CD45 Phosphatase Is Involved in Motility and Development of Hematopoietic Stem and Maturing Cells by the Regulation of Cell Adhesion and Cytokine Signaling.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 119-119
Author(s):  
Shoham Shivtiel ◽  
Isabelle Petit ◽  
Abraham Avigdor ◽  
Polina Goichberg ◽  
Sarit Samira ◽  
...  

Abstract The phosphatase CD45 is a key regulator of antigen receptor signaling in lymphocytes. Still, CD45 is highly expressed in all hematopoietic lineages at most stages of development, suggesting that this phosphatase also regulates other cells and processes. During development, as well as in clinical transplantation, hematopoietic stem cells (HSCs) migrate through the circulation to the bone marrow (BM) and repopulate it. Migration and development of HSCs are multi-step processes, which are tightly regulated by interplays between cytokines, chemokines, adhesion molecules and proteolytic enzymes; however, not all the related key players have been fully identified. In this study we explored the involvement of CD45 in hematopoietic cell motility and development, its role in cytokine signaling and adhesion interactions. The roles of CD45 were tested by either blocking the function of CD45 expressed on human and murine HSCs by neutralizing antibodies, or by utilizing CD45 knockout (KO) mice. Our results show that blocking CD45 completely prevented homing of human CD34+ enriched progenitors to the murine BM, consequently abrogating repopulation in transplanted NOD/SCID mice. In addition, CD45 neutralization impaired the capacity of human progenitors to migrate in-vitro towards a gradient of SDF-1, suggesting a cross-talk between SDF-1 and CD45 signaling. Furthermore, blocking CD45 on human G2 cells (pre-B ALL line) activated signaling pathways, including an increase in phosphorylation of MAP kinase and the tyrosine kinase Pyk2, which are involved in cell adhesion and migration. This activation enhanced cell adhesion to stromal and endothelial cell lines in-vitro. Importantly, blockage of CD45 in human progenitors resulted in cell aggregation, which inhibited cell proliferation and impaired the capacity to form colonies in-vitro. In an additional set of experiments we tested the role of CD45 in cell mobilization. In-vivo studies in normal mice demonstrated that neutralization of CD45 function inhibited the release of mature leukocytes and progenitor cells from the BM to the circulation both under steady state conditions and in stress-induced recruitment by stimulation with G-CSF or LPS. More importantly, BM derived mononuclear cells from CD45KO mice displayed a significant reduction in in-vivo homing and in-vitro migration compared to their wild type counterparts. Furthermore, G-CSF induced mobilization was impaired in CD45KO mice, and accompanied by a reduction in MMP-9 secretion from blood-derived leukocytes. Unexpectedly, the ability of CD45KO progenitors to form colonies in-vitro was impaired in the absence of in-vivo BM environment, documenting a crucial role for phosphatases such as CD45 in stem cell differentiation. Taken together, our findings demonstrate that functional CD45 is essential for human and murine hematopoietic cell migration and development (both homing and mobilization) by the regulation of adhesion and cytokine-induced signaling machineries. We suggest that in these cells CD45 may act as a negative regulator of major signaling pathways controlling adhesion properties and maintaining the balance between anchorage and release. We reveal a novel and dual role for CD45 in regulation of hematopoietic cell trafficking in general and progenitor cell motility and development in particular.

Endocrinology ◽  
2012 ◽  
Vol 153 (9) ◽  
pp. 4502-4510 ◽  
Author(s):  
Isobelle Grant ◽  
Judith E. Cartwright ◽  
Brooke Lumicisi ◽  
Alison E. Wallace ◽  
Guy S. Whitley

