Transduction and Expansion of HIV+ CD4 T Cells with an HIV-1 Based Lentiviral Vector and Immobilized CD3/CD28 Antibodies Maintains the Diversity of the TCR Vβ Repertoire.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1759-1759 ◽  
Author(s):  
Franck Lemiale ◽  
Mario Pereira ◽  
Laurent Humeau ◽  
Boro Dropulic

Abstract Recently, we initiated the first ex vivo HIV-based gene therapy trial in humans with HIV+ CD4+ T cells. In this protocol, a modified lentiviral vector carrying an anti-HIV payload is used to modify CD4+ T cells isolated from HIV-infected patients by apheresis and CD8 negative selection. The T cells are activated in the presence of vector and expanded using immobilized CD3/CD28 antibodies, and then infused back into the patient. T cell receptor (TCR) repertoire analysis has value for safety monitoring of adoptive T cell transfers in the detection of aberrant clonal expansions or deletions. In this study, the TCR Vβ repertoire was assessed using a flow cytometry based assay at various time points in the selection/transduction/expansion process of CD4+ T cells. PBMC isolated from whole blood of HIV+ patients were CD4-selected using a CD8 negative selection, followed by enrichment by CD3 antibody. CD4+ purified cells were transduced with the lentiviral vector, VRX496, in the presence of retronectin, and then co-cultured with CD3/CD28 coated M450 Dynabeads for ten days. The TCR Vβ repertoire was assessed in throughout the process using a FACS-based assay that employs a panel of 20 monoclonal antibodies recognizing most of the 24 Vβ families in PBMC and CD4+ T cells. Repertoires from subjects with normal polyclonal TCR profiles were conserved, as shown by the absence of any significant change in any Vβ family. Moreover, the transduction/expansion of CD4+ T cells from a patient with a previously skewed TCR profile allowed the improvement of the TCR Vβ repertoire. Finally, no significant difference was observed in the repertoire of cells transduced with VRX496 versus mock-transduced cells. These data demonstrate stability of the repertoire diversity and thus provide important support information in favor of the safety of a gene therapy approach involving lentiviral vector mediated modification and expansion of CD4+ T-cells.

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4429-4429
Author(s):  
Amani Ouedrani ◽  
Lounes Djerroudi ◽  
Isabelle Hmitou ◽  
Marina Cavazzana ◽  
Fabien Touzot

Abstract Gene therapy represents an alternative and promising strategy that could provide a path to a curative therapy for HIV-1 infection. One approach involves the introduction of protective gene into a cell, thereby conferring protection against HIV. We plan to conduct an open label phase I/II gene therapy trial for HIV-1 infected patients presenting with lymphoma. The patients will received autologous hematopoietic stem cells transplantation with gene modified CD34+ cells and CD4+ T-cells. CD34+ and CD4+ will be ex vivo transduced by the LVsh5/C46 lentiviral vector (Cal-1, Calimmune, Inc. Tucson, USA). LVsh5/C46 is a SIN lentiviral vector that inhibits two crucial steps of CD4+ T cell infection by the HIV virus: (i) attachment of the virus to its target by downregulation of CCR5 via a short hairpin RNA, (ii) fusion of the virus to the target cell through expression of the C46 inhibitor. We developed a transduction process for CD4+ T-cells using the TransAct™ reagent (Miltenyi Biotec, Bergisch Gladbach , Germany) for CD4+ T-cells activation. Compared to previously published T-cells transduction protocols, the use of Miltenyi TransAct™ permits an equivalent efficacy of transduction - evaluated by measurement of vector copy number through quantitative PCR - without major phenotypic modification. Indeed, CD4+ T-cells ex vivo transduced after activation with the TransAct™ reagent display very few changes in their surface marker with conservation of naive (CCR7+CD62L+CD45RA+), central memory (CCR7+CD62L+CD45RA-) and effector memory (CCR7-CD62L-CD45RA-) subsets in superimposable proportions as initially. Moreover, expression of CD25 remains below 15-25% of cells suggesting a more "gentle " activation of the transduced CD4+ T-cells. Our transduction process had no significant impact in TCRβ repertoire diversity as evaluated by high-throughput sequencing and analyzis of diversity through the Gini-Simpson index or the Shannon index. Finally, transduced CD4 + T-cells retained the ability to to be primed towards the TH1, TH2 and TH17 pathways suggesting that the transduction protocol used did not alter the functional properties of the target cells. Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Vol 116 (48) ◽  
pp. 24242-24251 ◽  
Author(s):  
Kosuke Hashimoto ◽  
Tsukasa Kouno ◽  
Tomokatsu Ikawa ◽  
Norihito Hayatsu ◽  
Yurina Miyajima ◽  
...  

