scholarly journals Specific stimulation of T lymphocytes with erythropoietin for adoptive immunotherapy

Blood ◽  
2020 ◽  
Vol 135 (9) ◽  
pp. 668-679 ◽  
Author(s):  
Natasha Vinanica ◽  
Arthur Yong ◽  
Desmond Wong ◽  
Yi Tian Png ◽  
See Voon Seow ◽  
...  

Abstract In adoptive T-cell immunotherapy of cancer, expansion and persistence of effector cells is a key determinant of response. We tested whether T lymphocytes could be rendered sensitive to erythropoietin (Epo) through ectopic expression of its wild-type receptor or a truncated form (EpoRm), which augments Epo signaling in erythrocyte progenitors. Both receptors could be expressed in human T lymphocytes; Epo ligation induced STAT5 phosphorylation, which was abrogated by nontoxic concentrations of the JAK1/2 inhibitor ruxolitinib. EpoRm had higher expression and triggered more potent stimulation than its wild-type counterpart, including superior T-cell survival and proliferation. Using a bicistronic vector, we expressed EpoRm together with an anti–CD19-41BB-CD3ζ chimeric antigen receptor (CAR), while maintaining the functions of each receptor. In the presence of Epo, EpoRm-CAR T cells had greater ex vivo expansion than CAR T cells and killed CD19+ leukemic cells more effectively in long-term cultures. In immunodeficient mice, physiologic levels of murine Epo were sufficient to preferentially expand EpoRm-CAR T cells, yielding a significantly higher antileukemic activity. Thus, outfitting adoptive T cells with EpoRm should yield greater effector-to-target ratios with a smaller number of infused cells; Epo or ruxolitinib administration could be used to adjust their levels postinfusion, maximizing antitumor activity and minimizing toxicity.

2021 ◽  
Vol 12 ◽  
Author(s):  
Ratchapong Netsrithong ◽  
Methichit Wattanapanitch

Adoptive cell therapy (ACT) using chimeric antigen receptor (CAR) T cells holds impressive clinical outcomes especially in patients who are refractory to other kinds of therapy. However, many challenges hinder its clinical applications. For example, patients who undergo chemotherapy usually have an insufficient number of autologous T cells due to lymphopenia. Long-term ex vivo expansion can result in T cell exhaustion, which reduces the effector function. There is also a batch-to-batch variation during the manufacturing process, making it difficult to standardize and validate the cell products. In addition, the process is labor-intensive and costly. Generation of universal off-the-shelf CAR T cells, which can be broadly given to any patient, prepared in advance and ready to use, would be ideal and more cost-effective. Human induced pluripotent stem cells (iPSCs) provide a renewable source of cells that can be genetically engineered and differentiated into immune cells with enhanced anti-tumor cytotoxicity. This review describes basic knowledge of T cell biology, applications in ACT, the use of iPSCs as a new source of T cells and current differentiation strategies used to generate T cells as well as recent advances in genome engineering to produce next-generation off-the-shelf T cells with improved effector functions. We also discuss challenges in the field and future perspectives toward the final universal off-the-shelf immunotherapeutic products.


Neurosurgery ◽  
2019 ◽  
Vol 66 (Supplement_1) ◽  
Author(s):  
Bryan D Choi ◽  
Xiaoling Yu ◽  
Ana P Castano ◽  
Amanda A Bouffard ◽  
Andrea Schmidts ◽  
...  

