-URD were inferior that of other donor types (n=136): 75.0% vs. 86.9% (p=0.163) for 5-year OS and 75.0% vs. 84.7% (p=0.272) for 5-year FFS. Conclusion This study shows that there were no significant differences between alternative donor sources in the absence of suitable matched sibling donor. Host/donor features and urgency of transplant should drive physician towards the best choice among alternative donor sources for SAA patients treated with SCT. However, selection of ≥ 2 allele MM-URD should not be recommended due to high incidence of GVHD and inferior outcomes. Figure Disclosures Kim: Celgene: Consultancy, Honoraria; Astellas: Consultancy, Honoraria; Hanmi: Consultancy, Honoraria; AGP: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; SL VaxiGen: Consultancy, Honoraria; Novartis: Consultancy; Amgen: Honoraria; Chugai: Honoraria; Yuhan: Honoraria; Sanofi-Genzyme: Honoraria, Research Funding; Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees; Handok: Honoraria; Janssen: Honoraria; Daiichi Sankyo: Honoraria, Membership on an entity's Board of Directors or advisory committees; BL & H: Research Funding; Otsuka: Honoraria. Lee:Alexion: Consultancy, Honoraria, Research Funding; Achillion: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document