Impaired trophoblast invasion is associated with pregnancy disorders such as early pregnancy loss and preeclampsia. There is evidence to suggest that the consumption of caffeine during pregnancy may increase the risk of pregnancy loss; however, little is known about the direct effect of caffeine on normal trophoblast biology. Our objectives were to examine the effect of caffeine on trophoblast migration and motility after stimulation with epidermal growth factor (EGF) and to investigate the intracellular signaling pathways involved in this process. Primary first-trimester extravillous trophoblasts (EVT) and the EVT-derived cell line SGHPL-4 were used to study the effect of caffeine on EGF-stimulated cellular motility using time-lapse microscopy. SGHPL-4 cells were further used to study the effect of caffeine and cAMP on EGF-stimulated invasion of fibrin gels. The influence of caffeine and cAMP on EGF-stimulated intracellular signaling pathways leading to the activation of Akt were investigated by Western blot analysis. Caffeine inhibits both EGF-stimulated primary EVT and SGHPL-4 cell motility. EGF stimulation activates phosphatidylinositol 3-kinase, and Akt and caffeine inhibit this activation. Although cAMP inhibits both motility and invasion, it does not inhibit the activation of Akt, indicating that the effects of caffeine seen in this study are independent of cAMP. Further investigation indicated a role for mammalian target of rapamycin complex 2 (mTORC2) as a target for the inhibitory effect of caffeine. In conclusion, we demonstrate that caffeine inhibits EGF-stimulated trophoblast invasion and motility in vitro and so could adversely influence trophoblast biology in vivo.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 67-67
Author(s):  
Matti Korhonen ◽  
Haibo Zhao ◽  
Roberta Faccio ◽  
F. Patrick Ross ◽  
Tracy M. Hopkins ◽  
...  

Abstract Bone-resorbing osteoclasts play a central role in bone remodeling, which occurs throughout life. Many skeletal diseases such as osteoporosis, Paget’s disease and the lytic lesions of multiple myeloma, display excess osteoclast activity. Thus, in addition to basic biological questions, there is considerable clinical interest in the control of osteoclast differentiation and function. Previously we have demonstrated that the small GTPases Rac1 and Rac2 have specific roles in the control of hematopoietic stem cell and neutrophil functions (Gu and Filippi et al., Science 2003; Filippi et al., Nat Immunol 2004; Cancelas et al., Nat Med 2005). During these studies, we noted differences in the bone structure of Rac-deficient mice, suggesting alterations in osteoclast activity. Furthermore we found that in hematopoietic stem cells Rac proteins regulate signaling pathways that are also known to control osteoclastogenesis. In this study, we have employed a genetic approach to analyze the roles of Rac proteins in osteoclast differentiation. We utilized constitutively Rac2-null mice in combination with cre-induced deletion of floxed Rac1 sequences to effect the loss of both Rac GTPases in hematopoietic cells. Macrophages from Rac2−/− mice generated normal numbers of osteoclasts in vitro. However, the full differentiation of these cells, as assayed by emergence of differentiation markers, was perturbed. Expression the TRAP (tartrate-resistant acid phosphatase) enzyme was delayed (12 +/−3% vs. 88 +/−8%, Rac2−/− vs. wt, n= 5, p<0.001) and the expression of the β3 integrin subunit was decreased (16% vs. 76%, Rac2−/− vs. wt, n=5). The number of cells having podosomes was reduced (8 +/−3 vs. 206 +/−48 cells with podosomes/well Rac2−/− vs. wt, p<0.001). Cell fusion, which accompanies osteoclastogenesis, was also reduced. In contrast Rac1−/− macrophages produced severely reduced numbers of osteoclasts in vitro (13 +/−8/well vs. 272 +/−52 Rac1−/− vs. wt, n=2, p<0.001). Rac1−/−Rac2−/− double knock-out cells essentially developed no osteoclasts in vitro. The p44/42, JNK (jun N-terminal kinase), Akt and p38 intracellular kinase signaling pathways have all been shown to be important for osteoclastogenesis. Activation of the p44/42 and JNK (jun N-terminal kinase) pathways in response to stimulation with M-CSF (macrophage colony stimulating factor) and RANKL (receptor activator of NF-κB ligand), cytokines critically involved in osteoclast differentiation, was reduced in the Rac2−/− macrophages. When Rac1−/− cells were stimulated with M-CSF, decreased activation of the Akt and JNK pathways was observed. To study the effect of Rac deficiency on bone mass in vivo, we generated Rac1−/−Rac2−/− double knock-out mice. These mice had significantly increased bone mass (bone volume/tissue volume 0.33 +/−0.03 vs. 0.13 +/−0.02 Rac1−/−Rac2−/− vs. wild-type; p<0.001). These results indicate that 1) Rac GTPases are critical to the differentiation of macrophages into osteoclasts, 2) in the absence of Rac2 osteoclastogenesis is perturbed while inhibition of Rac1 function leads to nearly complete inhibition osteoclastogenesis, 3) specific alterations in intracellular signaling pathways are seen in Rac-deficient osteoclast precursors, and 4) inhibition of Rac function in vivo leads to an increase in bone mass.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2351-2351
Author(s):  
Chiemi Nishida ◽  
Kaori Sato-Kusubata ◽  
Yoshihiko Tashiro ◽  
Ismael Gritli ◽  
Aki Sato ◽  
...  