Abstract INTRODUCTION Immune therapy with T cells engineered to express chimeric antigen receptors (CARs) represents a promising therapy for patients with glioblastoma (GBM). However, clinical responses have been limited due to heterogeneous target antigen expression and outgrowth of tumors lacking the antigen targeted by CAR T cells directed against a single target. In clinical studies with CART-EGFRvIII, EGFRvIII-targeted T cells successfully localized to the brain tumor microenvironment, but ultimately failed to prevent disease progression with post-treatment specimens demonstrating high levels of wild-type EGFR despite reduced expression of EGFRvIII. METHODS We developed a novel bicistronic CAR construct engineered for local delivery of bispecific T-cell engagers (BiTEs) that target residual tumor. Specifically, EGFRvIII-targeted CAR T cells were engineered to secrete BiTEs against wild-type EGFR, which is frequently amplified and overexpressed in GBM. RESULTS Human T cells were efficiently transduced with the dual CART.BiTE transgene. These modified cells secreted biologically active EGFR-specific BiTEs that not only redirected CAR T cells but also recruited and activated untransduced bystander T cells against wild-type EGFR. Recapitulating clinical data, EGFRvIII CAR T cells were unable to completely treat tumors with heterogenous EGFRvIII expression, leading to outgrowth of EGFRvIII-negative, EGFR-positive GBM. Conversely, CART.BiTE cells cured mice even in the setting of antigen-loss, against heterogeneous and well-established intracerebral tumors in mice. Unlike CAR T cells directly targeting EGFR, which caused toxicity in human skin grafts in vivo, secreted BiTE-EGFR was both locally effective and did not result in toxicity against grafted human skin. CONCLUSION This is the first instance in which CARs and BiTEs have been combined into a single platform of immune therapy. Our results demonstrate that CARs and BiTEs can be combined strategically to mitigate antigen heterogeneity in GBM and also provide a unique T-cell-based delivery method for BiTEs to tumors in the brain.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3721-3721
Author(s):  
Yinmeng Yang ◽  
Christopher Daniel Chien ◽  
Elad Jacoby ◽  
Haiying Qin ◽  
Waleed Haso ◽  
...  

Abstract Adoptive therapy using T cells genetically engineered to express chimeric antigen receptors (CAR) has proven extremely effective against acute lymphoblastic leukemia (ALL) in clinical trials with the use of anti-CD19 CAR T cells. Most CAR T cell protocols use autologous T cells, which are then activated, transduced with the anti-CD19 CAR, and expanded ex-vivo before infusion back into the patient. This approach minimizes the risk of graft-versus-host disease (GVHD) even in allogeneic transplant recipients, due to tolerization of the donor T cell repertoire in the recipient. However, many patients have heavy disease burden and lymphopenia due to previous treatments, which makes the isolation of healthy T cells difficult. Thus, centers are exploring the potential of allogeneic T cell donors and the possibility of universal T cell donors for CAR-based therapy including the use of virus-specific T cells. In these cases, in addition to the chimeric receptor specificity, the transduced T cell population will also have reactivity against target antigens through the endogenous TCR. However, little is known about the impact of signaling of the endogenous TCR on CAR T cell activity, particularly in vivo. To test this, we used a syngeneic transplantable ALL murine model, E2aPBx, in which CD19 CAR T cells can effectively eradicate ALL. CD4 (Marilyn) and CD8 (Matahari) T cells from syngeneic HY-TCR transgenic donors specific for the minor histocompatibility male antigen, HY, were used as CAR T cell donors to control for endogenous TCR reactivity. Splenic T cells isolated from Matahari, Marilyn, or B6 mice were activated ex-vivo using anti-CD3/anti-CD28 beads, with the addition of IL2 and IL7. T cells were transduced with a retroviral vector expressing a murine CAR composed of anti-CD19 scfv/CD28/CD3ζ on days two and three. CAR T cells are evaluated in vitro by CD107a degranulation assay and INF gamma ELISA. In response to HY peptide alone or HY+CD19- line M39M, transduced CD8 HY (Matahari) cells produced IFN gamma and expressed CD107a whereas transduced CD4 HY (Marilyn) cells only produced IFN gamma. Interestingly, in response to CD19+HY- ALL, both Matahari and Marilyn expressed CD107a and produced IFN gamma indicating that CD4 T cells can acquire CD8-like lytic activity when stimulated through a CAR receptor. When CD19 CAR transduced Marilyns and Mataharis were stimulated in the presence of HY and CD19, CD8 Mataharis had an attenuated effect against CD19, suggesting that the presence of antigen activated TCR adversely affects the potency of the CAR receptor. Efficacy of the HY and polyclonal CAR T cells were next tested in-vivo in male and female B6 mice. Mice were given 1E6 E2aPBx ALL leukemia cells on day 1, and received 500 rads sub-lethal total body irradiation on day 4 as a lymphodepleting regimen. On day 5, mice were given a low (1E5) or high (5E6) dose of CAR T cells. There was a statistically significant (p=0.0177) improvement in the survival of female versus male mice after treatment with the CD4+ HY specific anti-CD19 CAR T cells, and female mice that received HY anti-CD19 CAR T cells survived longer than untreated control females (p=0.01). Remarkably, the survival of male mice that received HY anti-CD19 CAR T cells was statistically worse than untreated control males (p=0.008). This suggests that the presence of TCR antigen negatively impacts the function of CAR T cells. Furthermore, in a separate experiment using an equally mixed population of Marilyn (CD4+) and Matahari (CD8+) HY specific T cells, males has a statistically significantly (p=0.0116) worse survival compared to females after receiving 5E5 HY specific T cells. In conclusion, simultaneous stimulation through both CAR and TCR results in attenuated cytokine production and degranulation by CD8 T cells. In vivo, in the presence of the endogenous TCR antigen, both CD4 and CD8 CAR T cells are less potent at eradicating leukemia. These have implications for the development of universal donors for CAR T cell therapy. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5891-5891
Author(s):  
Jacob Halum Basham ◽  
Terrence L. Geiger

