Expression of Core-Binding Factor (CBF) Fusion Genes in Clonal Evolution of Chronic Myeloid Leukemia (CML).

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4697-4697
Author(s):  
Farhad Ravandi-Kashani ◽  
Hagop Kantarjian ◽  
Stefan Faderl ◽  
Susan O’Brien ◽  
Mary B. Rios ◽  
...  

Abstract A “2-hit” model of leukemogenesis has been proposed in which one class of mutations confers a proliferative or survival advantage to the cells and the second class serves primarily to interfere with hematopoietic cell differentiation. In support of this, FLT3 receptor mutations have been frequently reported in patients with t(8;21) and inv(16) acute myeloid leukemia (AML), otherwise known as core-binding factor (CBF) leukemias, whose fusion gene products (AML1-ETO and CBFB-MYH11) contribute to impaired differentiation of leukemic cells. In CML, enhanced kinase activity of BCR-ABL confers a proliferative and survival advantage to the leukemic cells and clonal evolution is a common event at the time of disease acceleration. However, the acquisition of CBF fusion genes has not been commonly reported during the clonal evolution of CML. We report 4 patients with CML who developed CBF type rearrangements [inv(16)(n=2) and t(8;21)(n=2)] at the time of disease progression. Patient #1, a 61 year old female, presented with myeloid blast phase disease with 46,XX,t(9;22)(q34;q11.2),inv(16)(p13q22) and was treated with imatinib achieving a hematological but not cytogenetic response. Patient #2, a 48 year old male, presented with chronic phase disease and received imatinib for 2 years, achieved a complete cytogenetic remission (CG CR) but progressed to blast phase with development of 46,XY,t(9;22)(q34;q11.2),inv(16)(p13q22). Both patients had elevated and abnormal marrow eosinophils at the time of clonal evolution. Patient #3, a 54 year old female, presented in chronic phase, received imatinib and achieved CG CR after 3 months. Blast transformation occurred after one year with 48, XX,+8,t(8;21)(q22;q22),t(9;22;19;10)(q34;q11;p13.1;q22),+der(22)t(9;22;19;10). Patient #4, a 47 year old male, presented with an extramedullary myeloid mass on his arm and features of chronic phase in the marrow examination. He was treated with troxacitabine with resolution of the mass. He was then treated with imatinib. Ten months later he developed a recurrent mass with cytogenetic studies of both the mass and marrow showing 47,XY,+8,t(8;21)(q22;q22),del(9)(q13q32),t(9;22)(q34;q11.2). To our knowledge, eleven other patients with CML with inv(16)(n=10) or with t(8;21)(n=1) have been previously reported in the literature, none treated with imatinib. Patients with inv(16) had features of AML with eosinophilia (FAB M4Eo) demonstrating dysplastic eosinophils in the bone marrow examination. Development of the CBF rearrangement was invariably associated with disease progression into the myeloid blast phase with the exception of one patient, reported to develop lymphoid blast phase, based on surface markers. CBF rearrngements occur rarely at the time of disease progression in CML and may contribute to disease transformation based on the “2-hit” hypothesis for leukemogenesis.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4844-4844
Author(s):  
Hana Klamova ◽  
Jana Brezinova ◽  
Kyra Michalova ◽  
Zuzana Zemanova ◽  
Marek Trneny

