The CD40/CD40 Ligand (CD40L) Pathway Plays a Role in Primary Hemostasis and Platelet Function.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1562-1562
Author(s):  
Florian Langer ◽  
Susan B. Ingersoll ◽  
Ali Amirkhosravi ◽  
Todd V. Meyer ◽  
Farooq A. Siddiqui ◽  
...  

Abstract Previous studies have suggested a role for platelet CD40L in thrombosis and atherosclerosis. However, there are contradictory reports on the biologic activity of its soluble variant (sCD40L) and the involved receptor signaling pathways (CD40 vs αIIbβ3). Furthermore, CD40L mAb-associated thromboembolic complications in recent human and animal studies have raised additional questions about the pro-thrombotic properties of this molecule. This study was conducted to further investigate the function of the CD40/CD40L dyad in primary hemostasis and platelet function. CD40−/− and CD40L−/− mice and mice deficient for both genes (“double knock-out”) showed prolonged tail vein bleeding and platelet function analyzer (PFA-100) closure times as compared to their wild-type littermates, indicating an inherited defect in platelet function. Recombinant human sCD40L (rsCD40L), chemical cross-linking of which yielded a single reaction product compatible with a trimeric structure of the protein in solution, bound to CD40 on resting platelets and induced CD62P (P-selectin) expression in a concentration-dependent manner (0–5 μg/ml) from 1±1 to 23±5% positivity (means±SD, n=4–8; P<0.01). This response was completely abolished by CD40 mAb M3 and not affected by blocking the β3 integrin (CD61) with abciximab. In contrast, CD40 mAb G28-5 significantly enhanced rsCD40L-induced CD62P expression to 51±5%. This agonistic effect was strongest when G28-5 was added to the platelets after rsCD40L. Pre-incubation of rsCD40L with CD40L mAb M90 also had a potentiating effect, showing an inverted V-shaped dose response curve with maximum levels of CD62P+ platelets (60–95%) at a molar M90/rsCD40L ratio of 1/3. G28-5 and M90 alone had no effect, but their combination in the presence of rsCD40L proved synergistic. Experiments with corresponding F(ab’) fragments and the FcγRII-inhibitory mAb IV.3 demonstrated that G28-5- and M90-mediated additional platelet activation resulted from signaling through FcγRII cross-linked to CD40 and rsCD40L bound to CD40 on the platelet surface, respectively. The CD40L mAb TRAP-1 showed similar characteristics to M90, but its synergistic effect with rsCD40L was less pronounced. Platelet activation by rsCD40L in combination with G28-5 and/or M90 also induced morphological shape changes, fibrinogen binding, dense granule release, microparticle generation, and monocyte-platelet-conjugate formation. Interestingly, consistent with their platelet function-modulating effects, M3 but not G28-5 prolonged PFA-100 closure times of normal human blood. This work provides genetic evidence for a role of CD40 and CD40L in primary hemostasis. Our mechanistic studies further suggest that CD40-mediated platelet activation by CD40L, in its membrane and/or soluble form, may be at least partially involved in this process. The results also offer a potential explanation for the unexpected high incidence of CD40L mAb-associated thrombotic events in patients with systemic lupus erythematosus, an inflammatory autoimmune disease characterized by elevated levels of circulating sCD40L. The underlying pathomechanism, in which sCD40L as a platelet-derived, homotrimeric protein causes multimeric clustering of bivalent antibodies on the platelet surface with subsequent FcγRII-mediated platelet activation, resembles other known immune thrombophilias such as the heparin-induced thrombocytopenia (HIT) syndrome.

2005 ◽  
Vol 93 (06) ◽  
pp. 1137-1146 ◽  
Author(s):  
Ali Amirkhosravi ◽  
Todd Meyer ◽  
Farooq Siddiqui ◽  
Sarfraz Ahmad ◽  
Jamie Walker ◽  
...  