Abstract Chimeric antigen receptor-modified T lymphocytes (CART cells) have shown benefit as an adjuvant immunotherapy in the treatment of B cell malignancies. This success of re-targeted T cells has not been extended to other hematologic malignancies. We have developed an immunotherapeutic approach to treat acute myeloid leukemia (AML) using CAR T cells re-directed against the myeloid-specific antigen CD33 (CART-33). CART-33 cells are potent and specific in eliminating AML cells in vitro and in vivo. Despite this, CART-33 cells have shown poor in vivo expansion and persistence in NOD-SCID IL2rγ (-/-) (NSG) AML xenograft models. To address the reason for this, we assessed the impact of AML-expressed programmed death ligands 1 & 2 (PD-L1/2) on CART-33 cell activity. PD-L1 inhibits T cell functions upon binding PD-1, which is upregulated with T cell activation. Less is known about PD-L2's effect. Interferon-gamma (IFN-γ), a primary effector cytokine secreted by CD4+ and CD8+ effector T cells, is a known potent inducer of PD-L1 on AML blasts. Using AML cell lines U937, Oci-AML3, CMK, and MV4-11 we show that IFN-γ, TNF-α, and activated CART-33 supernatant can induce up-regulation of PD-L1 and PD-L2 on AML. IFN-γ and TNF-α synergize strongly in up-regulating PD-1 ligands on AML. The kinetics and induction of PD-L2 are distinct from that of PD-L1. Although PD-L1 is well documented to suppress T cell function via ligation of T cell expressed PD-1, induction of PD-L1/L2 had no effect on the cytolytic activity of CART-33 cells against AML in short term (<48 h) cultures. Paradoxically, 24 hr pre-treatment of AML with either IFN-γ or CART-33 supernatant increased AML susceptibility to killing by CART-33 cells despite elevated expression of PD-L1/L2 by AML. Our results highlight the regulatory complexity of AML cytolysis by re-targeted T lymphocytes, and argue that tumor-expressed PD-L1 and PD-L2 impacts the sustainability, but not short-term killing activity, of adoptively transferred CAR T cells in the treatment of AML. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 4 (18) ◽  
pp. 4483-4493
Author(s):  
Iosifina P. Foskolou ◽  
Laura Barbieri ◽  
Aude Vernet ◽  
David Bargiela ◽  
Pedro P. Cunha ◽  
...  