Abstract Abstract 2351 Stem cells reside in a physical niche. The organization of cellular niches has been shown to play a key role in regulating normal stem cell differentiation, stem cell maintenance and regeneration. Various stem cell niches have been shown to be hypoxic, thereby maintaining the stem cell phenotype of e.g. hematopoietic stem cells (HSCs) or cancer stem cells. The bone marrow (BM) niche is a rich reservoir of tissue-specific pluripotent HSCs. Proteases such as matrix metalloproteinases (MMPs) have been implicated in cell movement, partly due to their proteolytic function, and they have been linked to cellular processes such as cell proliferation and differentiation. The proteolytic function of Membrane-type 1 MMP (MT1-MMP/MMP-14) is essential for angiogenesis, arthritis and tumour growth. Recently, it has been reported that MT1-MMP is highly expressed in HSCs and stromal/niche cells. However the clear function of MT1-MMP in hematopoiesis is not well understood. To reveal the functional consequences of MT1-MMP deficiency for post-natal hematopoiesis in vivo, we have taken advantage of MT1-MMP−/− mice to demonstrate that MT1-MMP deficiency leads to impaired steady state hematopoiesis of all hematopoietic cell lineages. In a search for factors whose deficiency could cause this hematopoietic phenotype, we found not only reduced protein release, but also reduced transcription of the following growth factors/chemokines in MT1-MMP−/− mice: erythropoietin (Epo), stromal cell-derived factor-1 (SDF-1a/CXCL12), interleukin-7 (IL-7) and Kit ligand (KitL, also known as stem cell factor). All of these factors, except for Epo, are typical stromal cell-derived factors. To ensure that impaired gene transcription in vivo was not due to a lower number of stromal cells in vivo, we demonstrated that MT1-MMP knockdown in stromal cells in vitro also reduced transcription of the stromal cell derived factors SDF-1a/CXCL12, IL-7 and KitL. In contrast, overexpression of MT1-MMP in stromal cells enhanced gene transcription of these factors. All genes, whose transcription was altered in vitro and in vivo due to MT1-MMP deficiency, had one thing in common: their gene transcription is regulated by the hypoxia inducible factor-1 (HIF-1) pathway. Further mechanistic studies revealed that MT1-MMP activates the HIF-1 pathway via factor inhibiting HIF-1 (FIH-1) within niche cells, thereby inducing the transcription of HIF-responsive genes, which induce terminal hematopoietic differentiation. Thus, MT1-MMP in niche cells regulates postnatal hematopoiesis by modulating hematopoietic HIF-dependent niche factors that are critical for terminal differentiation and migration. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2019 ◽  
Vol 133 (8) ◽  
pp. 816-819 ◽  
Author(s):  
Martin Etzrodt ◽  
Nouraiz Ahmed ◽  
Philipp S. Hoppe ◽  
Dirk Loeffler ◽  
Stavroula Skylaki ◽  
...  

Abstract The molecular mechanisms governing the transition from hematopoietic stem cells (HSCs) to lineage-committed progenitors remain poorly understood. Transcription factors (TFs) are powerful cell intrinsic regulators of differentiation and lineage commitment, while cytokine signaling has been shown to instruct the fate of progenitor cells. However, the direct regulation of differentiation-inducing hematopoietic TFs by cell extrinsic signals remains surprisingly difficult to establish. PU.1 is a master regulator of hematopoiesis and promotes myeloid differentiation. Here we report that tumor necrosis factor (TNF) can directly and rapidly upregulate PU.1 protein in HSCs in vitro and in vivo. We demonstrate that in vivo, niche-derived TNF is the principal PU.1 inducing signal in HSCs and is both sufficient and required to relay signals from inflammatory challenges to HSCs.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 142-142
Author(s):  
Yujie Wen ◽  
Mary J Elliott ◽  
Yiming Huang ◽  
Deborah R Corbin ◽  
Yoshinori Fukui ◽  
...  