SummaryOur initial finding that CD40– and CD40 ligand (CD40L)-deficient mice displayed prolonged tail bleeding and platelet function analyzer (PFA-100) closure times prompted us to further investigate the role of the CD40-CD40L dyad in primary hemostasis and platelet function. Recombinant human soluble CD40L (rhs CD40L), chemical cross-linking of which suggested a trimeric structure of the protein in solution, activated platelets in a CD40-dependent manner as evidenced by increased CD62P expression. CD40 monoclonal antibody (mAb) M3, which completely blocked rhs CD40L-induced platelet activation, also prolonged PFA-100 closure times of normal human blood. In contrast, CD40 mAb G28–5 showed less potential in blocking rhs CD40L-induced CD62P expression and did not affect PFA-100 closure times. However, when added to the platelets after rhs CD40L, G28–5 significantly enhanced the platelet response by causing clustering of, and signaling through, FcγRII. Similarly, higher order multimeric immune complexes formed at a 1/3 molar ratio of M90, a CD40L mAb, to rhs CD40L induced strong FcγRII-mediated platelet activation when translocated to the platelet surface in a CD40-dependent manner, including the induction of morphological shape changes, fibrinogen binding, platelet aggregation, dense granule release, microparticle generation and monocyte-platelet-conjugate formation. The results suggest that CD40 may play a role in primary hemostasis and platelet biology by two independent mechanisms: First, by functioning as a primary signaling receptor for CD40L and, second, by serving as a docking molecule for CD40L immune complexes. The latter would also provide a potential mechanistic explanation for the unexpected high incidence of CD40L mAb-associated thrombotic events in recent human and animal studies.Parts of this work have been presented on the 46th Annual Meeting of the American Society of Hematology (San Diego, 2004).


1992 ◽  
Vol 68 (05) ◽  
pp. 570-576 ◽  
Author(s):  
Mary A Selak

SummaryWe have previously demonstrated that human neutrophil cathepsin G is a strong platelet agonist that binds to a specific receptor. This work describes the effect of neutrophil elastase on cathepsin G-induced platelet responses. While platelets were not activated by high concentrations of neutrophil elastase by itself, elastase enhanced aggregation, secretion and calcium mobilization induced by low concentrations of cathepsin G. Platelet aggregation and secretion were potentiated in a concentration-dependent manner by neutrophil elastase with maximal responses observable at 200 nM. Enhancement was observed when elastase was preincubated with platelets for time intervals of 10–60 s prior to addition of a low concentration of cathepsin G and required catalytically-active elastase since phenylmethanesulphonyl fluoride-inhibited enzyme failed to potentiate cell activation. Neutrophil elastase potentiation of platelet responses induced by low concentrations of cathepsin G was markedly inhibited by creatine phosphate/creatine phosphokinase and/or indomethacin, indicating that the synergism between elastase and cathepsin G required the participation of ADP and thromboxane A2. On the other hand, platelet responses were not attenuated by the PAF antagonist BN 52021, signifying that PAF-acether did not play a role in elastase potentiation. At higher concentrations porcine pancreatic elastase exhibits similar effects to neutrophil elastase, demonstrating that the effect of elastase was not unique to the neutrophil protease. While neutrophil elastase failed to alter the ability of cathepsin G to hydrolyze a synthetic chromogenic substrate, preincubation of platelets with elastase increased the apparent affinity of cathepsin G binding to platelets. In contrast to their effect on cathepsin G-induced platelet responses, neither neutrophil nor pancreatic elasatse potentiated aggregation or dense granule release initiated by ADP, PAF-acether, arachidonic acid or U46619, a thromboxane A2 mimetic. Moreover, unlike its effect on cathepsin G, neutrophil elastase inhibited thrombin-induced responses. The current observations demonstrate that elastase can potentiate platelet responses mediated by low concentrations of cathepsin G, suggesting that both enzymes may function synergistically to activate platelets under conditions where neutrophil degranulation occurs.


