scholarly journals Splicing factor mutations in hematologic malignancies

Blood ◽  
2021 ◽  
Author(s):  
Sisi Chen ◽  
Salima Benbarche ◽  
Omar Abdel-Wahab

Mutations in genes encoding RNA splicing factors were discovered nearly ten years ago and are now understood to be amongst the most recurrent genetic abnormalities in patients with all forms of myeloid neoplasms and several types of lymphoproliferative disorders as well as subjects with clonal hematopoiesis. These discoveries implicate aberrant RNA splicing, the process by which precursor RNA is converted into mature messenger RNA, in the development of clonal hematopoietic conditions. Both the protein as well as the RNA components of the splicing machinery are affected by mutations at highly specific residues and a number of these mutations alter splicing in a manner distinct from loss of function. Importantly, cells bearing these mutations have now been shown to generate mRNA species with novel aberrant sequences, some of which may be critical to disease pathogenesis and/or novel targets for therapy. These findings have opened new avenues of research to understand biological pathways disrupted by altered splicing. In parallel, multiple studies have revealed that cells bearing change-of-function mutation in splicing factors are preferentially sensitized to any further genetic or chemical perturbations of the splicing machinery. These discoveries are now being pursued in several early phase clinical trials using molecules with diverse mechanisms of action. Here we review the molecular effects of splicing factor mutations on splicing, mechanisms by which these mutations drive clonal transformation of hematopoietic cells, and the development of new therapeutics targeting these genetic subsets of hematopoietic malignancies.

Blood ◽  
2020 ◽  
Vol 136 (13) ◽  
pp. 1477-1486 ◽  
Author(s):  
Justin Taylor ◽  
Xiaoli Mi ◽  
Khrystyna North ◽  
Moritz Binder ◽  
Alexander Penson ◽  
...  

Abstract Large-scale sequencing studies of hematologic malignancies have revealed notable epistasis among high-frequency mutations. One of the most striking examples of epistasis occurs for mutations in RNA splicing factors. These lesions are among the most common alterations in myeloid neoplasms and generally occur in a mutually exclusive manner, a finding attributed to their synthetic lethal interactions and/or convergent effects. Curiously, however, patients with multiple-concomitant splicing factor mutations have been observed, challenging our understanding of one of the most common examples of epistasis in hematologic malignancies. In this study, we performed bulk and single-cell analyses of patients with myeloid malignancy who were harboring ≥2 splicing factor mutations, to understand the frequency and basis for the coexistence of these mutations. Although mutations in splicing factors were strongly mutually exclusive across 4231 patients (q < .001), 0.85% harbored 2 concomitant bona fide splicing factor mutations, ∼50% of which were present in the same individual cells. However, the distribution of mutations in patients with double mutations deviated from that in those with single mutations, with selection against the most common alleles, SF3B1K700E and SRSF2P95H/L/R, and selection for less common alleles, such as SF3B1 non-K700E mutations, rare amino acid substitutions at SRSF2P95, and combined U2AF1S34/Q157 mutations. SF3B1 and SRSF2 alleles enriched in those with double-mutations had reduced effects on RNA splicing and/or binding compared with the most common alleles. Moreover, dual U2AF1 mutations occurred in cis with preservation of the wild-type allele. These data highlight allele-specific differences as critical in regulating the molecular effects of splicing factor mutations as well as their cooccurrences/exclusivities with one another.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 33-34
Author(s):  
Vera Adema ◽  
Hassan Awada ◽  
Laila Terkawi ◽  
Sunisa Kongkiatkamon ◽  
Cassandra M Kerr ◽  
...  

