scholarly journals Dynamic CTCF binding directly mediates interactions among cis-regulatory elements essential for hematopoiesis

Blood ◽  
2020 ◽  
Author(s):  
Qian Qi ◽  
Li Cheng ◽  
Xing Tang ◽  
Yanghua He ◽  
Yichao Li ◽  
...  

While constitutive CTCF-binding sites are needed to maintain relatively invariant chromatin structures, such as topologically associating domains, the precise roles of CTCF to control cell type-specific transcriptional regulation remain poorly explored. We examined CTCF occupancy in different types of primary blood cells derived from the same donor to elucidate a new role for CTCF in gene regulation during blood cell development. We identified dynamic, cell type-specific binding sites for CTCF that colocalize with lineage-specific transcription factors. These dynamic sites are enriched for single nucleotide polymorphisms that are associated with blood cell traits in different linages, and they coincide with the key regulatory elements governing hematopoiesis. CRISPR/Cas9-based perturbation experiments demonstrated that these dynamic CTCF-binding sites play a critical role in red blood cell development. Furthermore, precise deletion of CTCF-binding motifs in dynamic sites abolished interactions of erythroid genes, such as RBM38, with their associated enhancers and led to abnormal erythropoiesis. These results suggest a novel, cell type-specific function for CTCF in which it may serve to facilitate interaction of distal regulatory emblements with target promoters. Our study of the dynamic, cell type-specific binding and function of CTCF provides new insights into transcriptional regulation during hematopoiesis.

PLoS ONE ◽  
2012 ◽  
Vol 7 (7) ◽  
pp. e41374 ◽  
Author(s):  
Hebing Chen ◽  
Yao Tian ◽  
Wenjie Shu ◽  
Xiaochen Bo ◽  
Shengqi Wang

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hee Jung Choi ◽  
So Dam Jin ◽  
Deivendran Rengaraj ◽  
Jin Hwa Kim ◽  
Bertrand Pain ◽  
...  

Abstract Background NANOG is a core transcription factor (TF) in embryonic stem cells (ESCs) and primordial germ cells (PGCs). Regulation of the NANOG gene by TFs, epigenetic factors, and autoregulatory factors is well characterized in ESCs, and transcriptional regulation of NANOG is well established in these cells. Although NANOG plays a key role in germ cells, the molecular mechanism underlying its transcriptional regulation in PGCs has not been studied. Therefore, we investigated the mechanism that regulates transcription of the chicken NANOG (cNANOG) gene in PGCs and ESCs. Results We first identified the transcription start site of cNANOG by 5′-rapid amplification of cDNA ends PCR analysis. Then, we measured the promoter activity of various 5′ flanking regions of cNANOG in chicken PGCs and ESCs using the luciferase reporter assay. cNANOG expression required transcriptional regulatory elements, which were positively regulated by POU5F3 (OCT4) and SOX2 and negatively regulated by TP53 in PGCs. The proximal region of the cNANOG promoter contains a positive transcriptional regulatory element (CCAAT/enhancer-binding protein (CEBP)-binding site) in ESCs. Furthermore, small interfering RNA-mediated knockdown demonstrated that POU5F3, SOX2, and CEBP played a role in cell type-specific transcription of cNANOG. Conclusions We show for the first time that different trans-regulatory elements control transcription of cNANOG in a cell type-specific manner. This finding might help to elucidate the mechanism that regulates cNANOG expression in PGCs and ESCs.


2020 ◽  
Author(s):  
Hee Jung Choi ◽  
So Dam Jin ◽  
Deivendran Rengaraj ◽  
Jin Hwa Kim ◽  
Bertrand Pain ◽  
...  