Supercentenarians, people who have reached 110 y of age, are a great model of healthy aging. Their characteristics of delayed onset of age-related diseases and compression of morbidity imply that their immune system remains functional. Here we performed single-cell transcriptome analysis of 61,202 peripheral blood mononuclear cells (PBMCs), derived from 7 supercentenarians and 5 younger controls. We identified a marked increase of cytotoxic CD4 T cells (CD4 cytotoxic T lymphocytes [CTLs]) as a signature of supercentenarians. Furthermore, single-cell T cell receptor sequencing of 2 supercentenarians revealed that CD4 CTLs had accumulated through massive clonal expansion, with the most frequent clonotypes accounting for 15 to 35% of the entire CD4 T cell population. The CD4 CTLs exhibited substantial heterogeneity in their degree of cytotoxicity as well as a nearly identical transcriptome to that of CD8 CTLs. This indicates that CD4 CTLs utilize the transcriptional program of the CD8 lineage while retaining CD4 expression. Indeed, CD4 CTLs extracted from supercentenarians produced IFN-γ and TNF-α upon ex vivo stimulation. Our study reveals that supercentenarians have unique characteristics in their circulating lymphocytes, which may represent an essential adaptation to achieve exceptional longevity by sustaining immune responses to infections and diseases.


2005 ◽  
Vol 201 (6) ◽  
pp. 845-851 ◽  
Author(s):  
Laura Haynes ◽  
Sheri M. Eaton ◽  
Eve M. Burns ◽  
Troy D. Randall ◽  
Susan L. Swain

Using a T cell receptor transgenic (TCR Tg) mouse model, we have shown that TCR Tg CD4 cells from aged mice retain a naive phenotype, but exhibit reduced proliferation and IL-2 production in response to the antigen compared with cells from young mice. We hypothesize that age-related decreases in T cell function may be partly related to the age of the T cells. Because thymic output is decreased with age, peripheral T cells in older individuals are likely to be older than those in younger individuals. To investigate this possibility, we have manipulated the age of CD4 T cells in the periphery of young and aged mice. The production of new T cells was induced by depleting peripheral CD4 T cells or by creating bone marrow chimeras. In both young and aged individuals where we induced the production of new T cells, these newly generated cells exhibited robust responses to antigen ex vivo and in vivo, exhibiting good expansion, IL-2 production, and cognate helper function. Our results suggest that age-related defects in response to antigenic stimulation, in part, are caused by the age of the CD4 T cells.


2021 ◽  
Vol 22 (5) ◽  
pp. 2713
Author(s):  
Sun-Hye Shin ◽  
Kyung-Ah Cho ◽  
Hee-Soo Yoon ◽  
So-Yeon Kim ◽  
Hee-Yeon Kim ◽  
...  

(1) Background: six mammalian ceramide synthases (CerS1–6) determine the acyl chain length of sphingolipids (SLs). Although ceramide levels are increased in murine allergic asthma models and in asthmatic patients, the precise role of SLs with specific chain lengths is still unclear. The role of CerS2, which mainly synthesizes C22–C24 ceramides, was investigated in immune responses elicited by airway inflammation using CerS2 null mice. (2) Methods: asthma was induced in wild type (WT) and CerS2 null mice with ovalbumin (OVA), and inflammatory cytokines and CD4 (cluster of differentiation 4)+ T helper (Th) cell profiles were analyzed. We also compared the functional capacity of CD4+ T cells isolated from WT and CerS2 null mice. (3) Results: CerS2 null mice exhibited milder symptoms and lower Th2 responses than WT mice after OVA exposure. CerS2 null CD4+ T cells showed impaired Th2 and increased Th17 responses with concomitant higher T cell receptor (TCR) signal strength after TCR stimulation. Notably, increased Th17 responses of CerS2 null CD4+ T cells appeared only in TCR-mediated, but not in TCR-independent, treatment. (4) Conclusions: altered Th2/Th17 immune response with higher TCR signal strength was observed in CerS2 null CD4+ T cells upon TCR stimulation. CerS2 and very-long chain SLs may be therapeutic targets for Th2-related diseases such as asthma.