Somatic mutations in components of the RNA-splicing machinery (LUC7L2, PRFP8, SF3B1, SRSF2, U2AF1, ZRSR2) are detected in several subtypes of myeloid malignancies with some of them delineating a district a clinico-morphologic phenotype. RNA-splicing defects exist also in cases without splicing factor mutations suggesting that myelodysplastic syndrome (MDS) is a "spliceopathy" in which the presence of mutations represent the most extreme pole in the mis-splicing spectrum. Although some studies have shown the effects of individual splicing factor mutations on a variety of downstream targets, no key genes have been identified. Literature reports have shown that cells from patients with myeloid malignancies are highly susceptible to alterations in splicing factors with studies presenting an epistasis among RNA-splicing factor mutations (Blood.2020006868). The dilemma is whether this epistasis has a null effect or suppresses/ activates splicing factors in the context of double hits. More recently large scale genomic studies have led to the discovery of cells carrying mutations in more than one splicing factor. We took advantage of a molecular characterized collection of an in-house MDS and AML patients (n=1,742) and publicly available data of AML (n=2,302; Beat AML Master Trial, The Cancer Genome Atlas, German-Austrian Study Group) to describe the co-existence of a chimeric splicing factor phenotype and its clonal architecture. We identified a total of 40 patients carrying at least two hits in the most common components of the RNA-splicing machinery (PRPF8, SF3B1, SRSF2, U2AF1, ZRSR2). No patient harbored two hits in the same gene. In total, we detected 149 somatic mutations. A higher frequency of mutations was found in SRSF2 (60%; 24/40) followed by SF3B1 (48%; 19/40), ZRSR2 (42%; 17/40), U2AF1 (30%; 12/40) and PRPF8 (12.5%; 5/40). Other splicing factors were found mutated more rarely as in the case of LUC7L2 which was present in only 2 patients. Mutations occurred at common hotspots in SF3B1 (K666; K700; R625), SRSF2 (P95), U2AF1 (S34; Q157) and were missense, frameshift, and splice mutations in PRPF8 and frameshift in ZRSR2. Other splicing factor mutations were less frequently observed to co-occur (LUC7L2 with SF3B1 or SRSF2). In total, double splicing factor mutations were mostly enriched in male. Seventy-six% of ZRSR2 mutant patients were male. Notable the frequency of double splicing factor mutant patients was higher in AML compared to MDS and MDS/MPN (53% vs. 25% vs. 22). Thirty-two% of double mutant patients had sAML. Most common co-occurrent genes in this cohort included TET2 (32%; 13/40), RUNX1 (22%; 9/40) and ASXL1/ STAG2 (18%; 7/40 for both). The two splicing factors that were more concomitantly mutated were SF3B1/SRSF2. In fact, concomitant SF3B1/SRSF2 were found in 22% (9/40) of the patients. As a whole, SF3B1/SRSF2 average variant allele frequency (VAF)was similar (43% vs. 47%). In this group of patients, molecular hits were not preferential with half of the patients carrying one or the other as first clone. The second most concurrent mutation with SRSF2 after SF3B1 was ZRSR2 (18%; 7/40). SRSF2 was less frequently co-mutated with U2AF1 (4 patients) or PRPF8 (3 patients). U2AF1 was found co-mutated with SRSF2 and ZRSR2 (4 patients, each) and SF3B1 (3 patients). One patient with sAML had a triple splicing factor configuration (PRPF8 VAF: 29%, SF3B1 VAF: 26%, U2AF1 VAF: 20%). In terms of conventional cytogenetics, half of the patients carried normal karyotype. Among the patients with abnormal karyotype, the most common abnormality was +8 (12%; 5/40) with 4 patients having isolated +8. One patient was hemizygous carrying -17 and PRPF8 mutation. Two patients had del(7q) and del(5q) abnormalities each. The most frequent mutation in the SF3B1/SRSF2 mutant patients was RUNX1 (44%; 4/9); in two cases, SRSF2 was the dominant/ founder clone. Three patients with SF3B1/SRSF2 also carried STAG2 while two patients had TET2 and FLT3. In summary, we describe a subset of myeloid malignancies with a complex mutational associations involving splicing factor genes. The presence of these mutations might uncover novel biological clues in the mechanisms by which splicing factors drive the phenotypes of MDS and/or AML which might not represent only a random association but define new ways by which splicing factors might silence the activity of one versus another. Disclosures No relevant conflicts of interest to declare.


Genetics ◽  
2000 ◽  
Vol 155 (4) ◽  
pp. 1667-1682 ◽  
Author(s):  
Andreas N Kuhn ◽  
David A Brow

AbstractThe highly conserved splicing factor Prp8 has been implicated in multiple stages of the splicing reaction. However, assignment of a specific function to any part of the 280-kD U5 snRNP protein has been difficult, in part because Prp8 lacks recognizable functional or structural motifs. We have used a large-scale screen for Saccharomyces cerevisiae PRP8 alleles that suppress the cold sensitivity caused by U4-cs1, a mutant U4 RNA that blocks U4/U6 unwinding, to identify with high resolution five distinct regions of PRP8 involved in the control of spliceosome activation. Genetic interactions between two of these regions reveal a potential long-range intramolecular fold. Identification of a yeast two-hybrid interaction, together with previously reported results, implicates two other regions in direct and indirect contacts to the U1 snRNP. In contrast to the suppressor mutations in PRP8, loss-of-function mutations in the genes for two other splicing factors implicated in U4/U6 unwinding, Prp44 (Brr2/Rss1/Slt22/Snu246) and Prp24, show synthetic enhancement with U4-cs1. On the basis of these results we propose a model in which allosteric changes in Prp8 initiate spliceosome activation by (1) disrupting contacts between the U1 snRNP and the U4/U6-U5 tri-snRNP and (2) orchestrating the activities of Prp44 and Prp24.