Abstract Cancer immunotherapy is advancing rapidly and gene-modified T cells expressing chimeric antigen receptors (CARs) show particular promise. A challenge of CAR-T cell therapy is that the ex vivo–generated CAR-T cells become exhausted during expansion in culture, and do not persist when transferred back to patients. It has become clear that naive and memory CD8 T cells perform better than the total CD8 T-cell populations in CAR-T immunotherapy because of better expansion, antitumor activity, and persistence, which are necessary features for therapeutic success and prevention of disease relapse. However, memory CAR-T cells are rarely used in the clinic due to generation challenges. We previously reported that mouse CD8 T cells cultured with the S enantiomer of the immunometabolite 2-hydroxyglutarate (S-2HG) exhibit enhanced antitumor activity. Here, we show that clinical-grade human donor CAR-T cells can be generated from naive precursors after culture with S-2HG. S-2HG–treated CAR-T cells establish long-term memory cells in vivo and show superior antitumor responses when compared with CAR-T cells generated with standard clinical protocols. This study provides the basis for a phase 1 clinical trial evaluating the activity of S-2HG–treated CD19-CAR-T cells in patients with B-cell malignancies.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1893-1893 ◽  
Author(s):  
Molly R. Perkins ◽  
Shannon Grande ◽  
Amanda Hamel ◽  
Holly M. Horton ◽  
Tracy E. Garrett ◽  
...  

Abstract Patients treated with chimeric antigen receptor (CAR) T cells targeting CD19 for B cell malignancies have experienced rapid and durable tumor regressions. Manufacture of CAR T cells is challenged by the necessity to produce a unique drug product for each patient. Each treatment requires ex vivo culture of patient T cells to facilitate CAR gene transfer and to achieve therapeutic amounts of T cells. Paradoxically, ex vivo culture with IL-2 also decreases CAR T cell activity. Some investigators have proposed isolating central memory T cells (thought to be enriched for therapeutic T cells), yet isolation techniques are cumbersome and costly to scale commercially. Culture of T cells in IL-7 and IL-15 has also been shown by several investigators to improve therapeutic activity. Here we explored the potential for culture modifications to improve the therapeutic potential of CAR T cells without adding complexity to manufacturing. We tested this hypothesis using CAR T cells specific to B cell maturation antigen (BCMA) manufactured using standard IL-2 culture with an inhibitor of PI3K added to the media, or with IL-7 and IL-15 in place of IL-2. The in vivo activity was studied in NSG mouse models of human Burkitt's lymphoma (Daudi), and multiple myeloma (RPMI-8226), both of which express BCMA. In the lymphoma model, NSG mice were injected intravenously (IV) with 2 x 106 Daudi cells and allowed to accumulate a large tumor burden before being treated with 4 x 106 CAR+ T cells on day 18 post-tumor injection. At this late time point post implantation, mice had highly disseminated Daudi tumor (our goal was to model late stage disease observed in relapsed and refractory lymphoma). In this model of advanced disease, IL-2 cultured anti-BCMA CAR T cells had no effect on tumor growth (p = 0.22) and all mice succumbed to the tumors within two weeks after treatment. Anti-BCMA CAR T cells grown in IL-7 and IL-15 also failed to control tumor growth (p = 0.23). In sharp contrast, all animals treated with anti-BCMA CAR T cells cultured with the PI3K inhibitor survived and experienced complete long-term tumor regression (p=0.003). The same anti-BCMA CAR T cells were used in a model of multiple myeloma. NSG mice were injected subcutaneously (SC) with 107 RPMI-8226 MM cells, and at 22 days post-implantation mice received a single IV administration of anti-BCMA CAR T cells (4 x 105 CAR+ T cells/mouse) cultured under various conditions. In this model, all treatment groups demonstrated tumor regression, regardless of the in vitro culture conditions. To evaluate CAR T cell durability, two weeks after initial tumor clearance, surviving animals were then re-challenged with RPMI-8226 cells on the opposite flank to model tumor relapse. We found that only animals that had been treated with anti-BCMA CAR T cells cultured with PI3K inhibition were immune to subsequent tumor challenge (p=0.005). Given the superior in vivo efficacy of anti-BCMA CAR T cells cultured with PI3K inhibition, we sought to identify phenotypic characteristics associated with the improved therapeutic activity. Anti-BCMA CAR T cells cultured with PI3K inhibition contained an increased frequency of CD62L+ CD8 T cells in the final product (p < 0.001) suggesting improved expansion of a distinct CD8 T cell subset. These data suggest that inhibition of PI3K during ex vivo expansion with IL-2 may generate a superior anti-BCMA CAR T cell product for clinical use. Furthermore, this approach could potentially be used in the manufacture of other T cell therapies. Disclosures Perkins: bluebird bio: Employment, Equity Ownership. Grande:bluebird bio: Employment, Equity Ownership. Hamel:bluebird bio: Employment, Equity Ownership. Horton:bluebird bio: Employment, Equity Ownership. Garrett:bluebird bio: Employment, Equity Ownership. Miller:bluebird bio: Employment, Equity Ownership. Latimer:bluebird bio: Employment, Equity Ownership. Horvath:bluebird bio: Employment, Equity Ownership. Kuczewski:bluebird bio: Employment, Equity Ownership. Friedman:bluebird bio: Employment, Equity Ownership. Morgan:bluebird bio: Employment, Equity Ownership.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4549-4549 ◽  
Author(s):  
Saba Ghassemi ◽  
Patel Prachi ◽  
John Scholler ◽  
Selene Nunez-Cruz ◽  
David M. Barrett ◽  
...  

