scholarly journals Aging-induced IL27Ra signaling impairs hematopoietic stem cells

Blood ◽  
2020 ◽  
Vol 136 (2) ◽  
pp. 183-198 ◽  
Author(s):  
Hanqing He ◽  
Panglian Xu ◽  
Xiaofei Zhang ◽  
Min Liao ◽  
Qiongye Dong ◽  
...  

Abstract Hematopoietic stem cell (HSC) aging correlates with an increasing risk of myeloproliferative disease and immunosenescence. In this study, we show that aging-related inflammation promotes HSC aging through tumor necrosis factor-α (TNF-α)→ERK→ETS1→interleukin27Ra (IL27Ra) pathway. TNF-α, a well-known biomarker of inflammation, increases during aging and induces the expression of IL27Ra on HSCs via ERK-ETS1 signaling. Deletion of IL27Ra rescues the functional decline and myeloid bias of HSCs and also reverses the inhibitory effect of TNF-α on HSCs. Aged IL27Ra−/− mice had a reduced proportion of myeloid-biased HSCs and did not display the biased myeloid differentiation that occurs in aged wild-type mice. IL27Ra+ HSCs exhibit impaired reconstitution capacity and myeloid-bias compared with IL27Ra− HSCs and serve as a myeloid-recovery pool upon inflammatory insult. Inflammation-related genes were enriched in IL27Ra+ HSCs and this enrichment increases with aging. Our study demonstrates that age-induced IL27Ra signaling impairs HSCs and raises the possibility that interfering with IL27Ra signaling can counter the physiologically deleterious effect of aging on hematopoietic capacity.

Blood ◽  
2009 ◽  
Vol 113 (21) ◽  
pp. 5111-5120 ◽  
Author(s):  
Michael D. Milsom ◽  
Bernhard Schiedlmeier ◽  
Jeff Bailey ◽  
Mi-Ok Kim ◽  
Dandan Li ◽  
...  

AbstractEctopic delivery of HOXB4 elicits the expansion of engrafting hematopoietic stem cells (HSCs). We hypothesized that inhibition of tumor necrosis factor-α (TNF-α) signaling may be central to the self-renewal signature of HOXB4. Because HSCs derived from Fanconi anemia (FA) knockout mice are hypersensitive to TNF-α, we studied Fancc−/− HSCs to determine the physiologic effects of HOXB4 on TNF-α sensitivity and the relationship of these effects to the engraftment defect of FA HSCs. Overexpression of HOXB4 reversed the in vitro hypersensitivity to TNF-α of Fancc−/− HSCs and progenitors (P) and partially rescued the engraftment defect of these cells. Coexpression of HOXB4 and the correcting FA-C protein resulted in full correction compared with wild-type (WT) HSCs. Ectopic expression of HOXB4 resulted in a reduction in both apoptosis and reactive oxygen species in Fancc−/− but not WT HSC/P. HOXB4 overexpression was also associated with a significant reduction in surface expression of TNF-α receptors on Fancc−/− HSC/P. Finally, enhanced engraftment was seen even when HOXB4 was expressed in a time-limited fashion during in vivo reconstitution. Thus, the HOXB4 engraftment signature may be related to its effects on TNF-α signaling, and this pathway may be a molecular target for timed pharmacologic manipulation of HSC during reconstitution.


2018 ◽  
Vol 315 (2) ◽  
pp. G241-G248 ◽  
Author(s):  
Veedamali S. Subramanian ◽  
Subrata Sabui ◽  
Ganapathy A. Subramenium ◽  
Jonathan S. Marchant ◽  
Hamid M. Said

