scholarly journals Mouse multipotent progenitor 5 cells are located at the interphase between hematopoietic stem and progenitor cells

Blood ◽  
2021 ◽  
Author(s):  
Pia Sommerkamp ◽  
Mari Carmen Romero-Mulero ◽  
Andreas Narr ◽  
Luisa Ladel ◽  
Lucie Sylvie Pierrette Hustin ◽  
...  

Hematopoietic stem cells (HSCs) and distinct multipotent progenitor populations (MPP1-4) contained within the Lin- Sca-1+ c-Kit+ (LSK) compartment have previously been identified using diverse surface marker panels. Here, we phenotypically define and functionally characterize MPP5 (LSK CD34+ CD135- CD48- CD150-). Upon transplantation, MPP5 support initial emergency myelopoiesis followed by stable contribution to the lymphoid lineage. Since MPP5 are capable of generating MPP1-4, but not HSCs, they represent a dynamic and versatile component of the MPP network. To characterize all hematopoietic stem and progenitor cells (HSPCs), we performed RNA-seq analysis to identify specific transcriptomic landscapes of HSCs and MPP1-5. This was complemented by single-cell (sc) RNA-seq analysis of LSK cells to establish the differentiation trajectories from HSCs to MPP1-5. In agreement with the functional reconstitution activity, MPP5 are located immediately downstream of HSCs but upstream of the more committed MPP2-4. This study provides a comprehensive analysis of the LSK compartment, focusing on the functional and molecular characteristics of the newly defined MPP5 subset.

2020 ◽  
Vol 88 ◽  
pp. S46
Author(s):  
Oakley Olson ◽  
Fernando Calero-Nieto ◽  
Xiaonan Wang ◽  
Bethold Göttgens ◽  
Emmanuelle Passegué

Author(s):  
Omika Katoch ◽  
Mrinalini Tiwari ◽  
Namita Kalra ◽  
Paban K. Agrawala

AbstractDiallyl sulphide (DAS), the pungent component of garlic, is known to have several medicinal properties and has recently been shown to have radiomitigative properties. The present study was performed to better understand its mode of action in rendering radiomitigation. Evaluation of the colonogenic ability of hematopoietic progenitor cells (HPCs) on methocult media, proliferation and differentiation of hematopoietic stem cells (HSCs), and transplantation of stem cells were performed. The supporting tissue of HSCs was also evaluated by examining the histology of bone marrow and in vitro colony-forming unit–fibroblast (CFU-F) count. Alterations in the levels of IL-5, IL-6 and COX-2 were studied as a function of radiation or DAS treatment. It was observed that an increase in proliferation and differentiation of hematopoietic stem and progenitor cells occurred by postirradiation DAS administration. It also resulted in increased circulating and bone marrow homing of transplanted stem cells. Enhancement in bone marrow cellularity, CFU-F count, and cytokine IL-5 level were also evident. All those actions of DAS that could possibly add to its radiomitigative potential and can be attributed to its HDAC inhibitory properties, as was observed by the reversal radiation induced increase in histone acetylation.


2019 ◽  
Vol 3 (3) ◽  
pp. 419-431 ◽  
Author(s):  
Fang Dong ◽  
Haitao Bai ◽  
Xiaofang Wang ◽  
Shanshan Zhang ◽  
Zhao Wang ◽  
...  

Abstract The cell of origin, defined as the normal cell in which the transformation event first occurs, is poorly identified in leukemia, despite its importance in understanding of leukemogenesis and improving leukemia therapy. Although hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) were used for leukemia models, whether their self-renewal and differentiation potentials influence the initiation and development of leukemia is largely unknown. In this study, the self-renewal and differentiation potentials in 2 distinct types of HSCs (HSC1 [CD150+CD41−CD34−Lineage−Sca-1+c-Kit+ cells] and HSC2 [CD150−CD41−CD34−Lineage−Sca-1+c-Kit+ cells]) and 3 distinct types of HPCs (HPC1 [CD150+CD41+CD34−Lineage−Sca-1+c-Kit+ cells], HPC2 [CD150+CD41+CD34+Lineage−Sca-1+c-Kit+ cells], and HPC3 [CD150−CD41−CD34+Lineage−Sca-1+c-Kit+ cells]) were isolated from adult mouse bone marrow, and examined by competitive repopulation assay. Then, cells from each population were retrovirally transduced to initiate MLL-AF9 acute myelogenous leukemia (AML) and the intracellular domain of NOTCH-1 T-cell acute lymphoblastic leukemia (T-ALL). AML and T-ALL similarly developed from all HSC and HPC populations, suggesting multiple cellular origins of leukemia. New leukemic stem cells (LSCs) were also identified in these AML and T-ALL models. Notably, switching between immunophenotypical immature and mature LSCs was observed, suggesting that heterogeneous LSCs play a role in the expansion and maintenance of leukemia. Based on this mouse model study, we propose that acute leukemia arises from multiple cells of origin independent of the self-renewal and differentiation potentials in hematopoietic stem and progenitor cells and is amplified by LSC switchover.