2001 ◽  
Vol 276 (20) ◽  
pp. 17455-17460 ◽  
Author(s):  
Wakae Fujimaki ◽  
Makio Iwashima ◽  
Junji Yagi ◽  
Hua Zhang ◽  
Hisako Yagi ◽  
...  

2002 ◽  
Vol 196 (4) ◽  
pp. 481-492 ◽  
Author(s):  
Kristin V. Tarbell ◽  
Mark Lee ◽  
Erik Ranheim ◽  
Cheng Chi Chao ◽  
Maija Sanna ◽  
...  

Glutamic acid decarboxylase (GAD)65 is an early and important antigen in both human diabetes mellitus and the nonobese diabetic (NOD) mouse. However, the exact role of GAD65-specific T cells in diabetes pathogenesis is unclear. T cell responses to GAD65 occur early in diabetes pathogenesis, yet only one GAD65-specific T cell clone of many identified can transfer diabetes. We have generated transgenic mice on the NOD background expressing a T cell receptor (TCR)-specific for peptide epitope 286–300 (p286) of GAD65. These mice have GAD65-specific CD4+ T cells, as shown by staining with an I-Ag7(p286) tetramer reagent. Lymphocytes from these TCR transgenic mice proliferate and make interferon γ, interleukin (IL)-2, tumor necrosis factor (TNF)-α, and IL-10 when stimulated in vitro with GAD65 peptide 286–300, yet these TCR transgenic animals do not spontaneously develop diabetes, and insulitis is virtually undetectable. Furthermore, in vitro activated CD4 T cells from GAD 286 TCR transgenic mice express higher levels of CTL-associated antigen (CTLA)-4 than nontransgenic littermates. CD4+ T cells, or p286-tetramer+CD4+ Tcells, from GAD65 286–300-specific TCR transgenic mice delay diabetes induced in NOD.scid mice by diabetic NOD spleen cells. This data suggests that GAD65 peptide 286–300-specific T cells have disease protective capacity and are not pathogenic.


Blood ◽  
2009 ◽  
Vol 114 (3) ◽  
pp. 580-588 ◽  
Author(s):  
Kathrin Gollmer ◽  
François Asperti-Boursin ◽  
Yoshihiko Tanaka ◽  
Klaus Okkenhaug ◽  
Bart Vanhaesebroeck ◽  
...  

Abstract CD4+ T cells use the chemokine receptor CCR7 to home to and migrate within lymphoid tissue, where T-cell activation takes place. Using primary T-cell receptor (TCR)–transgenic (tg) CD4+ T cells, we explored the effect of CCR7 ligands, in particular CCL21, on T-cell activation. We found that the presence of CCL21 during early time points strongly increased in vitro T-cell proliferation after TCR stimulation, correlating with increased expression of early activation markers. CCL21 costimulation resulted in increased Ras- and Rac-GTP formation and enhanced phosphorylation of Akt, MEK, and ERK but not p38 or JNK. Kinase-dead PI3KδD910A/D910A or PI3Kγ-deficient TCR-tg CD4+ T cells showed similar responsiveness to CCL21 costimulation as control CD4+ T cells. Conversely, deficiency in the Rac guanine exchange factor DOCK2 significantly impaired CCL21-mediated costimulation in TCR-tg CD4+ T cells, concomitant with impaired Rac- but not Ras-GTP formation. Using lymph node slices for live monitoring of T-cell behavior and activation, we found that G protein-coupled receptor signaling was required for early CD69 expression but not for Ca2+ signaling. Our data suggest that the presence of CCL21 during early TCR signaling lowers the activation threshold through Ras- and Rac-dependent pathways leading to increased ERK phosphorylation.