Abstract BackgroundNANOG is a core transcription factor (TF) in embryonic stem cells (ESCs) and primordial germ cells (PGCs). Regulation of the NANOG gene by TFs, epigenetic factors, and autoregulatory factors is well characterized in ESCs, and transcriptional regulation of NANOG is well established in these cells. Although NANOG plays a key role in germ cells, the molecular mechanism underlying its transcriptional regulation in PGCs has not been studied. Therefore, we investigated the mechanism that regulates transcription of the chicken NANOG (cNANOG) gene in PGCs and ESCs. ResultsWe first identified the transcription start site of cNANOG by 5’-rapid amplification of cDNA ends PCR analysis. Then, we measured the promoter activity of various 5’ flanking regions of cNANOG in chicken PGCs and ESCs using the luciferase reporter assay. cNANOG expression required transcriptional cis-regulatory elements, which were positively regulated by POU5F3 (OCT4) and SOX2 and negatively regulated by TP53 in PGCs. The proximal region of the cNANOG promoter contains a positive cis-regulatory element (CCAAT/enhancer-binding protein (CEBP)-binding site) in ESCs. Furthermore, small interfering RNA-mediated knockdown demonstrated that POU5F3, SOX2, and CEBP played a role in cell type-specific transcription of cNANOG.ConclusionsWe show for the first time that different cis-regulatory elements control transcription of cNANOG in a cell type-specific manner. This finding might help to elucidate the mechanism that regulates cNANOG expression in PGCs and ESCs.


2019 ◽  
Vol 29 (7) ◽  
pp. 1057-1067 ◽  
Author(s):  
Bryce van de Geijn ◽  
Hilary Finucane ◽  
Steven Gazal ◽  
Farhad Hormozdiari ◽  
Tiffany Amariuta ◽  
...  

Abstract Regulatory variation plays a major role in complex disease and that cell type-specific binding of transcription factors (TF) is critical to gene regulation. However, assessing the contribution of genetic variation in TF-binding sites to disease heritability is challenging, as binding is often cell type-specific and annotations from directly measured TF binding are not currently available for most cell type-TF pairs. We investigate approaches to annotate TF binding, including directly measured chromatin data and sequence-based predictions. We find that TF-binding annotations constructed by intersecting sequence-based TF-binding predictions with cell type-specific chromatin data explain a large fraction of heritability across a broad set of diseases and corresponding cell types; this strategy of constructing annotations addresses both the limitation that identical sequences may be bound or unbound depending on surrounding chromatin context and the limitation that sequence-based predictions are generally not cell type-specific. We partitioned the heritability of 49 diseases and complex traits using stratified linkage disequilibrium (LD) score regression with the baseline-LD model (which is not cell type-specific) plus the new annotations. We determined that 100 bp windows around MotifMap sequenced-based TF-binding predictions intersected with a union of six cell type-specific chromatin marks (imputed using ChromImpute) performed best, with an 58% increase in heritability enrichment compared to the chromatin marks alone (11.6× vs. 7.3×, P = 9 × 10−14 for difference) and a 20% increase in cell type-specific signal conditional on annotations from the baseline-LD model (P = 8 × 10−11 for difference). Our results show that TF-binding annotations explain substantial disease heritability and can help refine genome-wide association signals.


2017 ◽  
Author(s):  
Kelsey A. Maher ◽  
Marko Bajic ◽  
Kaisa Kajala ◽  
Mauricio Reynoso ◽  
Germain Pauluzzi ◽  
...  

ABSTRACTThe transcriptional regulatory structure of plant genomes remains poorly defined relative to animals. It is unclear how many cis-regulatory elements exist, where these elements lie relative to promoters, and how these features are conserved across plant species. We employed the Assay for Transposase-Accessible Chromatin (ATAC-seq) in four plant species (Arabidopsis thaliana, Medicago truncatula, Solanum lycopersicum, and Oryza sativa) to delineate open chromatin regions and transcription factor (TF) binding sites across each genome. Despite 10-fold variation in intergenic space among species, the majority of open chromatin regions lie within 3 kb upstream of a transcription start site in all species. We find a common set of four TFs that appear to regulate conserved gene sets in the root tips of all four species, suggesting that TF-gene networks are generally conserved. Comparative ATAC-seq profiling of Arabidopsis root hair and non-hair cell types revealed extensive similarity as well as many cell type-specific differences. Analyzing TF binding sites in differentially accessible regions identified a MYB-driven regulatory module unique to the hair cell, which appears to control both cell fate regulators and abiotic stress responses. Our analyses revealed common regulatory principles among species and shed light on the mechanisms producing cell type-specific transcriptomes during development.