Abstract Abstract 142 CD8+/TCR− graft facilitating cells (FC) have a potent capability to facilitate relatively small numbers of highly purified hematopoietic stem cells (HSC) in both allogeneic and syngeneic recipients. The mechanisms by which FC promote HSC engraftment have not been fully elucidated. We previously found that FC from non-obese diabetic mice (NOD) were compromised in enhancing engraftment of syngeneic and allogeneic HSC compared with FC from diabetes free congenic NOR mice. We therefore compared gene expression profiling between NOD FC and control NOR FC by microarray analysis. Among 18 most significant differentially expressed genes revealed from 45101 genes by false discovery rate control analysis with a cut-off value at level 0.05, dedicator of cytokinesis 2 (DOCK2) was identified as the gene with the most significant difference (P = 1.07 × 10−7). DOCK2 is a hematopoietic cell-specific member of the Caenorhabditis elegans Ced-5, mammalian DOCK180 and Drosophila melanogaster myoblast city (CDM) family of guanine nucleotide exchange factors. DOCK2 activates the small GTPase Rac and is indispensable for migration of plasmacytoid dendritic cells (pDC). FC is a heterogeneous cell population, with a predominant subpopulation resembling plasmacytoid precursor DC (p-preDC FC). In vitro studies demonstrated that FC increased clonogenicity of HSC and improved the ability of the impaired stroma to support late cobblestone area formation by HSC, which suggests that FC homing to hematopoietic niche as a potential component might be a perquisite for FC to enhance HSC engraftment. Therefore, we hypothesized that signaling pathways controlling cell migration via DOCK2 are critical for FC to enhance HSC engraftment. To test our hypothesis, DOCK2 expression data from microarray analysis was further confirmed using relative quantitative real-time PCR and high content image analysis. The expression level of DOCK2 in FC was significantly lower in NOD mice compared with NOR mice (p < 0.01 vs. NOR FC). Functional phenotypes of DOCK2-deficient FC were determined by Transwell migration assay and colony-forming cell assay in vitro, and by co-transplantation of HSC with FC in vivo as well as enumeration of CellTrack Green labeled FC by flow cytometry in spleen, thymus, and bone marrow of femurs and tibias 18 hours post-transplantation. Deficiency of DOCK2 in FC did not affect the ability of FC in promoting HSC colony formation when the two were cultured together. However, DOCK2-deficient FC were compromised in migration to the α-cheemokine, stromal derived factor-1 (SDF-1) at dose 200 ng/ml (Fig. A, P < 0.01 vs. wild-type FC). Homing of FC to spleen and bone marrow of femurs and tibias was also significantly impaired in DOCK2-deficient FC. Moreover, deficiency of DOCK2 in FC abrogated enhancement of HSC engraftment by FC in the syngeneic and allogeneic in vivo assays (Fig. B, syngeneic model: 500 B6 HSC plus 30K B6 or DOCK2−/−FC into lethally irradiated B6 recipients; Fig. C, allogeneic model: 10K B6 HSC plus 30K B6 or DOCK2−/−FC into lethally irradiated B10.BR recipients, P < 0.05 vs. B6 HSC plus wild-type FC). Taken together, our results indicate that deficiency of DOCK2 in FC leads to the dysfunction in migration, and suggest that the signaling pathways involved in FC migration are crucial for FC to enhance HSC engraftment. Disclosures: Ildstad: Regenerex LLC: Equity Ownership.


Blood ◽  
2005 ◽  
Vol 105 (4) ◽  
pp. 1828-1836 ◽  
Author(s):  
Alan M. Hanash ◽  
Robert B. Levy

AbstractAllogeneic bone marrow transplantation (BMT) is a potentially curative treatment for both inherited and acquired diseases of the hematopoietic compartment; however, its wider use is limited by the frequent and severe outcome of graft-versus-host disease (GVHD). Unfortunately, efforts to reduce GVHD by removing donor T cells have resulted in poor engraftment and elevated disease recurrence. Alternative cell populations capable of supporting allogeneic hematopoietic stem/progenitor cell engraftment without inducing GVHD could increase numbers of potential recipients while broadening the pool of acceptable donors. Although unfractionated CD4+ T cells have not been shown to be an efficient facilitating population, CD4+CD25+ regulatory cells (T-reg's) were examined for their capacity to support allogeneic hematopoietic engraftment. In a murine fully major histocompatibility complex (MHC)-mismatched BMT model, cotransplantation of donor B6 T-reg's into sublethally conditioned BALB/c recipients supported significantly greater lineage-committed and multipotential donor progenitors in recipient spleens 1 week after transplantation and significantly increased long-term multilineage donor chimerism. Donor engraftment occurred without GVHD-related weight loss or lethality and was associated with tolerance to donor and host antigens by in vitro and in vivo analyses. Donor CD4+CD25+ T cells may therefore represent a potential alternative to unfractionated T cells for promotion of allogeneic engraftment in clinical hematopoietic cell transplantation. (Blood. 2005;105:1828-1836)


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2899-2899
Author(s):  
Jodi Murakami ◽  
Baohui Xu ◽  
Christopher B. Franco ◽  
Xingbin Hu ◽  
Stephen J. Galli ◽  
...  

