PPARγ Regulates the Anti-Inflammatory Effects of Carbon Monoxide on Macrophages: A Gene Profiling Study.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3445-3445
Author(s):  
Martin Bilban ◽  
Sherrie L. Otterbein ◽  
Emeka Ifedigbo ◽  
Keiji Enjyoji ◽  
Anny Usheva ◽  
...  

Abstract Carbon monoxide (CO) at low concentrations has generated recent interest due to its ability to modulate the inflammatory response associated with chronic graft rejection, vascular injury and septic shock. Both in vivo and in vitro CO can inhibit the expression of pro-inflammatory genes such as TNFα in macrophages while simultaneously increasing the expression of the anti-inflammatory cytokine IL-10. The mechanisms by which this occurs are still unclear. To better understand the mechanisms underlying the effects of CO, we employed the Affymetrix GeneChip technology to evaluate the time-dependent expression patterns of >12,000 genes in macrophages stimulated with bacterial endotoxin (LPS) in the presence or absence of a low concentration of CO previously demonstrated to evoke an anti-inflammatory response. We were particularly interested whether CO would, by itself, modulate in a specific manner the expression of proteins that might explain the anti-inflammatory effects observed following subsequent administration of endotoxin. RAW 264.7 murine macrophages were grown to 75% confluency and then exposed to CO (250 ppm) for 3 hr prior to administration of LPS (10 ng/ml). At 0, 15, 30, 60, 120 and 240 min thereafter, total RNA was isolated by standard methods and the RNA was then labeled and hybridized to U74Av2 GeneChips. Of >12,000 genes assessed, 116 of 270 that were LPS-responsive were affected by CO treatment. CO inhibited the majority of LPS-induced pro-inflammatory cytokines and acute phase proteins including expression of early growth response-1 (Egr-1), a transcription factor that serves as a central intermediary regulating many genes. Egr-1 was nearly completely inhibited by CO as was Egr-1-dependent expression of tissue factor (TF) and PAI-1. Treatment of cells with CO alone led to a rapid early increase in PPARγ, the expression of which was essential for the anti-inflammatory effects of CO. Inhibition of PPARγ using the selective chemical inhibitor GW9662 reversed the CO inhibitory effects on LPS-induced Egr-1 and TF expression. Correlative in vivo experiments in mice showed that CO pre-treatment blocked endotoxin-induced Egr-1 expression and decreased markers of lung inflammmation the effects of which were also lost with inhibition of PPARγ. Our analyses of gene expression patterns has led to the first molecular understanding of how treatment with CO, in this case by inducing PPARγ, blocks the pro-inflammatory response. These experiments provide novel insights into the mechanisms and pathophysiology of endotoxic shock and identify cellular targets by which CO mediates these cytoprotective effects.

Development ◽  
2001 ◽  
Vol 128 (6) ◽  
pp. 895-906
Author(s):  
B. Knoll ◽  
K. Zarbalis ◽  
W. Wurst ◽  
U. Drescher

We have investigated the role of the Eph family of receptor tyrosine kinases and their ligands in the establishment of the vomeronasal projection in the mouse. Our data show intriguing differential expression patterns of ephrin-A5 on vomeronasal axons and of EphA6 in the accessory olfactory bulb (AOB), such that axons with high ligand concentration project onto regions of the AOB with high receptor concentration and vice versa. These data suggest a mechanism for development of this projection that is the opposite of the repellent interaction between Eph receptors and ligands observed in other systems. In support of this idea, when given the choice of whether to grow on lanes containing EphA-F(c)/laminin or F(c)/laminin protein (in the stripe assay), vomeronasal axons prefer to grow on EphA-F(c)/laminin. Analysis of ephrin-A5 mutant mice revealed a disturbance of the topographic targeting of vomeronasal axons to the AOB. In summary, these data, which are derived from in vitro and in vivo experiments, indicate an important role of the EphA family in setting up the vomeronasal projection.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Yiyi Jin ◽  
Jianchang Qian ◽  
Xin Ju ◽  
Xiaodong Bao ◽  
Li Li ◽  
...  

Inflammation is a key factor in the pathogenesis of ALI. Therefore, suppression of inflammatory response could be a potential strategy to treat LPS-induced lung injury. Osthole, a natural coumarin extract, has been reported to protect against acute kidney injury through an anti-inflammatory mechanism, but its effect on ALI is poorly understood. In this study, we investigated whether osthole ameliorates inflammatory sepsis-related ALI. Results from in vitro studies indicated that osthole treatment inhibited the LPS-induced inflammatory response in mouse peritoneal macrophages through blocking the nuclear translocation of NF-κB. Consistently, the in vivo studies indicated that osthole significantly prolonged the survival of septic mice which was accompanied by inflammation suppression. In the ALI mouse model, osthole effectively inhibited the development of lung tissue injury, leukocytic recruitment, and cytokine productions, which was associated with inhibition of NF-κB nuclear translocation. These findings provide evidence that osthole was a potent inhibitor of NF-κB and inflammatory injury and suggest that it could be a promising anti-inflammatory agent for therapy of septic shock and acute lung injury.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Seongchan Kim ◽  
Shin Young Kim ◽  
Seung Joon Rho ◽  
Seung Hoon Kim ◽  
So Hyang Song ◽  
...  