Abstract Adoptive cell therapy employing T cells equipped with a chimeric antigen receptor (CAR) containing a single chain antibody fragment fused to T cell signaling domains 4-1BB and CD3zeta (CTL019) has shown great potency against various hematopoietic malignancies, e.g. B cell acute lymphoblastic leukemia (ALL). However, it has not shown the same response rate in other malignancies such as chronic lymphocytic leukemia (CLL). We recently demonstrated that the in vivo expansion and persistence of CAR T cells is an important predictor of response to CTL019 in CLL (PMID: 26333935) and ALL (Thudium et al., ASH 2016; Fraietta et al., ASH 2016). Furthermore, it is well known that prolonged culture of T cells negatively impacts the in vivo expansion of the adoptively transferred cells. We therefore hypothesized that minimizing the ex vivo manipulation of T cells would improve the efficacy of CAR T cells. We tested this hypothesis by generating CART19 cells using our standard 9-day manufacturing process plus two abbreviated versions. Cells from normal donors (n=9) and from patients with adult ALL (n=6) were stimulated on day 0 followed by transduction with the CAR19-encoding lentiviral vector on day 1. Cells were harvested on days 3, 5, and 9. Cryopreserved aliquots were evaluated for T cell differentiation using polychromatic flow cytometry, cytokine secretion profile using Luminex, cytolytic ability against a leukemia cell line (NALM6), proliferative ability upon restimulation with CD19-expressing target cells, and in vivo control of our well-established xenogeneic ALL model employing NALM6 as the target. Our data show that all cultures contain a substantial proportion (40%-80%) of na•ve-like CD45RO-CCR7+ T cells that progressively differentiate leading to the accumulation of predominantly (60%-90%) central memory T cells by the end of expansion. Comparative assessment of the CART19 cells at all three time points demonstrated that the cells from the shorter cultures displayed a superior in vitrocytolytic activity, and proliferative response compared to the standard process. In addition,the cells from our standard and shortened cultures all secreted comparable levels of type I cytokines (i.e. IFN-g, IL-2, and TNF-α). Importantly, we investigated the therapeutic potential of cells harvested at day 3 versus later time points. We treated NALM6 xenograftmice with a low dose (0.5 x106 CAR+ T cell I.V.) or standard dose (3 x106 CAR+ T cell I.V.).We demonstrate that day 3 CART19 cells show superior anti-leukemic activity compared to day 5 or day 9 cells. Additionally, we show that mice treated at a low dose with day 3 cells exhibit the greatest anti-leukemic efficacy compared with day 9 cells where the latter fail to control leukemia (Figure 1). Our preclinical findings provide evidence that extended ex vivo manipulation of T cells negatively affects their in vivo potency.In summary, we show that limiting T cell culture ex vivo to the minimum required for lentiviral transduction provides the most efficacious T cells for adoptive T cell immunotherapy. Figure 1 Figure 1. Disclosures Ghassemi: Novartis: Research Funding. Scholler:Novartis: Patents & Royalties; University of Pennsylvania: Patents & Royalties: FAP-CAR US Patent 9,365,641 for targeting tumor microenvironment. Nunez-Cruz:Novartis: Research Funding. Barrett:Novartis: Research Funding. Bedoya:Novartis: Patents & Royalties. Fraietta:Novartis: Patents & Royalties: Novartis, Research Funding. Lacey:Novartis: Research Funding. Levine:GE Healthcare Bio-Sciences: Consultancy; Novartis: Patents & Royalties, Research Funding. Grupp:Novartis: Research Funding. June:Johnson & Johnson: Research Funding; Tmunity: Equity Ownership, Other: Founder, stockholder ; University of Pennsylvania: Patents & Royalties; Pfizer: Honoraria; Novartis: Honoraria, Patents & Royalties: Immunology, Research Funding; Immune Design: Consultancy, Equity Ownership; Celldex: Consultancy, Equity Ownership. Milone:Novartis: Patents & Royalties, Research Funding. Melenhorst:Novartis: Patents & Royalties, Research Funding.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 35-35
Author(s):  
Paul-Joseph Aspuria ◽  
Michael A Bauer ◽  
Sandro vivona ◽  
Rene de Waal Malefyt ◽  
Rob Kastelein ◽  
...  