Pancreas ◽  
2008 ◽  
Vol 37 (4) ◽  
pp. 468
Author(s):  
A. Dummer ◽  
M. Sendler ◽  
F.-U. Weiss ◽  
B. M. Bröker ◽  
M. M. Lerch ◽  
...  

F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 2344 ◽  
Author(s):  
Preeti Sharma ◽  
David M. Kranz

Adoptive T-cell therapies have shown exceptional promise in the treatment of cancer, especially B-cell malignancies. Two distinct strategies have been used to redirect the activity of ex vivo engineered T cells. In one case, the well-known ability of the T-cell receptor (TCR) to recognize a specific peptide bound to a major histocompatibility complex molecule has been exploited by introducing a TCR against a cancer-associated peptide/human leukocyte antigen complex. In the other strategy, synthetic constructs called chimeric antigen receptors (CARs) that contain antibody variable domains (single-chain fragments variable) and signaling domains have been introduced into T cells. Whereas many reviews have described these two approaches, this review focuses on a few recent advances of significant interest. The early success of CARs has been followed by questions about optimal configurations of these synthetic constructs, especially for efficacy against solid tumors. Among the many features that are important, the dimensions and stoichiometries of CAR/antigen complexes at the synapse have recently begun to be appreciated. In TCR-mediated approaches, recent evidence that mutated peptides (neoantigens) serve as targets for endogenous T-cell responses suggests that these neoantigens may also provide new opportunities for adoptive T-cell therapies with TCRs.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A204-A204
Author(s):  
Jack Reid ◽  
Shihong Zhang ◽  
Ariunaa Munkhbat ◽  
Matyas Ecsedi ◽  
Megan McAfee ◽  
...  

BackgroundT Cell Receptor (TCR)-T cell therapies have shown some promising results in cancer clinical trials, however the efficacy of treatment remains suboptimal. Outcomes could potentially be improved by utilizing highly functional TCRs for future trials. Current TCR discovery methods are relatively low throughput and rely on synthesis and screening of individual TCRs based on tetramer binding and peptide specificity, which is costly and labor intensive. We have developed and validated a pooled approach relying on directly cloned TCRs transduced into a fluorescent Jurkat reporter system (figure 1). This approach provides an unbiased, high-throughput method for TCR discovery.MethodsAs a model for POTS, T cells specific for a peptide derived adenovirus structural protein were sorted on tetramer and subjected to 10x single cell VDJ analysis. Pools of randomly paired TCR alpha and beta chains were cloned from the 10x cDNA into a lentiviral vector and transduced into a Jurkat reporter cells. Consecutive stimulations with cognate antigen followed by cell sorts were performed to enrich for functional TCRs. Full length TCRab pools were sequenced by Oxford Nanopore Technologies (ONT) and compared to a 10x dataset to find naturally paired TCRs.ResultsComparison between the ex vivo single cell VDJ sequencing and ONT sequencing of the transduced antigen specific TCRs showed more than 99% of the TCR pairs found in reporter positive Jurkat cells were naturally paired TCRs. The functionality of 8 TCR clonotypes discovered using POTS were compared and clone #2 showed the strongest response. Of the selected clonotypes, clone #2 showed a low frequency of 0.9% in the ex vivo single cell VDJ sequencing. After the first round of stimulation and sequencing, clone #2 takes up of 5% of all reporter-positive clones. The abundance of clone #2 further increased to 17% after another round of stimulation, sorting and sequencing, suggesting this method can retrieve and enrich for highly functional antigen specific TCRs.Abstract 192 Figure 1Outline of the POTS workflow.ConclusionsPOTS provides a high-throughput method for discovery of naturally paired, high-avidity T cell receptors. This method mitigates bias introduced by T cell differentiation state by screening TCRs in a clonal reporter system. Additionally, POTS allows for screening of low abundance clones when compared with traditional TCR discovery techniques. Pooled TCRs could also be screened in vivo with primary T cells in a mouse model to screen for the most functional and physiologically fit TCR for cancer treatment.


Sign in / Sign up

Export Citation Format

Share Document