2013 ◽  
Vol 33 (suppl_1) ◽  
Author(s):  
Marieli Gonzalez ◽  
Fiorella Reyes ◽  
Deborah Marrero ◽  
A V Washington

Platelet activation at sites of inflammation triggers the secretion of molecules that induce the transition of atherosclerosis from fatty streak to an acute disease, featuring an increased vulnerability of the atherosclerotic lesion that results in plaque rupture and thrombosis. TLT-1 (Triggering Receptor Expressed in Myeloid cells (TREM)-like transcript-1) is a molecule exclusively found in the α-granules of megakarocytes and platelets and has a demonstrated effect in inflammatory responses. Upon platelet activation, TLT-1 is moved to the platelet surface, while its soluble form, s-TLT-1, is secreted and detected in serum. Studies using the C57Bl/6 treml1 - /- mouse demonstrated a predisposition to hemorrhage after an acute inflammatory challenge suggesting that TLT-1 may be a key regulatory molecule in the interface between hemostatic and inflammatory mechanisms. Because we have found that sTLT-1 levels are significantly elevated in apoE mice when compared to wild type, we hypothesized that TLT-1 may be playing an important role in the progression of atherosclerosis. To address this possibility, we generated apoE - /- / treml1 - /- double knockout mice [DN]. Assessment of lesions after 4 weeks high-fat diet (HFD) demonstrated that at early stages, TLT-1 deficiency accelerates fatty streak formation. After 20 weeks on HFD, lesions in both apoE - /- and [DN] mice progressed to an advance fibrous plaque stage. Although their lesion sizes were not substantially different, lesion compositions were. The mechanistic basis of these differences appears to be that the [DN] mice have significantly higher cholesterol levels when compared to apoE - /- mice. The increased cholesterol levels extend to the treml1 -/- mouse when compared to wild type mice at 4 weeks on HFD, this difference, however, gradually subsides as wild type mice cholesterol levels increase over 20 weeks. Interestingly, cholesterol levels in 50 week old mice on chow diet revealed minimal differences between test and control mice suggesting the higher cholesterol levels are related to increased dietary intake. Our work defines a surprising role for TLT-1 in the regulation of serum cholesterol levels during atherogenesis.


2016 ◽  
Vol 311 (3) ◽  
pp. H725-H734 ◽  
Author(s):  
Hélène Vancraeyneste ◽  
Rogatien Charlet ◽  
Yann Guerardel ◽  
Laura Choteau ◽  
Anne Bauters ◽  
...  

Platelets are capable of binding, aggregating, and internalizing microorganisms, which enhances the elimination of pathogens from the blood. The yeast Candida albicans is a pathobiont causing life-threatening invasive infections. Its cell wall contains β-1,3 glucans that are known to trigger a wide range of host cell activities and to circulate during infection. We studied the effect of β-1,3 glucan fractions (BGFs) consisting of diglucosides (Glc2), tetraglucosides (Glc4), and pentaglucosides (Glc5) on human platelets, their mechanisms of action, and their possible impact on host defenses. The effect of BGFs on the coagulation process was determined by measuring thrombin generation. Platelets pretreated with BGFs were analyzed in terms of activation, receptor expression, aggregation, and adhesion to neutrophils and to C. albicans. The results show that BGFs affected the endogenous thrombin potential in a concentration-dependent manner. For platelet activation, BGFs at a low concentration (2 μmol/l) reduced ATP release and prevented the phosphorylation of protein kinase C. BGFs diminished the expression of P-selectin and the activation of αIIbβ3. BGFs decreased platelet aggregation and the interaction between thrombin-stimulated platelets and neutrophils, fibrinogen, and C. albicans. GLc5 decreased ATP release and TGF-β1 production in response to TLR4 upregulation in thrombin-stimulated platelets, but TLR4 blockage abolished the effect of BGFs on platelets. This study provides evidence that fungal pentaglucosides modulate platelet activity mediated via TLR4 stimulation and reduce platelet-neutrophil interaction.