CAR T cell therapy has demonstrated remarkable clinical efficacy against relapsed and refractory hematological malignancies, such as B cell non-Hodgkin lymphoma (NHL) and acute lymphoblastic leukemia (ALL) (Neelapu et al. NEJM, 2017; Schuster et al. NEJM, 2018; Turtle et al. Sci Trans Med, 2016). Despite these advances, prominent barriers including poor T cell effector function, lack of proliferation, and limited CAR T cell persistence prevent CAR T cell therapies from reaching their full curative potential (Srivastava and Riddell, Journal of Immunology, 2019). Interleukin-2 (IL-2) is a potent stimulator of CD4 and CD8 T cell proliferation, survival, and cytotoxic function, thereby making it an attractive molecule to support CAR T cell therapy. However, therapeutic use of IL-2 is limited by systemic toxicity due its promiscuous activation of undesired immune cell populations, including non-tumor reactive T cells and NK cells (Rosenberg et al. Journal of Immunology, 2014). To facilitate selective ex vivo and in vivo expansion of engineered T cells we have developed a human orthogonal (ortho) ligand/receptor system consisting of a pegylated, IL-2 mutein (STK- 009) that does not significantly activate the wild type receptor and a mutated IL-2 Receptor Beta (orthoIL-2Rβ) that does not significantly respond to its native ligand, wild type IL-2. This system enables in vivo IL-2 signaling in engineered cells that express the orthoIL-2Rβ while avoiding signaling in bystander T cells and NK cells. Here, we demonstrate the ability of the STK-009/orthoIL-2Rb ligand/receptor pair to selectively potentiate human orthoIL-2Rb (hoRb) expressing CD19 CAR T cells (CD19 orthoCAR T cells) in vitro and in vivo. We also demonstrate that STK-009 is selective for the orthogonal IL-2Rb and in a non-human primate model does not potentiate wild type T or NK cells and shows no evidence of toxicity. The STK-009/CD19 orthoCAR T platform was evaluated in a disseminated Raji mouse model of aggressive lymphoma. Subcutaneous administration of STK-009 dramatically expanded the CD19 orthoCAR T cells possessing a clinically favorable TSCM and TEMRA immunophenotype and significant antitumor efficacy was observed even at doses of CAR T cells typically regarded as sub-efficacious. When STK-009 dosing was stopped after complete tumor responses, CD19 orthoCAR T cells contracted as expected. Subsequent redosing of STK-009 in these tumor free mice re-expanded CD19 orthoCAR T cell levels demonstrating the on-demand control of the STK-009/orthoCAR T cell platform. Given the deep and durable responses we observed in the disseminated Raji model, we subsequently invested investigated the efficacy of the STK-009/orthoCAR T cell platform in a subcutaneous Raji model of lymphoma characteristically resistant to CAR T cell therapy. No significant anti-tumor effect was observed in mice treated with either CAR T cells alone or the combination of high dose wild-type IL-2 and CAR T cells. The subcutaneous administration of STK-009 in combination with a sub-efficacious dose of CD19 orthoCAR T cells demonstrated significant expansion of the CD19 orthoCAR T cells with the clinically favorable TSCM and TEMRA immunophenotype and potent anti-tumor efficacy in this subcutaneous lymphoma model, demonstrating the selective potentiation of the CD19 orthoCAR T cells in response to STK-009. The toxicity of STK-009 was evaluated in a non-human primate dose-escalation study. Subcutaneous administration STK-009 at anticipated therapeutic doses showed no evidence of toxicity or biological effect on immune cells expressing the wild-type IL-2 receptor. Pharmacokinetic analysis of STK-009 in this study showed stable exposure with minimal clearance, demonstrating the selectivity of STK-009. These findings validate an orthogonal platform that selectively drives potent T cell effector functions of engineered cells without the toxicities mediated by NK cells or non-tumor specific T cells associated with high dose IL-2 therapy. These results demonstrate the ability of this orthogonal platform to improve the efficacy and durability of CAR T cell therapies. Disclosures Aspuria: Synthekine: Current Employment. Bauer:Synthekine: Current Employment. vivona:Synthekine: Current Employment. de Waal Malefyt:Synthekine: Current Employment. Kastelein:Synthekine: Current Employment. Oft:Synthekine: Current Employment. Emmerich:Synthekine: Current Employment. Rokkam:Synthekine: Current Employment. Kauder:Synthekine: Current Employment. McCauley:Synthekine: Current Employment. Riener:Synthekine: Current Employment. Verma:Synthekine: Current Employment.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2848-2848
Author(s):  
Boris Engels ◽  
Xu Zhu ◽  
Jennifer Yang ◽  
Andrew Price ◽  
Akash Sohoni ◽  
...  