AbstractOxidative stress plays important roles in inflammatory responses during acute lung injury (ALI). Recently, nanoconstruct (Nano)-based drug-delivery systems have shown promise in many models of inflammation. In this study, we evaluated the anti-inflammatory effects of N-acetylcysteine (NAC) loaded in a biocompatible Nano using a rat model of ALI. We synthesized a Nano with a good NAC-releasing capacity using porous silica Nano, which was used to produce Nano/NAC complexes. For in vivo experiments, Sprague–Dawley rats were intraperitoneally administered NAC or Nano/NAC 30 min after intratracheal instillation of lipopolysaccharide. After 6 h, bronchoalveolar lavage fluids and lung tissues were collected. The anti-oxidative effect of the Nano/NAC complex was confirmed by demonstrating reduced levels of reactive oxygen species after treatment with the Nano/NAC in vitro. In vivo experiments also showed that the Nano/NAC treatment may protect against LPS‐induced ALI thorough anti‐oxidative and anti‐inflammatory effects, which may be attributed to the inactivation of the NF‐κB and MAPK pathways. In addition, the effects of Nano/NAC treatment were shown to be superior to those of NAC alone. We suggest the therapeutic potential of Nano/NAC treatment as an anti‐inflammatory agent against ALI. Furthermore, our study can provide basic data for developing nanotechnology-based pharmacotherapeutics for ALI.


2021 ◽  
Author(s):  
Yun Ding ◽  
Pengjie Tu ◽  
Yiyong Chen ◽  
Yangyun Huang ◽  
Xiaojie Pan ◽  
...  

Abstract Background Cytochrome P450 epoxygenase 2J2 (CYP2J2) metabolizes arachidonic acid to epoxyeicosatrienoic acids (EETs), which exert anti-inflammatory, anti-apoptotic, pro-proliferative, and antioxidant effects on the cardiovascular system. However, the role of CYP2J2 and EETs in pulmonary arterial hypertension (PAH) with lung ischemia-reperfusion injury (LIRI) remains unclear. In the present study, we investigated the effects of CYP2J2 overexpression and exogenous EETs on PAH with LIRI in vitro and in vivo.Methods CYP2J2 gene was transfected into rat lung tissue by recombinant adeno-associated virus (rAAV) to increase the levels of EETs in serum and lung tissue. A rat model of PAH with LIRI was constructed by tail vein injection of monocrotaline (50 mg/kg) for 4 weeks, followed by clamping of the left pulmonary hilum for 1 h and reperfusion for 2 h. In addition, we established a cellular model of human pulmonary artery endothelial cells (HPAECs) with TNF-α combined with hypoxic reoxygenation (anoxia for 8 h and reoxygenation for 16 h) to determine the effect and mechanism of exogenous EETs.Results CYP2J2 overexpression significantly reduced the inflammatory response, oxidative stress and apoptosis associated with lung injury in PAH with LIRI. In addition, exogenous EETs suppressed inflammatory response and reduced intracellular reactive oxygen species (ROS) production and inhibited apoptosis in a tumor necrosis factor alpha (TNF-α) combined hypoxia-reoxygenation model of HPAECs. Our further studies revealed that the anti-inflammatory effects of CYP2J2 overexpression and EETs might be mediated by PPARγ pathway; the anti-apoptotic effects might be mediated by the PI3K/Ak pathway.Conclusions CYP2J2 overexpression and EETs protect against PAH with LIRI via anti-inflammation, anti-oxidative stress and anti-apoptosis, suggesting that increased levels of EETs may be a promising strategy for the prevention and treatment of PAH with LIRI.


Diagnostics ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 223 ◽  
Author(s):  
Maria-Eliza Nedu ◽  
Mihaela Tertis ◽  
Cecilia Cristea ◽  
Alexandru Valentin Georgescu

Methylene blue and proflavine are fluorescent dyes used to stain nucleic acid from the molecular level to the tissue level. Already clinically used for sentinel node mapping, detection of neuroendocrine tumors, methemoglobinemia, septic shock, ifosfamide-induced encephalopathy, and photodynamic inactivation of RNA viruses, the antimicrobial, anti-inflammatory, and antioxidant effect of methylene blue has been demonstrated in different in vitro and in vivo studies. Proflavine was used as a disinfectant and bacteriostatic agent against many gram-positive bacteria, as well as a urinary antiseptic involved in highlighting cell nuclei. At the tissue level, the anti-inflammatory effects of methylene blue protect against pulmonary, renal, cardiac, pancreatic, ischemic-reperfusion lesions, and fevers. First used for their antiseptic and antiviral activity, respectively, methylene blue and proflavine turned out to be excellent dyes for diagnostic and treatment purposes. In vitro and in vivo studies demonstrated that both dyes are efficient as perfusion and tissue tracers and permitted to evaluate the minimal efficient concentration in different species, as well as their pharmacokinetics and toxicity. This review aims to identify the optimal concentrations of methylene blue and proflavine that can be used for in vivo experiments to highlight the vascularization of the skin in the case of a perforasome (both as a tissue tracer and in vascular mapping), as well as their effects on tissues. This review is intended to be a comparative and critical presentation of the possible applications of methylene blue (MB) and proflavine (PRO) in the surgical field, and the relevant biomedical findings from specialized literature to date are discussed as well.