Sodium-dependent vitamin C transporter-1 (SVCT-1) is the major transporter mediating intestinal vitamin C uptake. Intestinal inflammation and prolonged infection are associated with increased serum and intestinal mucosa levels of tumor necrosis factor-α (TNF-α), which also exerts profound effects on the intestinal absorption process. Elevated levels of TNF-α have been linked to the pathogenesis of inflammatory bowel disease (IBD) and malabsorption of nutrients, and patients with this condition have low levels of vitamin C. To date, little is known about the effect of TNF-α on intestinal absorption of vitamin C. We studied the impact of TNF-α on ascorbic acid (AA) transport using a variety of intestinal preparations. The expression level of human SVCT-1 mRNA is significantly lower in patients with IBD. TNF-α treated Caco-2 cells and mice showed a significant inhibition of intestinal14C-AA uptake. This inhibition was associated with significant decreases in SVCT-1 protein, mRNA, and heterogeneous nuclear RNA levels in TNF-α treated Caco-2 cells, mouse jejunum, and enteroids. Also, TNF-α caused a significant inhibition in the SLC23A1 promoter activity. Furthermore, treatment of Caco-2 cells with celastrol (NF-κB inhibitor) blocked the inhibitory effect caused by TNF-α on AA uptake, SVCT-1 protein, and mRNA expression, as well as the activity of SLC23A1 promoter. Treatment of TNF-α also led to a significant decrease in the expression of hepatocyte nuclear factor-1-α, which drives the basal activity of SLC23A1 promoter, and this effect was reversed by celastrol. Together, these findings show that TNF-α inhibits intestinal AA uptake, and this effect is mediated, at least in part, at the level of transcription of the SLC23A1 gene via the NF-κB pathway.NEW & NOTEWORTHY Our findings show that tumor necrosis factor-α inhibits intestinal ascorbic acid uptake in both in vitro and in vivo systems, and this inhibitory effect is mediated, at least in part, at the level of transcription of the SLC23A1 (sodium-dependent vitamin C transporter-1) gene via the NF-κB pathway.


2002 ◽  
Vol 283 (5) ◽  
pp. H1785-H1794 ◽  
Author(s):  
David X. Zhang ◽  
Fu-Xian Yi ◽  
Ai-Ping Zou ◽  
Pin-Lan Li

The present study tested the hypothesis that ceramide, a sphingomylinase metabolite, serves as an second messenger for tumor necrosis factor-α (TNF-α) to stimulate superoxide production, thereby decreasing endothelium-dependent vasorelaxation in coronary arteries. In isolated bovine small coronary arteries, TNF-α (1 ng/ml) markedly attenuated vasodilator responses to bradykinin and A-23187. In the presence of N G-nitro-l-arginine methyl ester, TNF-α produced no further inhibition on the vasorelaxation induced by these vasodilators. With the use of 4,5-diaminofluorescein diacetate fluorescence imaging analysis, bradykinin was found to increase nitric oxide (NO) concentrations in the endothelium of isolated bovine small coronary arteries, which was inhibited by TNF-α. Pretreatment of the arteries with desipramine (10 μM), an inhibitor of acidic sphingomyelinase, tiron (1 mM), a superoxide scavenger, and polyethylene glycol-superoxide dismutase (100 U/ml) largely restored the inhibitory effect of TNF-α on bradykinin- and A-23187-induced vasorelaxation. In addition, TNF-α activated acidic sphingomyelinase and increased ceramide levels in coronary endothelial cells. We conclude that TNF-α inhibits NO-mediated endothelium-dependent vasorelaxation in small coronary arteries via sphingomyelinase activation and consequent superoxide production in endothelial cells.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shinya Taguchi ◽  
Kengo Azushima ◽  
Takahiro Yamaji ◽  
Shingo Urate ◽  
Toru Suzuki ◽  
...  

AbstractTumor necrosis factor (TNF)-α is a potent mediator of inflammation and is involved in the pathophysiology of chronic kidney disease (CKD). However, the effects of TNF-α inhibition on the progression of kidney fibrosis have not been fully elucidated. We examined the effects of TNF-α inhibition by etanercept (ETN) on kidney inflammation and fibrosis in mice with aristolochic acid (AA) nephropathy as a model of kidney fibrosis. C57BL/6 J mice were administered AA for 4 weeks, followed by a 4-week remodeling period. The mice exhibited kidney fibrosis, functional decline, and albuminuria concomitant with increases in renal mRNA expression of inflammation- and fibrosis-related genes. The 8-week ETN treatment partially but significantly attenuated kidney fibrosis and ameliorated albuminuria without affecting kidney function. These findings were accompanied by significant suppression of interleukin (IL)-1β, IL-6, and collagen types I and III mRNA expression. Moreover, ETN tended to reduce the AA-induced increase in interstitial TUNEL-positive cells with a significant reduction in Bax mRNA expression. Renal phosphorylated p38 MAPK was significantly upregulated by AA but was normalized by ETN. These findings indicate a substantial role for the TNF-α pathway in the pathogenesis of kidney fibrosis and suggest that TNF-α inhibition could become an adjunct therapeutic strategy for CKD with fibrosis.