Abstract Background: Extended T-cell culture periods in vitro deplete the CAR-T final product of naive and stem cell memory T-cell (T scm) subpopulations that are associated with improved antitumor efficacy. YTB323 is an autologous CD19-directed CAR-T cell therapy with dramatically simplified manufacturing, which eliminates complexities such as long culture periods. This improved T-Charge™ process preserves T-cell stemness, an important characteristic closely tied to therapeutic potential, which leads to enhanced expansion ability and greater antitumor activity of CAR-T cells. Methods: The new T-Charge TM manufacturing platform, which reduces ex vivo culture time to about 24 hours and takes &lt;2 days to manufacture the final product, was evaluated in a preclinical setting. T cells were enriched from healthy donor leukapheresis, followed by activation and transduction with a lentiviral vector encoding for the same CAR used for tisagenlecleucel. After ≈24 hours of culture, cells were harvested, washed, and formulated (YTB323). In parallel, CAR-T cells (CTL*019) were generated using a traditional ex vivo expansion CAR-T manufacturing protocol (TM process) from the same healthy donor T cells and identical lentiviral vector. Post manufacturing, CAR-T products were assessed in T-cell functional assays in vitro and in vivo, in immunodeficient NSG mice (NOD-scid IL2Rg-null) inoculated with a pre-B-ALL cell line (NALM6) or a DLBCL cell line (TMD-8) to evaluate antitumor activity and CAR-T expansion. Initial data from the dose escalation portion of the Phase 1 study will be reported separately. Results: YTB323 CAR-T products, generated via this novel expansionless manufacturing process, retained the immunophenotype of the input leukapheresis; specifically, naive/T scm cells (CD45RO -/CCR7 +) were retained as shown by flow cytometry. In contrast, the TM process with ex vivo expansion generated a final product consisting mainly of central memory T cells (T cm) (CD45RO +/CCR7 +) (Fig A). Further evidence to support the preservation of the initial phenotype is illustrated by bulk and single-cell RNA sequencing experiments, comparing leukapheresis and final products from CAR-Ts generated using the T-Charge™ and TM protocols. YTB323 CAR-T cell potency was assessed in vitro using a cytokine secretion assay and a tumor repeat stimulation assay, designed to test the persistence and exhaustion of the cell product. YTB323 T cells exhibited 10- to 17-fold higher levels of IL-2 and IFN-γ secretion upon CD19-specific activation compared with CTL*019. Moreover, YTB323 cells were able to control the tumor at a 30-fold lower Effector:Tumor cell ratio and for a minimum of 7 more stimulations in the repeat stimulation assay. Both assays clearly demonstrated enhanced potency of the YTB323 CAR-T cells in vitro. The ultimate preclinical assessment of the YTB323 cell potency was through comparison with CTL*019 regarding in vivo expansion and antitumor efficacy against B-cell tumors in immunodeficient NSG mouse models at multiple doses. Expansion of CD3+/CAR+ T-cells in blood was analyzed weekly by flow cytometry for up to 4 weeks postinfusion. Dose-dependent expansion (C max and AUC 0-21d) was observed for both YTB323 and CTL*019. C max was ≈40-times higher and AUC 0-21d was ≈33-times higher for YTB323 compared with CTL*019 across multiple doses. Delayed peak expansion (T max) of YTB323 by at least 1 week compared with CTL*019 was observed, supporting that increased expansion was driven by the less differentiated T-cell phenotype of YTB323. YTB323 controlled NALM6 B-ALL tumor growth at a lower dose of 0.1×10 6 CAR+ cells compared to 0.5×10 6 CAR+ cells required for CTL*019 (Fig B). In the DLBCL model TMD-8, only YTB323 was able to control the tumors while CTL*019 led to tumor progression at the respective dose groups. This ability of YTB323 cells to control the tumor at lower doses confirms their robustness and potency. Conclusions: The novel manufacturing platform T-Charge™ used for YTB323 is simplified, shortened, and expansionless. It thereby preserves T-cell stemness, associated with improved in vivo CAR-T expansion and antitumor efficacy. Compared to approved CAR-T therapies, YTB323 has the potential to achieve higher clinical efficacy at its respective lower doses. T-Charge™ is aiming to substantially revolutionize CAR-T manufacturing, with concomitant higher likelihood of long-term deep responses. Figure 1 Figure 1. Disclosures Engels: Novartis: Current Employment, Current equity holder in publicly-traded company. Zhu: Novartis: Current Employment, Current equity holder in publicly-traded company. Yang: Novartis: Current Employment, Patents & Royalties. Price: Novartis: Current Employment. Sohoni: Novartis: Current Employment. Stein: Novartis: Current Employment. Parent: Novartis: Ended employment in the past 24 months; iVexSol, Inc: Current Employment. Greene: iVexSol, Inc: Current Employment, Current equity holder in publicly-traded company, Current holder of individual stocks in a privately-held company, Current holder of stock options in a privately-held company. Niederst: Novartis: Current Employment, Current equity holder in publicly-traded company. Whalen: Novartis: Current Employment. Orlando: Novartis: Current Employment. Treanor: Novartis: Current Employment, Current holder of individual stocks in a privately-held company, Divested equity in a private or publicly-traded company in the past 24 months, Patents & Royalties: no royalties as company-held patents. Brogdon: Novartis Institutes for Biomedical Research: Current Employment.