Abstract Cytogenetic clonal evolution (CE) - the presence of cytogenetic abnormalities in addition to the Ph chromosome in chronic myeloid leukemia (Ph+ CML) is a known poor prognostic factor associated with disease progression. Occurence of additional cytogenetic abnormalities in both Ph positive and Ph negative mitoses was also described in imatinib treated CML patients and was associated with occuring therapy resistance. The long - term significance is so far poorly understood. Objective. To monitor cytogenetic abnormalities in chronic phase CML patients on imatinib treatment, following long-term interferon alfa (IFN) or hydroxyurea treatment. To compare the haematological disease progression in patients with or without cytogenetic evolution Patients and methods: Cytogenetic evolution was analyzed in 57 patients (median age 56, range 18–73) treated with imatinib in chronic phase, following interferon resistance or intolerance. The duration of IFN application was 22 months (range 3 – 46 months), duration of imatinib treatment was 16 months (range 6 – 55 months). Cytogenetic abnormalities were detected by conventional cytogenetics - caryotype analysis and fluorescence in situ hybridisation (FISH). Results: Complete cytogenetic remission was accomplished in 55 of 57 pts (96%) on imatinib, significant or complete cytogenetic response was observed in 36 of 57 patients (66%). Cytogenetic evolution was observed in 11 patients (19%) treated with imatinib: in the Ph+ clone (9 cases) and in the Ph− clone (2 cases). Median duration of imatinib treatment before the CE identification was 16 months (range 7–36 months). The most common additional abnormality was trisomy 8 (8 pts), second Ph chromosome (4 pts), and del (17) (4 pts). In 5 cases we observed the simultaneous occurence of two different cytogenetic abnormalities. Haematological progression was observed in 7 of 11 patients (63%) following 2 – 22 months imatinib treatment (median 9 months). 5 pts (46%) exited. Six patients live 8–22 months from the detection of cytogenetic evolution. Secondary malignancy was diagnosed in 1 patient. In the group of patients without cytogenetic evolution haematological progression was observed only in 9 of 46 (19.5%) cases, 4 patients died (14.3%). Conclusion: The role of IM concerning the cytogenetic evolution occurence in CML patients is not so far clear, the suppression of the Ph+ clone could enhance the proliferation of resistant ones. In our group of patients CE was documented in 11 patients (19%), in both Ph+ and Ph− cells. Significantly higher was the risk of haematological progression. CML patients treated with imatinib should be regularly monitored with conventional cytogenetic techniques, not only to follow the decrease in the proportion of Ph-positive cells, but also to look for new especially Ph-negative clonal chromosomal abnormalities. A longer follow-up time and systematic monitoring of cytogenetics is needed to establish the prognostic impact of clonal evolution in CML patients treated with imatinib.


2021 ◽  
Vol 11 ◽  
Author(s):  
Christian Récher

Recent advances in the description of the tumor microenvironment of acute myeloid leukemia, including the comprehensive analysis of the leukemic stem cell niche and clonal evolution, indicate that inflammation may play a major role in many aspects of acute myeloid leukemia (AML) such as disease progression, chemoresistance, and myelosuppression. Studies on the mechanisms of resistance to chemotherapy or tyrosine kinase inhibitors along with high-throughput drug screening have underpinned the potential role of glucocorticoids in this disease classically described as steroid-resistant in contrast to acute lymphoblastic leukemia. Moreover, some mutated oncogenes such as RUNX1, NPM1, or SRSF2 transcriptionally modulate cell state in a manner that primes leukemic cells for glucocorticoid sensitivity. In clinical practice, inflammatory markers such as serum ferritin or IL-6 have a strong prognostic impact and may directly affect disease progression, whereas interesting preliminary data suggested that dexamethasone may improve the outcome for AML patients with a high white blood cell count, which paves the way to develop prospective clinical trials that evaluate the role of glucocorticoids in AML.


2014 ◽  
Vol 133 (1) ◽  
pp. 116-123 ◽  
Author(s):  
Damian Szatkowski ◽  
Andrzej Hellmann

KIT is detected in a variety of cells, also in acute leukemia. Inhibition of wild-type KIT is not always satisfactory. The aim of this work was to evaluate the frequency of the most common KIT mutations in acute myeloid leukemia (AML) and determine the correlation between mutation and expression level. Samples were obtained from 75 patients with AL. CD117 presence was shown in 45 of 51 patients with AML and in 1 of 16 patients with acute lymphocytic leukemia (ALL). Asp816Val mutation was found in 3.5% of cases of AML and Val560Gly mutation in 1 sample with acute biclonal leukemia. Other genetic changes were found in 15 of 57 samples with AML: polymorphisms Met541Leu in 14% of cases, Lys546Lys in 7% and 1 case of acute biclonal leukemia, Ile798Ile in 5.3% of cases, Met541Leu in 1 acute biphenotypic leukemia and in 6.3% of ALL. Polymorphism Lys546Lys was also shown in 1 case of acute biclonal leukemia. Nonsilent genetic changes were detected in a total of 23% cases with core binding factor leukemia. There was no statistical significance between KIT expression and genetic changes. There was no correlation between the incidence and types of KIT mutations and its expression on cells in AML.


Leukemia ◽  
2020 ◽  
Vol 34 (6) ◽  
pp. 1553-1562 ◽  
Author(s):  
Sabrina Opatz ◽  
Stefanos A. Bamopoulos ◽  
Klaus H. Metzeler ◽  
Tobias Herold ◽  
Bianka Ksienzyk ◽  
...  