Blood ◽  
2017 ◽  
Vol 130 (25) ◽  
pp. 2762-2773 ◽  
Author(s):  
Xin Zhao ◽  
Shouguo Gao ◽  
Zhijie Wu ◽  
Sachiko Kajigaya ◽  
Xingmin Feng ◽  
...  

Key Points We distinguished aneuploid cells from diploid cells within the hematopoietic stem and progenitor cells using scRNA-seq. Monosomy 7 cells showed downregulated pathways involved in immune response and maintenance of DNA stability.


2018 ◽  
Vol 19 (7) ◽  
pp. 2122 ◽  
Author(s):  
Geoffrey Brown ◽  
Rhodri Ceredig ◽  
Panagiotis Tsapogas

Evidence from studies of the behaviour of stem and progenitor cells and of the influence of cytokines on their fate determination, has recently led to a revised view of the process by which hematopoietic stem cells and their progeny give rise to the many different types of blood and immune cells. The new scenario abandons the classical view of a rigidly demarcated lineage tree and replaces it with a much more continuum-like view of the spectrum of fate options open to hematopoietic stem cells and their progeny. This is in contrast to previous lineage diagrams, which envisaged stem cells progressing stepwise through a series of fairly-precisely described intermediate progenitors in order to close down alternative developmental options. Instead, stem and progenitor cells retain some capacity to step sideways and adopt alternative, closely related, fates, even after they have “made a lineage choice.” The stem and progenitor cells are more inherently versatile than previously thought and perhaps sensitive to lineage guidance by environmental cues. Here we examine the evidence that supports these views and reconsider the meaning of cell lineages in the context of a continuum model of stem cell fate determination and environmental modulation.


Blood ◽  
2009 ◽  
Vol 114 (18) ◽  
pp. 3783-3792 ◽  
Author(s):  
Xiaoxia Hu ◽  
Hongmei Shen ◽  
Chen Tian ◽  
Hui Yu ◽  
Guoguang Zheng ◽  
...  

Abstract The predominant outgrowth of malignant cells over their normal counterparts in a given tissue is a shared feature for all types of cancer. However, the impact of a cancer environment on normal tissue stem and progenitor cells has not been thoroughly investigated. We began to address this important issue by studying the kinetics and functions of hematopoietic stem and progenitor cells in mice with Notch1-induced leukemia. Although hematopoiesis was progressively suppressed during leukemia development, the leukemic environment imposed distinct effects on hematopoietic stem and progenitor cells, thereby resulting in different outcomes. The normal hematopoietic stem cells in leukemic mice were kept in a more quiescent state but remained highly functional on transplantation to nonleukemic recipients. In contrast, the normal hematopoietic progenitor cells in leukemic mice demonstrated accelerated proliferation and exhaustion. Subsequent analyses on multiple cell-cycle parameters and known regulators (such as p21, p27, and p18) further support this paradigm. Therefore, our current study provides definitive evidence and plausible underlying mechanisms for hematopoietic disruption but reversible inhibition of normal hematopoietic stem cells in a leukemic environment. It may also have important implications for cancer prevention and treatment in general.


Blood ◽  
2002 ◽  
Vol 99 (1) ◽  
pp. 15-23 ◽  
Author(s):  
James C. Mulloy ◽  
Jörg Cammenga ◽  
Karen L. MacKenzie ◽  
Francisco J. Berguido ◽  
Malcolm A. S. Moore ◽  
...  

The acute myelogenous leukemia–1 (AML1)–ETO fusion protein is generated by the t(8;21), which is found in 40% of AMLs of the French-American-British M2 subtype. AML1-ETO interferes with the function of the AML1 (RUNX1, CBFA2) transcription factor in a dominant-negative fashion and represses transcription by binding its consensus DNA–binding site and via protein-protein interactions with other transcription factors. AML1 activity is critical for the development of definitive hematopoiesis, and haploinsufficiency of AML1 has been linked to a propensity to develop AML. Murine experiments suggest that AML1-ETO expression may not be sufficient for leukemogenesis; however, like the BCR-ABL isoforms, the cellular background in which these fusion proteins are expressed may be critical to the phenotype observed. Retroviral gene transfer was used to examine the effect of AML1-ETO on the in vitro behavior of human hematopoietic stem and progenitor cells. Following transduction of CD34+ cells, stem and progenitor cells were quantified in clonogenic assays, cytokine-driven expansion cultures, and long-term stromal cocultures. Expression of AML1-ETO inhibited colony formation by committed progenitors, but enhanced the growth of stem cells (cobblestone area-forming cells), resulting in a profound survival advantage of transduced over nontransduced cells. AML1-ETO–expressing cells retained progenitor activity and continued to express CD34 throughout the 5-week long-term culture. Thus, AML1-ETO enhances the self-renewal of pluripotent stem cells, the physiological target of many acute myeloid leukemias.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1799-1799
Author(s):  
Ingmar Bruns ◽  
Sebastian Büst ◽  
Akos G. Czibere ◽  
Ron-Patrick Cadeddu ◽  
Ines Brückmann ◽  
...  