2021 ◽  
Vol 9 (9) ◽  
pp. e002737
Author(s):  
Justin T Huckaby ◽  
Elisa Landoni ◽  
Timothy M Jacobs ◽  
Barbara Savoldo ◽  
Gianpietro Dotti ◽  
...  

BackgroundChimeric antigen receptor (CAR) T cells have shown considerable promise as a personalized cellular immunotherapy against B cell malignancies. However, the complex and lengthy manufacturing processes involved in generating CAR T cell products ex vivo result in substantial production time delays and high costs. Furthermore, ex vivo expansion of T cells promotes cell differentiation that reduces their in vivo replicative capacity and longevity.MethodsHere, to overcome these limitations, CAR-T cells are engineered directly in vivo by administering a lentivirus expressing a mutant Sindbis envelope, coupled with a bispecific antibody binder that redirects the virus to CD3+ human T cells.ResultsThis redirected lentiviral system offers exceptional specificity and efficiency; a single dose of the virus delivered to immunodeficient mice engrafted with human peripheral blood mononuclear cells generates CD19-specific CAR-T cells that markedly control the growth of an aggressive pre-established xenograft B cell tumor.ConclusionsThese findings underscore in vivo engineering of CAR-T cells as a promising approach for personalized cancer immunotherapy.


Sign in / Sign up

Export Citation Format

Share Document