Abstract α4β7 integrin is a cell adhesion receptor that is crucial for the migration of hematopoietic progenitors and mature effector cells in the periphery, but its role in adult hematopoiesis remains controversial. To investigate this, we conducted studies using a mouse model in which β7 integrin is absent. Hematopoietic stem cells (HSCs) that lacked β7 integrin (β7KO) had significantly reduced engraftment potential. Intriguingly, the survival of β7KO mice was enhanced and their hematopoietic recovery after 5-fluorouracil-induced myeloablative stress was better compared to wild type (WT) mice, indicating that the decreased engraftment of β7KO HSCs was not caused by a defect in HSC hematopoietic activity. Next we examined the homing abilities of HSCs and we observed that β7KO HSCs had impaired migration abilities in vitro and BM homing capabilities in vivo. Lethal irradiation induced expression of the α4β7 integrin ligand - mucosal addressin cell adhesion molecule-1 (MAdCAM-1) on bone marrow (BM) endothelial cells. Moreover, blocking MAdCAM-1 reduced the homing of HSCs and impaired the survival of recipient mice. Altogether, these data indicate that β7 integrin, when expressed by HSCs, interacted with MAdCAM-1 in the BM microenvironment, thereby promoting HSC homing and engraftment. Interestingly, we also found that β7KO HSCs were retained in the BM, suggesting that β7 integrin may influence the localization of HSCs within different stem cell niches through interaction with MAdCAM-1. To examine the localization of HSCs within the BM, we used the hypoxyprobe pimonidazole to correlate oxygen status with niche localization. We observed that both β7KO and MAdCAM-1KO HSCs were more hypoxic compared to WT HSCs, demonstrating that the absence of either β7 integrin or MAdCAM-1 in mice causes HSCs to be localized in a more hypoxic region of the BM. To confirm these findings, we performed single-cell RT-PCR using Fluidigm Dynamic Array Chips and we discovered that β7KO HSCs differentially expressed genes associated with niche localization and cell cycle status compared to WT HSCs. Since hypoxia correlates with quiescence, we next assessed the cell cycle status of HSCs using Ki67 staining and in vivo BrdU assay and we found that β7KO HSCs may have reduced cell cycle activity. Collectively, these studies suggest that expression of β7 integrin on HSCs may promote exit from quiescence and influence HSC localization within the BM niche. Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Author(s):  
Eraj Shafiq Khokhar ◽  
Sneha Borikar ◽  
Elizabeth Eudy ◽  
Tim Stearns ◽  
Kira Young ◽  
...  

SummaryAged hematopoietic stem cells (HSCs) undergo biased lineage priming and differentiation toward production of myeloid cells. A comprehensive understanding of gene regulatory mechanisms causing HSC aging is needed to devise new strategies to sustainably improve immune function in aged individuals. Here, a focused shRNA screen of epigenetic factors reveals that the histone acetyltransferase Kat6b regulates myeloid cell production from hematopoietic progenitor cells. Within the stem and progenitor cell compartment, Kat6b is most highly expressed in long-term (LT)-HSCs and is significantly decreased with aging at the transcript and protein levels. Knockdown of Kat6b in young LT-HSCs causes skewed production of myeloid cells both in vitro and in vivo. Transcriptome analysis identifies enrichment of aging and macrophage-associated gene signatures alongside reduced expression of self-renewal and multilineage priming signatures. Together, our work identifies KAT6B as an epigenetic regulator of LT-HSC aging and a novel target to improve aged immune function.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1469-1469
Author(s):  
Xiuli Wang ◽  
Wen-Chung Chang ◽  
ChingLam W Wong ◽  
David Colcher ◽  
Mark Sherman ◽  
...  