2019 ◽  
Vol 47 (4) ◽  
pp. 1731-1739 ◽  
Author(s):  
Jun Lu ◽  
Peng Hu ◽  
Guangyu Wei ◽  
Qi Luo ◽  
Jianlin Qiao ◽  
...  

Objective To investigate the role of alteplase, a widely-used thrombolytic drug, in platelet function. Methods Human platelets were incubated with different concentrations of alteplase followed by analysis of platelet aggregation in response to adenosine diphosphate (ADP), collagen, ristocetin, arachidonic acid or epinephrine using light transmittance aggregometry. Platelet activation and surface levels of platelet receptors GPIbα, GPVI and αIIbβ3 were analysed using flow cytometry. The effect of alteplase on clot retraction was also examined. Results This study demonstrated that alteplase significantly inhibited platelet aggregation in response to ADP, collagen and epinephrine in a dose-dependent manner, but it did not affect ristocetin- or arachidonic acid-induced platelet aggregation. Alteplase did not affect platelet activation as demonstrated by no differences in P-selectin levels and PAC-1 binding being observed in collagen-stimulated platelets after alteplase treatment compared with vehicle. There were no changes in the surface levels of the platelet receptors GPIbα, GPVI and αIIbβ3 in alteplase-treated platelets. Alteplase treatment reduced thrombin-mediated clot retraction. Conclusions Alteplase inhibits platelet aggregation and clot retraction without affecting platelet activation and surface receptor levels.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3904-3904
Author(s):  
Samantha Baldassarri ◽  
Alessandra Bertoni ◽  
Paolo Lova ◽  
Stefania Reineri ◽  
Chiara Sarasso ◽  
...  

Abstract 2-Arachidonoylglycerol (2-AG) is a naturally occurring monoglyceride that activates cannabinoid receptors and meets several key requisites of an endogenous cannabinoid substance. It is present in the brain and hematopoietic cells, including macrophages, lymphocytes and platelets. 2-AG is released from cells in a stimulus-dependent manner and is rapidly eliminated by uptake into cells and enzymatic hydrolysis in arachidonic acid and glycerol. 2-AG might exert a very fine control on platelet function either through mechanisms intertwining with the signal transduction pathways used by platelet agonists or through mechanisms modulating specific receptors. The aim of this study was to define the role of 2-AG in human platelets and characterize the mechanisms by which it performs its action. Platelets from healthy donors were isolated from plasma by differential centrifugations and gel-filtration on Sepharose 2B. The samples were incubated with 2-AG (10–100 μM) under constant stirring in the presence or absence of various inhibitors. Platelet aggregation was measured by Born technique. We have found that stimulation of human platelets with 2-AG induced irreversible aggregation, which was significantly enhanced by co-stimulation with ADP (1–10 μM). Furthermore, 2-AG-dependent platelet aggregation was completely inhibited by ADP scavengers, aspirin, and Rho kinase inhibitor, as well as by antagonists of the 2-AG receptor (CB2), of the ADP P2Y12 receptor, and of the thromboxane A2 receptor. We further investigated the role of endocannabinoids on calcium mobilization. Intracellular [Ca2+] was measured using FURA-2-loaded platelets prewarmed at 37°C under gentle stirring in a spectrofluorimeter. 2-AG induced rapid increase of cytosolic [Ca2+] in a dose-dependent manner. This effect was partially blocked by ADP scavengers and CB2 receptor antagonists. Furthermore, 2-AG-induced [Ca2+] mobilization was totally suppressed by aspirin or the thromboxane A2 receptor antagonist. These results suggest that 2-AG is able to trigger platelet activation, and that this action is partially mediated by CB2 receptor and ADP. Furthmore, 2-AG-dependent platelet activation is totally dependent on thromboxane A2 generation.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 133-133
Author(s):  
Zongdong Li ◽  
Michael Nardi ◽  
Ruimin Pan ◽  
Herman Yee ◽  
Simon Karpatkin