Cancers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 332
Author(s):  
Yan Zhao ◽  
Hongling Peng

Epigenetics is identified as the study of heritable modifications in gene expression and regulation that do not involve DNA sequence alterations, such as DNA methylation, histone modifications, etc. Importantly, N6-methyladenosine (m6A) methylation modification is one of the most common epigenetic modifications of eukaryotic messenger RNA (mRNA), which plays a key role in various cellular processes. It can not only mediate various RNA metabolic processes such as RNA splicing, translation, and decay under the catalytic regulation of related enzymes but can also affect the normal development of bone marrow hematopoiesis by regulating the self-renewal, proliferation, and differentiation of pluripotent stem cells in the hematopoietic microenvironment of bone marrow. In recent years, numerous studies have demonstrated that m6A methylation modifications play an important role in the development and progression of hematologic malignancies (e.g., leukemia, lymphoma, myelodysplastic syndromes [MDS], multiple myeloma [MM], etc.). Targeting the inhibition of m6A-associated factors can contribute to increased susceptibility of patients with hematologic malignancies to therapeutic agents. Therefore, this review elaborates on the biological characteristics and normal hematopoietic regulatory functions of m6A methylation modifications and their role in the pathogenesis of hematologic malignancies.


Blood ◽  
2017 ◽  
Vol 129 (10) ◽  
pp. 1260-1269 ◽  
Author(s):  
Borja Saez ◽  
Matthew J. Walter ◽  
Timothy A. Graubert

Abstract Alternative splicing generates a diversity of messenger RNA (mRNA) transcripts from a single mRNA precursor and contributes to the complexity of our proteome. Splicing is perturbed by a variety of mechanisms in cancer. Recurrent mutations in splicing factors have emerged as a hallmark of several hematologic malignancies. Splicing factor mutations tend to occur in the founding clone of myeloid cancers, and these mutations have recently been identified in blood cells from normal, healthy elderly individuals with clonal hematopoiesis who are at increased risk of subsequently developing a hematopoietic malignancy, suggesting that these mutations contribute to disease initiation. Splicing factor mutations change the pattern of splicing in primary patient and mouse hematopoietic cells and alter hematopoietic differentiation and maturation in animal models. Recent developments in this field are reviewed here, with an emphasis on the clinical consequences of splicing factor mutations, mechanistic insights from animal models, and implications for development of novel therapies targeting the precursor mRNA splicing pathway.


Biomolecules ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 680 ◽  
Author(s):  
Asmaa Samy ◽  
Baris Suzek ◽  
Mehmet Ozdemir ◽  
Ozge Sensoy

Cancer is the second leading cause of death worldwide. The etiology of the disease has remained elusive, but mutations causing aberrant RNA splicing have been considered one of the significant factors in various cancer types. The association of aberrant RNA splicing with drug/therapy resistance further increases the importance of these mutations. In this work, the impact of the splicing factor 3B subunit 1 (SF3B1) K700E mutation, a highly prevalent mutation in various cancer types, is investigated through molecular dynamics simulations. Based on our results, K700E mutation increases flexibility of the mutant SF3B1. Consequently, this mutation leads to i) disruption of interaction of pre-mRNA with SF3B1 and p14, thus preventing proper alignment of mRNA and causing usage of abnormal 3’ splice site, and ii) disruption of communication in critical regions participating in interactions with other proteins in pre-mRNA splicing machinery. We anticipate that this study enhances our understanding of the mechanism of functional abnormalities associated with splicing machinery, thereby, increasing possibility for designing effective therapies to combat cancer at an earlier stage.


Tumor Biology ◽  
2017 ◽  
Vol 39 (3) ◽  
pp. 101042831769591 ◽  
Author(s):  
Wentao Zhou ◽  
Ning Ma ◽  
Hao Jiang ◽  
Yefei Rong ◽  
Yuezhen Deng ◽  
...  