Abstract Abstract 1469 Hematopoietic cell-based therapies, including genetically manipulated cell products derived from either hematopoietic stem cells or T cells, is an emerging area in applied biotechnology. In both of these venues, a variety of genetic engineering approaches are being studied to endow cells with novel attributes, to increase their therapeutic potency and/or safety. Common to the field of ex vivo cellular genetic engineering is the need to purify cells that express desired quantities of therapeutic transgene(s) and cull out non-expressing cells that either lack transgene endowed therapeutic activity or safety features. However, current drug selection strategies are associated with prolonged ex vivo culture that drives terminal differentiation of the T cells, which has in turn been found to be associated with impaired antitumor efficacy of adoptively transferred CD8+ T cells in vivo. Thus, we were interested in developing a single transgene encoded polypeptide that can serve both as an ex vivo selection epitope and in vivo tracking marker/target for mAb-mediated cell ablation, while fulfilling the criteria of being functionally inert, non immunogenic, and amenable to commercially available cGMP-grade selection systems appropriate for clinical use. Here we describe a truncated human EGFR polypeptide (huEGFRt) devoid of extracellular N-terminal ligand binding domains and intracellular receptor tyrosine kinase domains. Retained features of huEGFRt include type I transmembrane cell surface localization and a conformationally intact binding epitope for pharmaceutical-grade anti-EGFR mAb, cetuximab/Erbitux™. Applying this system to cellular immunotherapy, we designed lentiviral vector prototypes housing multifunctional constructs combining huEGFRt with CD19-specific chimeric antigen receptors (CARs), and demonstrate that biotinylated-cetuximab immunomagnetic selection of transduced human T cells results in coordinate enrichment of CAR+ cells from 2% to over 90%. The huEGFRt-mediated selection did not affect the phenotype (i.e., TCR, CD3, CD4, CD8, CD28, and granzyme A expression), the in vitro expansion potential, nor the in vivo engraftment fitness (upon transfer into immunodeficient mice) of the T cells. Direct examination of EGF-binding and phospho-tyrosine analysis confirmed that this selection marker is functionally inert and has no negative effect on the T cell product. In addition, cytotoxicity against B cell malignancies and IFN-g/TNF-a production through the CD19-specific CAR was dramatically enhanced in the huEGFRt-selected population. The utility of huEGFRt in tracking the gene modified, transferred cells in vivo within easily obtained human tissues such as blood, bone marrow and tissue biopsies was then also proven via detection of huEGFRt using multiparameter flow cytometric analysis or FDA approved immunohistochemical techniques/reagents. In addition, we were able to demonstrate that Erbitux™ could mediate ADCC of huEGFRt+ T cells in vitro and inhibit the growth of huEGFRt+ CTLL2 cells in NOD/Scid mice, supporting the use of huEGFRt as a suicide gene via cetuximab-mediated ADCC after adoptive transfer. Together these data suggest that huEGFRt is a superior selection marker for any transduction system that can be applied to the generation of cell products for hematopoietic cell-based medical therapies. Disclosures: No relevant conflicts of interest to declare.


2000 ◽  
Vol 20 (2) ◽  
pp. 507-515 ◽  
Author(s):  
Shiuh-Ming Luoh ◽  
Eric Stefanich ◽  
Gregg Solar ◽  
Hope Steinmetz ◽  
Terry Lipari ◽  
...  

ABSTRACT The cytokine thrombopoietin (TPO) controls the formation of megakaryocytes and platelets from hematopoietic stem cells. TPO exerts its effect through activation of the c-Mpl receptor and of multiple downstream signal transduction pathways. While the membrane-proximal half of the cytoplasmic domain appears to be required for the activation of signaling molecules that drive proliferation, the distal half and activation of the mitogen-activated protein kinase pathway have been implicated in mediating megakaryocyte maturation in vitro. To investigate the contribution of these two regions of c-Mpl and the signaling pathways they direct in mediating the function of TPO in vivo, we used a knock-in (KI) approach to delete the carboxy-terminal 60 amino acids of the c-Mpl receptor intracellular domain. Mice lacking the C-terminal 60 amino acids of c-Mpl (Δ60 mice) have normal platelet and megakaryocyte counts compared to wild-type mice. Furthermore, platelets in the KI mice are functionally normal, indicating that activation of signaling pathways connected to the C-terminal half of the receptor is not required for megakaryocyte differentiation or platelet production. However, Δ60 mice have an impaired response to exogenous TPO stimulation and display slower recovery from myelosuppressive treatment, suggesting that combinatorial signaling by both ends of the receptor intracellular domain is necessary for an appropriate acute response to TPO.


Sign in / Sign up

Export Citation Format

Share Document