Abstract Anti-platelet integrin GPIIIa49-66 Ab obtained from HIV-ITP patients (or raised in rabbits) induces complement-independent platelet oxidative fragmentation and death by activating platelet 12-lipoxygenase (generation of 12(S)-HETE) and NADPH oxidase (JCI, 113:973, 2004). Platelet oxidative fragmentation is measured by flow cytometry of generated microparticles as well as intracellular DCFH oxidation. We now report that oxidative fragmentation in human platelets is preceded by Ca++ flux and P-selectin activation, n=6. However, the activation mechanism is different from classic platelet activation in that it is not inhibited by PGE1 or dibutryl cyclic AMP and is operative with Gαq−/− mouse platelets, whereas under these conditions, thrombin-induced platelet activation is completely inhibited, n=5–6. We chose to identify putative physiologic ligands that behave similarly to the GPIIIa49-66 Ab, and are therefore capable of regulating platelet reactive oxygen species (ROS) as well as arterial thrombus formation. The GPIIIa49-66 platelet peptide was used as bait to screen a 7-mer peptide phage display library. A peptide was found with 70% homology at the C-terminal position of ADAMTS-18, an ‘orphan’ disintegrin and metalloproteinase with thrombospondin (TSR)-like motifs, with unknown substrate. We have found it present in HUVEC as well as human pulmonary artery endothelial cells, on fixed sections of pathology specimens employing immunohistochemistry with a specific rabbit Ab raised against a C-terminal 18 mer peptide ADAMTS-18 (no staining with preimmune Ab). Recombinant ADAMTS-18 was produced in HEK 293 T cells and shown to induce ROS and oxidative platelet fragmentation in an identical kinetic fashion as anti-GPIIIa49-66 Ab. HUVEC ADAMTS-18 activity could be inhibited by a human scFv Ab raised against its C-terminal 18 mer peptide, as well as the ADAMTS-18 peptide itself, but not by a rabbit Ab against the N-terminal domain or an irrelevant peptide. Endothelial cell secretion and activation of ADAMTS-18 was optimally induced with 0.5 u/ml thrombin at 2 – 4 hrs, n=3–4. The truncated 385 amino acid C-terminal rADAMTS-18 fragment containing the 4 TSR motifs (produced in E.coli) had full activity at (<0.3 uM) whereas the C-terminal 66 amino acid fragment not containing the 18-mer binding site was inactive at 65 fold higher concentration, n=4. The physiologic significance of ADAMTS-18 was supported by demonstrating its secretion into plasma following iv injection of 4–16 u/ml thrombin into mice. Wild type mice have no detectable ADAMTS-18 in their plasma, with a sensitive ELISA assay (1 ng detectability). Thrombin stimulated mice secrete ADAMTS-18 in a concentration dependent manner. Platelet aggregates produced ex vivo with ADP and fibrinogen were destroyed with ADAMTS-18 as documented by LDH release at 1, 2 and 4 hrs of 83, 241 and 260 fold respectively, of PBS buffer control. In vivo tail vein bleeding time was shortened 4.5 fold with 1 hr prior infusion of 25 ug of a polyclonal rabbit IgG against ADAMTS-18, but not with preimmune IgG, n=10. Thus, a new mechanism is proposed for platelet activation, ROS release, death and platelet thrombus regulation, via platelet membrane oxidative fragmentation induced by thrombin-induced secretion and activation of ADAMTS-18.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 773-773
Author(s):  
Marvin T Nieman