Splicing factor 3b subunit 4, a critical component of pre-message RNA splicing complex, has been reported to play an important part in the tumorigenesis. However, the expression pattern and biological role of splicing factor 3b subunit 4 in pancreatic cancer have never been investigated. In this study, we found that both the messenger RNA ( p < 0.001) and protein level of splicing factor 3b subunit 4 were decreased significantly in pancreatic cancer specimens compared with their adjacent normal tissues. Overexpression of splicing factor 3b subunit 4 in pancreatic cancer cells inhibited cell growth and motility in vitro, while suppressing splicing factor 3b subunit 4 expression promoted the proliferation and migration of pancreatic cancer cells. In addition, splicing factor 3b subunit 4 was found to inhibit the activity of signal transducer and activator of transcription 3 signaling via downregulating the phosphorylation of signal transducer and activator of transcription 3 on a tyrosine residue at position 705. Taken together, these findings demonstrated that splicing factor 3b subunit 4 acted as a suppressive role in pancreatic cancer and indicated that restoring the function of splicing factor 3b subunit 4 might be a strategy for cancer therapy.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1268-1268
Author(s):  
Teresa V. Bowman ◽  
Rosannah C. Cameron ◽  
Kathryn S Potts ◽  
Mia McKinstry ◽  
Varun Gupta ◽  
...  

Abstract Hematopoietic stem cells (HSCs) maintain the hematopoietic system throughout the lifetime of an organism. During embryonic development, HSCs emerge through an endothelial-to-hematopoietic transition (EHT) from specialized hemogenic endothelial (HE) cells in the dorsal aorta. HSC fate specification depends on gene expression, which is the culmination of coordinated transcription, RNA splicing, and translation. Although transcriptional regulation of HSC fate choice is well studied, the regulatory role of RNA splicing in this process is poorly understood. Using zebrafish loss-of-function mutants for the spliceosomal component splicing factor 3b, subunit 1 (sf3b1), we identified that impaired splicing hindered HSC production. Surprisingly, we found that this constitutive splicing factor selectively regulates the fate of hemogenic endothelium while leaving the identity of closely-related non-hemogenic endothelium unperturbed. To identify Sf3b1-regulated transcripts important in EHT, we performed RNA-sequencing on purified kdrl:gfp+ endothelial cells from sf3b1 mutant and wild-type siblings at 24 hpf. Approximately 900 genes were mis-spliced, 144 of which were differentially expressed. Ingenuity Pathway Analysis identified Janus Kinase (Jak)/Signaling Transducer and Activator of Transcription (Stat) signaling, in particular Stat3, as one of the top perturbed pathways in the mis-spliced gene set. Stat3 is a transcription factor activated in response to several cytokine and inflammatory signals. To determine if altered splicing of stat3 was critical for HSC formation, we injected antisense splice-blocking morpholinos (MO) targeting the Sf3b1-sensitive stat3 exon19 into wild-type and sf3b1 heterozygous embryos, which normally generate equivalent levels of HSCs. We observed an impairment of HSC production in stat3 morpholino-injected sf3b1 heterozygotes, but not wild-type siblings, indicating a synthetic lethal interaction between sf3b1 and stat3. We also found that overexpression of a constitutively active form of Stat3 significantly suppressed the HSC defects in sf3b1 homozygous mutants. Together, these data indicate that Sf3b1-mediated splicing regulation of the Jak/Stat pathway is critical for HSC emergence. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3073-3073
Author(s):  
Courtney Hershberger ◽  
James Hiznay ◽  
Rosemary Dietrich ◽  
Xiaorong Gu ◽  
Cassandra M. Hirsch ◽  
...  