2010 ◽  
Vol 2010 ◽  
pp. 1-6 ◽  
Author(s):  
Wei Gong ◽  
Yingru Zheng ◽  
Fan Chao ◽  
Yuan Li ◽  
Zhizhen Xu ◽  
...  

HMGB1, composed of the A box, B box, and C tail domains, is a critical proinflammatory cytokine involved in diverse inflammatory diseases. The B box mediates proinflammatory activity, while the A box alone acts as a specific antagonist of HMGB1. The C tail contributes to the spatial structure of A box and regulates HMGB1 DNA binding specificity. It is unknown whether the C tail can enhance the anti-inflammatory effect of A box. In this study, we generated fusion proteins consisting of the A box and C tail, in which the B box was deleted and the A box and C tail were linked either directly or by the flexible linker sequence(Gly4Ser)3. In vitro and in vivo experiments showed that the two fusion proteins had a higher anti-inflammatory activity compared to the A box alone. This suggests that the fused C tail enhances the anti-inflammatory effect of the A box.


Planta Medica ◽  
2017 ◽  
Vol 84 (02) ◽  
pp. 123-128 ◽  
Author(s):  
Fang Wang ◽  
Huanhuan Zhong ◽  
Shiqi Fang ◽  
Yunfeng Zheng ◽  
Cunyu Li ◽  
...  

Abstract Eupatorium lindleyanum has traditionally been used as folk medicine in Asian countries for its therapeutic effects on tracheitis and tonsillitis. Investigation of the anti-inflammatory active constituents from E. lindleyanum led to the isolation of two novel sesquiterpene lactones, named eupalinolide L (1) and eupalinolide M (2), and seven known sesquiterpene lactones (3–9). The structures and configurations of the new compounds were determined on the basis of spectroscopic analysis, especially 2D NMR techniques. In vivo experiments showed that the sesquiterpenes fraction significantly reduced mouse ear edema induced by xylene (18.6%, p < 0.05). In in vitro assays, compounds 1–9 showed excellent anti-inflammatory activities, as they lowered TNF-α and IL-6 levels in lipopolysaccharide-stimulated murine macrophage RAW 264.7 cells (p < 0.001). The above results suggest that the sesquiterpene lactones from E. lindleyanum can be developed as novel potential natural anti-inflammatory agents.


2021 ◽  
Vol 93 (5) ◽  
pp. 635-639
Author(s):  
Andrei V. Gordeev ◽  
Elena A. Galushko ◽  
Natalia M. Savushkina

The significant humoral effect of the renin-angiotensin-aldosterone system on the regulation of the cardiovascular system and blood pressure has long been widely known. However, the identification and interpretation of new components of renin-angiotensin-aldosterone system in recent years can significantly expand the range of its potential effects on the body. The anti-inflammatory effect of drugs that block angiotensin II and its receptors, including in rheumatic diseases, can become practically significant for General therapists by their effect on reducing the concentration of inflammatory mediators and angiogenesis processes. The organoprotective and anti-inflammatory potentials of drugs that reduce the production of at demonstrated in vitro and in vivo experiments allow us to consider them as first-line angiotropic agents in patients with rheumatoid arthritis, especially in the presence of pathology of the cardiovascular system and kidneys.


2007 ◽  
Vol 35 (5) ◽  
pp. 1142-1146 ◽  
Author(s):  
R. Motterlini

The well-known adverse effects of CO (carbon monoxide) intoxication are counterbalanced by its positive actions when small amounts are produced intracellularly by the cytoprotective enzyme HO-1 (haem oxygenase-1). As compelling scientific evidence accumulated to sustain that HO-1 plays a fundamental role in counteracting vascular and inflammatory disorders, we began to appreciate that a controlled delivery of CO to mammals may provide therapeutic benefits in a number of pathological states. This is the rationale for the recent development of CO-RMs (CO-releasing molecules), a group of compounds capable of carrying and liberating controlled quantities of CO in cellular systems, which offer a plausible tool for studying the pharmacological effects of this gas and identifying its mechanism(s) of action. The present review will highlight the encouraging results obtained so far on the vasodilatory, anti-ischaemic and anti-inflammatory effects elicited by CO-RMs in in vitro and in vivo models with an emphasis on the prospect of converting chemical CO carriers into CO-based pharmaceuticals.


2018 ◽  
Vol 70 (7) ◽  
pp. 952-963 ◽  
Author(s):  
Mohamed L. Ashour ◽  
Fadia S. Youssef ◽  
Haidy A. Gad ◽  
Mahmoud Z. El-Readi ◽  
Amel Bouzabata ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document