Abstract Abstract 773 Thrombin activates platelets by binding and cleaving protease activated receptors 1 and 4 (PAR1 and PAR4). PAR1 and PAR4 communicate with each other to lower the concentration of thrombin required for PAR4 activation (Nieman Biochemistry, 2008). In addition, PAR1 and PAR4 form homo and heterodimers. However, where these receptors interact has not been defined and it is not known if dimerization influences receptor activation, downstream signaling, or both. Since PAR4 activation is important on human and mouse platelets, we sought to characterize the interaction site between PAR4 homodimers. Using bioluminescence resonance energy transfer (BRET), we mapped the PAR4 homodimer interface. The PAR4 homodimers show a specific interaction as indicated by a hyperbolic BRET signal in response to increasing PAR4-GFP expression with a fixed concentration of PAR4-Rluc. The threshold maximum BRET signal was disrupted in a concentration-dependent manner by unlabeled PAR4. In contrast, the unrelated G-protein coupled receptor, rhodopsin, was unable to disrupt the BRET signal indicating that the disruption of the PAR4 homodimer is a specific interaction. We have mapped the region required for PAR4 homodimer formation using chimeras between rhodopsin and PAR4. PAR4 does not interact with rhodopsin in BRET assays. Using a library of rho-PAR4 chimeras that have the junction at the beginning of transmembrane (TM) 2, 3, 4, 5, 6 or 7, we determined where dimer formation is restored. When the junction is placed at the beginning of TM4 or TM5, the chimera does not interact with PAR4-WT. In contrast, when the junction is moved to the end of TM2, the BRET signal is restored. These results indicate that the region on PAR4 required for homodimer formation encompasses a 63 amino acid region that includes the first extracellular loop, TM3 and the second intracellular loop. These studies establish techniques that may be used to define the interactions between other GPCRs found on the platelet surface. These receptor-receptor interactions may be another level of regulation of agonist activity and platelet function in vivo and may provide novel targets for anti-platelet therapies. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3534-3534
Author(s):  
Andrew L. Frelinger ◽  
Anja J Gerrits ◽  
Michelle A. Berny-Lang ◽  
Travis Brown ◽  
Sabrina L. Carmichael ◽  
...  