Abstract Abstract 1799 Poster Board I-825 Multiple myeloma (MM) patients often present with anemia at the time of initial diagnosis. This has so far only attributed to a physically marrow suppression by the invading malignant plasma cells and the overexpression of Fas-L and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) by malignant plasma cells triggering the death of immature erythroblasts. Still the impact of MM on hematopoietic stem cells and their niches is scarcely established. In this study we analyzed highly purified CD34+ hematopoietic stem and progenitor cell subsets from the bone marrow of newly diagnosed MM patients in comparison to normal donors. Quantitative flowcytometric analyses revealed a significant reduction of the megakaryocyte-erythrocyte progenitor (MEP) proportion in MM patients, whereas the percentage of granulocyte-macrophage progenitors (GMP) was significantly increased. Proportions of hematopoietic stem cells (HSC) and myeloid progenitors (CMP) were not significantly altered. We then asked if this is also reflected by clonogenic assays and found a significantly decreased percentage of erythroid precursors (BFU-E and CFU-E). Using Affymetrix HU133 2.0 gene arrays, we compared the gene expression signatures of stem cells and progenitor subsets in MM patients and healthy donors. The most striking findings so far reflect reduced adhesive and migratory potential, impaired self-renewal capacity and disturbed B-cell development in HSC whereas the MEP expression profile reflects decreased in cell cycle activity and enhanced apoptosis. In line we found a decreased expression of the adhesion molecule CD44 and a reduced actin polymerization in MM HSC by immunofluorescence analysis. Accordingly, in vitro adhesion and transwell migration assays showed reduced adhesive and migratory capacities. The impaired self-renewal capacity of MM HSC was functionally corroborated by a significantly decreased long-term culture initiating cell (LTC-IC) frequency in long term culture assays. Cell cycle analyses revealed a significantly larger proportion of MM MEP in G0-phase of the cell cycle. Furthermore, the proportion of apoptotic cells in MM MEP determined by the content of cleaved caspase 3 was increased as compared to MEP from healthy donors. Taken together, our findings indicate an impact of MM on the molecular phenotype and functional properties of stem and progenitor cells. Anemia in MM seems at least partially to originate already at the stem and progenitor level. Disclosures Off Label Use: AML with multikinase inhibitor sorafenib, which is approved by EMEA + FDA for renal cell carcinoma.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2047-2047
Author(s):  
Wendy Pang ◽  
Elizabeth Price ◽  
Irving L. Weissman ◽  
Stanley L. Schrier