Abstract Myelodysplastic syndromes (MDS) are unique among cancers because of the frequent occurrence of somatic mutations impacting spliceosome machinery. At least 65% of MDS patients harbor a mutation in one of several splicing factors including U2AF1, SF3B1 and SRSF2. Whole exome sequencing of MDS bone marrow uncovered somatic frameshift mutations in LUC7L2, the mammalian ortholog of a yeast splicing factor. LUC7L2 is located in the most commonly deleted region of chromosome 7. Deletions and frameshifts lead to haploinsufficient expression and therefore it can be approximated that a combined 14% of MDS patients have low expression of LUC7L2. Restoring expression of LUC7L2 in del(7q)-iPSCs partially rescues the differentiation of iPSCs into CD45+ myeloid progenitors. Although perhaps partly due to associated losses of other genes on chromosome 7, low expression of LUC7L2 correlates with a poorer patient prognosis, so its haploinsufficiency may play an important role in bone marrow failure. While U2AF1, SF3B1, and SRSF2 are well-characterized splicing factors, the function of LUC7L2 in pre-mRNA splicing is unexamined and its role in the MDS pathogenesis is undefined. We hypothesize that low expression of LUC7L2 results in the aberrant splicing of oncogenes and tumor suppressor gene transcripts thus reducing expression or altering function and contributing to the pathogenesis of MDS. We have characterized LUC7L2 as an alternative splicing regulatory protein that plays a repressive role in the regulation of alternative RNA splicing. We generated HEK-293 cells overexpressing V5-tagged LUC7L2 for immunoprecipitation-mass spectrometry, to ascertain protein interactions with LUC7L2. LUC7L2 co-immunoprecipitated with splicing regulators which are involved in splice site recognition. We performed cross-linking-IP-high-throughput-sequencing (CLIP-seq) to identify LUC7L2 binding sites on RNA. We identified 301 LUC7L2 RNA-binding sites as well as binding sites on U1 and U2 which is common for splicing regulatory proteins. Metagene analysis of these binding sites showed that LUC7L2 bound near splice sites in exonic sequences. We knocked down LUC7L2 expression in HEK293 and K562 cells to phenocopy the frameshifts and deletions observed in MDS patients. We used a PCR-based assay to measure the splicing efficiency of introns near LUC7L2-binding sites. Knockdown of LUC7L2 increased the splicing efficiency of 8/13 selected introns; this suggests that LUC7L2 represses selective splice site usage. We also performed RNA-seq to characterize global mis-splicing events. Analysis of RNA transcripts revealed a multitude of splicing changes, including enhanced exclusion of alternative introns. Knockdown LUC7L2 cells exhibited-altered expression of other splicing factors; this could have further contributed to the vast number of splicing changes observed. To identify specific splicing changes that could contribute to the pathogenesis of MDS, we compared the splicing profiles of LUC7L2-knockdown in K562 cells with RNA-seq data from K562 cells expressing U2AF1S34F, SRSF2P95H or SF3B1K700E. This analysis yielded several exon-skipping splicing patterns in cancer-relevant transcripts, such as oncogene PRC1, splicing factor PTBP1 and MRPL33. Additionally, we noticed commonly mis-spliced transcripts among the four datasets in which the missplicing events occurred in the functional domain, potentially conferring a functional change. Surprisingly, we observed missplicing of U2AF1 in LUC7L2-knockdown, SRSF2P95H, and SF3B1K700E K562 cells, which altered the length of the RNA-recognition UHM domain by inclusion of a mutually exclusive exon or retention of an intron. In this way, low expression of LUC7L2, or point mutants U2AF1S34F, SRSF2P95H, and SF3B1K700E,could alter U2AF1 function as a distal convergence point. In summary, we identified a novel splicing factor implicated in the pathogenesis of MDS. We characterized LUC7L2 as a splicing repressor and discovered many splicing changes caused by low expression of LUC7L2. Several genes were also mis-spliced in U2AF1S34F, SRSF2P95H and SF3B1K700E K562 cells targeting these for further study. Commonly mis-spliced targets such as U2AF1 may indicate that some of the novel therapeutics may have spliceosome mutation agnostic effects. If this applies to the LUC7L2 mutations, then they may also be effective in del7/del7q cases. Disclosures Carraway: Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; FibroGen: Consultancy; Jazz: Speakers Bureau; Novartis: Speakers Bureau; Amgen: Membership on an entity's Board of Directors or advisory committees; Balaxa: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Agios: Consultancy, Speakers Bureau. Sekeres:Opsona: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Opsona: Membership on an entity's Board of Directors or advisory committees. Saunthararajah:Novo Nordisk, A/S: Patents & Royalties; EpiDestiny, LLC: Patents & Royalties. Maciejewski:Alexion Pharmaceuticals, Inc.: Consultancy, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Alexion Pharmaceuticals, Inc.: Consultancy, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Apellis Pharmaceuticals: Consultancy; Ra Pharmaceuticals, Inc: Consultancy; Apellis Pharmaceuticals: Consultancy; Ra Pharmaceuticals, Inc: Consultancy.


Sign in / Sign up

Export Citation Format

Share Document