Abstract Background Immune thrombocytopenia (ITP) patients with similarly low platelet counts differ in their tendency to bleed. Aim To determine if differences in platelet function in ITP patients with similarly low platelet counts partly account for the variation in bleeding tendency. Methods The relationship between bleeding scores and platelet function markers was investigated in a single center cross-sectional study of pediatric patients with ITP. Following informed consent, blood was collected from ITP patients and bleeding was graded using the Buchanan and Adix Score (J Pediatr 2002) at routine clinic visits or while admitted to the hospital. Bleeding scores were obtained by one of three hematologists blinded to platelet function results, and investigators performing platelet function tests were blinded to clinical results. Platelet function was assessed by whole blood flow cytometric measurement of unstimulated, ADP- or TRAP-stimulated platelet surface activated GPIIb-IIIa (as measured by PAC1 binding), P-selectin, and GPIb and by unstimulated, convulxin-, or ADP plus TRAP-stimulated platelet surface phosphatidylserine expression (as determined by annexin V binding). Platelet count, immature platelet fraction (IPF) and mean platelet volume (MPV) were determined by a Sysmex XE-2100, and platelet forward angle light scatter (FSC) was measured by flow cytometry. Results Platelet function and bleeding scores were evaluated in 34 consecutive consenting pediatric ITP patients (16 female, 18 male, age 9.7 ± 5.7 years [mean ± SD]). ITP was newly diagnosed (< 3 months) in 10 patients, persistent (3 -- 12 months) in 7 patients, and chronic (>12 months) in 17 patients. Platelet count at the time of the blood draw was 47 ± 55 x 109/L. The median bleeding score on day of blood draw was 1 (range 0 to 4). By univariate analysis, higher IPF, and lower platelet count were significantly associated with a higher bleeding score (odds ratio [OR] >1, p<0.05) but MPV was not. Multiple measures of platelet function were associated with bleeding scores by univariate analysis: higher levels of platelet FSC (a measure affected by multiple variables including size) surface GPIb on unstimulated, ADP- or TRAP-stimulated platelets, surface P-selectin on unstimulated platelets, and platelet FSC were associated with increased odds for higher bleeding scores (ORs each >1, p<0.05), while higher ADP- and TRAP-stimulated platelet surface activated GPIIb-IIIa and P-selectin were associated with reduced odds of higher bleeding scores (ORs each <1, p<0.05). After adjustment for platelet count, higher levels of platelet surface P-selectin on unstimulated platelets, GPIb on TRAP-stimulated platelets, and FSC remained significantly associated with increased odds for higher bleeding scores (Figure), but IPF did not. Similarly, after adjustment for platelet count, higher TRAP-stimulated percentage of P-selectin and activated GPIIb-IIIa positive platelets remained significantly associated with reduced odds of higher bleeding scores (Figure). These findings were independent of recent ITP-related treatment. Conclusions In this study of pediatric ITP patients, we identified selected platelet function markers which, independent of platelet count, are associated with increased (platelet FSC, platelet surface P-selectin on unstimulated platelets, and GPIb on TRAP-stimulated platelets) or decreased (TRAP-stimulated percent P-selectin and GPIIb-IIIa positive platelets) odds of high bleeding scores. Possible hypotheses to explain these associations are as follows: 1) Increased P-selectin on unstimulated platelets demonstrates in vivo platelet activation, possibly as a consequence of the recent bleeding. 2) Because platelet activation results in a reduction in platelet surface GPIb and increases in platelet surface activated GPIIb-IIIa and P-selectin, the ORs associated with all of these markers could be explained by reduced ability of platelets in patients with higher bleeding scores to respond to agonists. 3) While platelet FSC is partly related to size, the finding that MPV and IPF, adjusted for platelet count, were not associated with bleeding score suggests that factors other than size account for the association of platelet FSC with higher bleeding scores. Further study is required to validate these findings and determine if differences in platelet function are associated with future risk for bleeding. Disclosures: Off Label Use: Eltrombopag was given to WAS/XLT patients for treatment of thrombocytopenia. Neufeld:Shire: Consultancy, Research Funding; Novartis: Consultancy, Research Funding; Apopharma: Consultancy. Michelson:Sysmex: Honoraria.


Blood ◽  
2012 ◽  
Vol 119 (17) ◽  
pp. 4066-4072 ◽  
Author(s):  
Bethan Psaila ◽  
James B. Bussel ◽  
Matthew D. Linden ◽  
Bracken Babula ◽  
Youfu Li ◽  
...  

Abstract The effects of eltrombopag, a thrombopoietin-receptor agonist, on platelet function in immune thrombocytopenia (ITP) are not fully characterized. This study used whole blood flow cytometry to examine platelet function in 20 patients receiving eltrombopag treatment at days 0, 7, and 28. Platelet surface expression of activated GPIIb/IIIa, P-selectin, and GPIb was measured with and without low and high adenosine diphosphate (ADP) and thrombin receptor activating peptide (TRAP) concentrations. Before eltrombopag treatment with no ex vivo agonist, platelet activation was higher in ITP patients than controls. Platelet GPIb and activated GPIIb/IIIa expression without added agonist was unchanged following eltrombopag treatment, whereas a slight increase in P-selectin was observed. Expression of P-selectin and activated GPIIb/IIIa in response to high-dose ADP was lower during eltrombopag treatment than at baseline. Eltrombopag led to a slight increase in platelet reactivity to TRAP only in responders to eltrombopag but not to levels above those in controls; whole blood experiments demonstrated that this increase was probably because of higher platelet counts rather than higher platelet reactivity. In conclusion, although thrombocytopenic ITP patients have higher baseline platelet activation than controls, eltrombopag did not cause platelet activation or hyper-reactivity, irrespective of whether the platelet count increased.


Sign in / Sign up

Export Citation Format

Share Document