Author(s):  
Jacob Schreiber ◽  
Yang Young Lu ◽  
William Stafford Noble

AbstractThe development of modern genome editing tools has enabled researchers to make edits with high precision, but has left unsolved the problem of designing these edits. We propose Ledidi, an approach that treats the design of genomic edits as an optimization problem where the goal is to produce the desired output from a predictive model. The discrete nature of biological sequences makes direct optimization challenging, but we overcome this by using the Gumbel-Softmax reparameterization trick. We validate Ledidi by pairing it with the Basenji model, which makes predictions for thousands of functional profiles, and designing edits that affect CTCF binding and induce cell type-specific binding of JUND.


2021 ◽  
Author(s):  
Erin M Wissink ◽  
Delsy M. Martinez ◽  
Kirk T. Ehmsen ◽  
Keith R. Yamamoto ◽  
John T Lis

The glucocorticoid receptor (GR) regulates transcription through binding to specific DNA motifs, particularly at enhancers. While the motif to which it binds is constant across cell types, GR has cell type-specific binding at genomic loci, resulting in regulation of different genes. The presence of other bound transcription factors (TFs) is hypothesized to strongly influence where GR binds. Here, we addressed the roles of other TFs in the glucocorticoid response by comparing changes in GR binding and nascent transcription at promoters and distal candidate cis-regulatory elements (CCREs) in two distinct human cancer cell types. We found that after glucocorticoid treatment, GR binds to thousands of genomic loci that are primarily outside of promoter regions and are potentially enhancers. The majority of these GR binding sites are cell-type specific, and they are associated with pioneer factor binding. A small fraction of GR occupied regions (GORs) displayed increased bidirectional nascent transcription, which is a characteristic of many active enhancers, after glucocorticoid treatment. Non-promoter GORs with increased transcription were specifically enriched for AP-1 binding prior to glucocorticoid treatment. These results support a model of transcriptional regulation in which multiple classes of TFs are required. The pioneer factors increase chromatin accessibility, facilitating the binding of GR and additional factors. AP-1 binding poises a fraction of accessible sites to be rapidly transcribed upon glucocorticoid-induced GR binding. The coordinated activity of multiple TFs then results in cell type-specific changes in gene expression. We anticipate that many models of inducible gene expression also require multiple distinct TFs that act at multiple steps of transcriptional regulation.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. SCI-14-SCI-14
Author(s):  
Joanna Wysocka

Abstract Interactions between the genome and its cellular and signaling environments, which ultimately occur at the level of chromatin, are the key to comprehending how cell-type-specific gene expression patterns arise and are maintained during development or are misregulated in disease. Central to the cell type-specific transcriptional regulation are distal cis-regulatory elements called enhancers, which function in a modular way to provide exquisite spatiotemporal control of gene expression during development. We are using a combination of genomic, genetic, biochemical, and single-cell approaches to investigate how enhancers are activated in response to developmental stimuli, how they communicate with target promoters over large genomic distances to regulate transcriptional outputs, what is the role of chromatin modification and remodeling in facilitating or restricting enhancer activity and how regulatory sequence change leads to the phenotypic divergence in humans. I will discuss our latest results on the mechanisms underlying enhancer function and gene regulation in development and disease. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Rongxin Fang ◽  
Sebastian Preissl ◽  
Yang Li ◽  
Xiaomeng Hou ◽  
Jacinta Lucero ◽  
...  

AbstractIdentification of the cis-regulatory elements controlling cell-type specific gene expression patterns is essential for understanding the origin of cellular diversity. Conventional assays to map regulatory elements via open chromatin analysis of primary tissues is hindered by sample heterogeneity. Single cell analysis of accessible chromatin (scATAC-seq) can overcome this limitation. However, the high-level noise of each single cell profile and the large volume of data pose unique computational challenges. Here, we introduce SnapATAC, a software package for analyzing scATAC-seq datasets. SnapATAC dissects cellular heterogeneity in an unbiased manner and map the trajectories of cellular states. Using the Nyström method, SnapATAC can process data from up to a million cells. Furthermore, SnapATAC incorporates existing tools into a comprehensive package for analyzing single cell ATAC-seq dataset. As demonstration of its utility, SnapATAC is applied to 55,592 single-nucleus ATAC-seq profiles from the mouse secondary motor cortex. The analysis reveals ~370,000 candidate regulatory elements in 31 distinct cell populations in this brain region and inferred candidate cell-type specific transcriptional regulators.


Sign in / Sign up

Export Citation Format

Share Document