2016 ◽  
Vol 11 (1) ◽  
pp. 1934578X1601100 ◽  
Author(s):  
Hyun Gyu Choi ◽  
Tae Hoon Kim ◽  
Sang-Hyun Kim ◽  
Jeong Ah Kim

Twelve known triterpenoids (1–12) and two steroids (13 and 14) have been isolated from the spike of the plant Prunella vulgaris. Among them, 2α,3α,23-trihydroxyursa-12,20(30)-dien-28-oic acid (10) was isolated for the first time from this plant. All isolates were evaluated for their inhibitory effect on the gene expression of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), and release of histamine in human mast cells. β-Amyrin (5), 10, and euscaphic acid (12) showed suppression of histamine release with percentage inhibitions of 46.7, 57.9, and 54.2%, respectively. In addition, 5 and 10 showed strong inhibition of TNF-α and IL-6 in the test for pro-inflammatory cytokines. Our results suggest that compounds 5 and 10 largely contribute to the anti-allergic inflammatory effect of P. vulgaris.


Molecules ◽  
2020 ◽  
Vol 25 (16) ◽  
pp. 3573
Author(s):  
Lian-Chun Li ◽  
Zheng-Hong Pan ◽  
De-Sheng Ning ◽  
Yu-Xia Fu

Simonsinol is a natural sesqui-neolignan firstly isolated from the bark of Illicium simonsii. In this study, the anti-inflammatory activity of simonsinol was investigated with a lipopolysaccharide (LPS)-stimulated murine macrophages RAW264.7 cells model. The results demonstrated that simonsinol could antagonize the effect of LPS on morphological changes of RAW264.7 cells, and decrease the production of nitric oxide (NO), tumor necrosis factor α (TNF-α), and interleukin 6 (IL-6) in LPS-stimulated RAW264.7 cells, as determined by Griess assay and enzyme-linked immunosorbent assay (ELISA). Furthermore, simonsinol could downregulate transcription of inducible nitric oxide synthase (iNOS), TNF-α, and IL-6 as measured by reverse transcription polymerase chain reaction (RT-PCR), and inhibit phosphorylation of the alpha inhibitor of NF-κB (IκBα) as assayed by Western blot. In conclusion, these data demonstrate that simonsinol could inhibit inflammation response in LPS-stimulated RAW264.7 cells through the inactivation of the nuclear transcription factor kappa-B (NF-κB) signaling pathway.


2019 ◽  
Vol 88 ◽  
pp. 149-150 ◽  
Author(s):  
Erkoseoglu Ilknur ◽  
Kadioglu Mine ◽  
Cavusoglu Irem ◽  
Sisman Mulkiye ◽  
Aran Turhan ◽  
...  

2005 ◽  
Vol 60 (4) ◽  
pp. 471-475 ◽  
Author(s):  
Barbara Orzeszko ◽  
Tomasz Świtaj ◽  
Anna B. Jakubowska-Mućka ◽  
Witold Lasek ◽  
Andrzej Orzeszko ◽  
...  

Certain adamantylated heterocycles were previously shown to enhance the secretion of tumor necrosis factor alpha (TNF-α) by murine melanoma cells that have been transduced with the gene for human TNF-α and constitutively expressed this cytokine. The stimulatory potency of those compounds depended, among other factors, on the structure of the linker between the adamantyl residue and the heterocyclic core. In the present study, a series of (1-adamantyl)alkylsulfanyl derivatives of heterocyclic compounds was prepared by alkylation of the corresponding thioheterocyles. Of the novel adamantylalkylthio compounds tested in the aforementioned cell line, 2-(2-adamantan-1-ylethylsulfanyl)- 4-methyl-pyrimidine was found to be the most active


2017 ◽  
Vol 9 ◽  
pp. 117957351770927 ◽  
Author(s):  
Rudy Chang ◽  
Kei-Lwun Yee ◽  
Rachita K Sumbria

Tumor necrosis factor α (TNF-α) plays a central role in the pathophysiology of Alzheimer’s disease (AD). Food and Drug Administration–approved biologic TNF-α inhibitors are thus a potential treatment for AD, but they do not cross the blood-brain barrier. In this short review, we discuss the involvement of TNF-α in AD, challenges associated with the development of existing biologic TNF-α inhibitors for AD, and potential therapeutic strategies for targeting TNF-α for AD therapy.


Sign in / Sign up

Export Citation Format

Share Document