Abstract Abstract 2047 Anemia is both a highly prevalent and clinically important condition that causes significant morbidity and mortality in the elderly population. While anemia in the elderly can be attributed to a number of causes, approximately 30% of elderly subjects with anemia have no overt etiology and fall under the category of unexplained anemia of the elderly (UA). There is increasing evidence to suggest that changes in the frequency and/or function of hematopoietic stem and progenitor cells may contribute to the onset and pathophysiology of age-associated hematological conditions, such as UA. Hematopoietic stem cells (HSC) reside at the top of the hematopoietic hierarchy and can differentiate, via increasingly committed downstream progenitors, into all the mature cells of the hematopoietic system. Human myelo-erythroid development proceeds through a set of oligopotent progenitors: HSC give rise to multipotent progenitors (MPP), which give rise to common myeloid progenitors (CMP), which in turn give rise to granulocyte-macrophage progenitors (GMP) and megakaryocyte-erythrocyte progenitors (MEP). We use flow cytometry and in vitro culture of sorted human HSC (Lin-CD34+CD38-CD90+CD45RA-), MPP (Lin-CD34+CD38-CD90-CD45RA-), CMP (Lin-CD34+CD38+CD123+CD45RA-), GMP (Lin-CD34+CD38+CD123+CD45RA+), and MEP (Lin-CD34+CD38+CD123-CD45RA-) from hematologically normal young (23 samples; age 20–35) and elderly (11 samples; age 65+) and UA (5 samples; age 65+) bone marrow samples in order to characterize the changes in the distribution and function of hematopoietic stem and progenitor populations during the aging process and, in particular, in the development of UA. We found that UA patients contain higher frequencies of HSC compared to both elderly normal (1.5-fold; p<0.03) and young normal samples (2.8-fold; p<10-5). We also found increased frequencies of MPP from UA patients compared to MPP from elderly normal (2.6-fold; p<0.002) and young normal samples (5.8-fold; p<0.04). While we observed similar frequencies of CMP among the three groups, we found a notable trend suggesting decreased frequencies of GMP and corresponding increased frequencies of MEP in UA patients. Functionally, HSC from the three groups exhibit statistically insignificant differences in the efficiency of colony formation under the myeloid differentiation-promoting methylcellulose-based in vitro culture conditions; however, on average, HSC from elderly bone marrow samples, regardless of the presence or absence of anemia, tend to form fewer colonies in methylcellulose. Interestingly, HSC from UA patients produce more granulocyte-monocyte (CFU-GM) colonies and fewer erythroid (CFU-E and BFU-E) colonies, compared to HSC from normal samples (p<0.001). Similarly, CMP from UA patients, compared to normal CMP, yield skewed distributions of myeloid-erythroid colonies when plated in methylcellulose, significantly favoring production of CFU-GM colonies over CFU-E and BFU-E colonies (p<0.003). Additionally, MEP from UA patients form both CFU-E and BFU-E colonies in methylcellulose albeit at a significantly lower efficiency than MEP from normal bone marrow samples (p<0.01). This is the first study to examine the changes in hematopoietic stem and progenitor populations in UA patients. The changes in the distribution of hematopoietic stem and progenitor cells in UA patients indicate that the HSC and MPP populations, and possibly also the MEP population, expand in the context of anemia, potentially in response to homeostatic feedback mechanisms. Nevertheless, these expanded populations are functionally impaired in their ability to differentiate towards the erythroid lineage. Our data suggest that there are intrinsic defects in the HSC population of UA patients that lead to poor erythroid differentiation, which can be readily observed even in the earliest committed myelo-erythroid progenitors. We have generated gene expression profiling data from these purified hematopoietic stem and progenitor populations from UA patients to try to identify biological pathways and markers relevant to disease pathogenesis and potential therapeutic targets. Disclosures: Weissman: Amgen, Systemix, Stem cells Inc, Cellerant: Consultancy, Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees. Schrier:Celgene: Research Funding.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1234-1234
Author(s):  
Robert S Welner ◽  
Giovanni Amabile ◽  
Deepak Bararia ◽  
Philipp B. Staber ◽  
Akos G. Czibere ◽  
...  

Abstract Abstract 1234 Specialized bone marrow (BM) microenvironment niches are essential for hematopoietic stem and progenitor cell maintenance, and recent publications have focused on the leukemic stem cells interaction and placement within those sites. Surprisingly, little is known about how the integrity of this leukemic niche changes the normal stem and progenitor cells behavior and functionality. To address this issue, we started by studying the kinetics and differentiation of normal hematopoietic stem and progenitor cells in mice with Chronic Myeloid Leukemia (CML). CML accounts for ∼15% of all adult leukemias and is characterized by the BCR-ABL t(9;22) translocation. Therefore, we used a novel SCL-tTA BCR/ABL inducible mouse model of CML-chronic phase to investigate these issues. To this end, BM from leukemic and normal mice were mixed and co-transplanted into hosts. Although normal hematopoiesis was increasingly suppressed during the disease progression, the leukemic microenvironment imposed distinct effects on hematopoietic progenitor cells predisposing them toward the myeloid lineage. Indeed, normal hematopoietic progenitor cells from this leukemic environment demonstrated accelerated proliferation with a lack of lymphoid potential, similar to that of the companion leukemic population. Meanwhile, the leukemic-exposed normal hematopoietic stem cells were kept in a more quiescent state, but remained functional on transplantation with only modest changes in both engraftment and homing. Further analysis of the microenvironment identified several cytokines that were found to be dysregulated in the leukemia and potentially responsible for these bystander responses. We investigated a few of these cytokines and found IL-6 to play a crucial role in the perturbation of normal stem and progenitor cells observed in the leukemic environment. Interestingly, mice treated with anti-IL-6 monoclonal antibody reduced both the myeloid bias and proliferation defects of normal stem and progenitor cells. Results obtained with this mouse model were similarly validated using specimens obtained from CML patients. Co-culture of primary CML patient samples and GFP labeled human CD34+CD38- adult stem cells resulted in selective proliferation of the normal primitive progenitors compared to mixed cultures containing unlabeled normal bone marrow. Proliferation was blocked by adding anti-IL-6 neutralizing antibody to these co-cultures. Therefore, our current study provides definitive support and an underlying crucial mechanism for the hematopoietic perturbation of normal stem and progenitor cells during leukemogenesis. We believe our study to have important implications for cancer prevention and novel therapeutic approach for leukemia patients. We conclude that changes in cytokine levels and in particular those of IL-6 in the CML microenvironment are responsible for altered differentiation and functionality of normal stem cells. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document