AbstractThe fusion genes CBFB/MYH11 and RUNX1/RUNX1T1 block differentiation through disruption of the core binding factor (CBF) complex and are found in 10–15% of adult de novo acute myeloid leukemia (AML) cases. This AML subtype is associated with a favorable prognosis; however, nearly half of CBF-rearranged patients cannot be cured with chemotherapy. This divergent outcome might be due to additional mutations, whose spectrum and prognostic relevance remains hardly defined. Here, we identify nonsilent mutations, which may collaborate with CBF-rearrangements during leukemogenesis by targeted sequencing of 129 genes in 292 adult CBF leukemia patients, and thus provide a comprehensive overview of the mutational spectrum (‘mutatome’) in CBF leukemia. Thereby, we detected fundamental differences between CBFB/MYH11- and RUNX1/RUNX1T1-rearranged patients with ASXL2, JAK2, JAK3, RAD21, TET2, and ZBTB7A being strongly correlated with the latter subgroup. We found prognostic relevance of mutations in genes previously known to be AML-associated such as KIT, SMC1A, and DHX15 and identified novel, recurrent mutations in NFE2 (3%), MN1 (4%), HERC1 (3%), and ZFHX4 (5%). Furthermore, age >60 years, nonprimary AML and loss of the Y-chromosomes are important predictors of survival. These findings are important for refinement of treatment stratification and development of targeted therapy approaches in CBF leukemia.


Blood ◽  
1995 ◽  
Vol 86 (6) ◽  
pp. 2371-2378 ◽  
Author(s):  
A Gaiger ◽  
T Henn ◽  
E Horth ◽  
K Geissler ◽  
G Mitterbauer ◽  
...  

The translocation t(9;22) in chronic myeloid leukemia (CML) generates a bcr-abl fusion gene that codes for an aberrant chimeric mRNA. Cell lines established from CML patients in blast crisis show higher expression of this aberrant bcr-abl transcript than cells from patients in chronic phase of the disease. This observation provided the stimulus to investigate whether increased expression of the aberrant bcr-abl fusion transcript is critical to the progression of CML from chronic phase to blast crisis. We have monitored the bcr-abl mRNA expression in 25 patients by serial quantitative polymerase chain reaction analyses during a follow-up period of 12 to 156 months after diagnosis, with a median observation time of 28 months. In all patients who have shown disease progression to accelerated phase (n = 4) or blast crisis (n = 7), an increase in bcr-abl mRNA expression was detected up to 16 months before laboratory or clinical parameters showed phenotypic transformation of the malignant clone. To investigate whether the elevated levels of bcr-abl mRNA reflected an increase in the proportion of leukemic cells in the samples analyzed or primarily enhanced transcriptional activity of the bcr-abl fusion gene, we performed quantitative analyses of the bcr-abl gene at the DNA level and of the Ph chromosome at the cytogenetic level and compared these data with steady-state bcr-abl mRNA levels. We show that increased levels of the bcr-abl transcript did not reflect increased proportions of leukemic cells but elevated steady-state levels of the chimeric mRNA in the malignant cells before disease progression. Therefore, our data strongly suggest that an increase of the chimeric mRNA expression in the leukemic cells precedes the phenotypic transformation of the malignant clone.


Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3161
Author(s):  
Nam H. K. Nguyen ◽  
Huiyun Wu ◽  
Haiyan Tan ◽  
Junmin Peng ◽  
Jeffrey E. Rubnitz ◽  
...  

Acute Myeloid Leukemia (AML) is a heterogeneous disease with several recurrent cytogenetic abnormalities. Despite genomics and transcriptomics profiling efforts to understand AML’s heterogeneity, studies focused on the proteomic profiles associated with pediatric AML cytogenetic features remain limited. Furthermore, the majority of biological functions within cells are operated by proteins (i.e., enzymes) and most drugs target the proteome rather than the genome or transcriptome, thus, highlighting the significance of studying proteomics. Here, we present our results from a pilot study investigating global proteomic profiles of leukemic cells obtained at diagnosis from 16 pediatric AML patients using a robust TMT-LC/LC-MS/MS platform. The proteome profiles were compared among patients with or without core binding factor (CBF) translocation indicated by a t(8;21) or inv(16) cytogenetic abnormality, minimal residual disease status at the end of the first cycle of chemotherapy (MRD1), and in vitro chemosensitivity of leukemic cells to cytarabine (Ara-C LC50). Our results established proteomic differences between CBF and non-CBF AML subtypes, providing insights to AML subtypes physiology, and identified potential druggable proteome targets such as THY1 (CD90), NEBL, CTSF, COL2A1, CAT, MGLL (MAGL), MACROH2A2, CLIP2 (isoform 1 and 2), ANPEP (CD13), MMP14, and AK5.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Jian-Xin Song ◽  
Zi-Jin Dian ◽  
Yan Wen ◽  
Fen Mei ◽  
Rui-Wei Li ◽  
...  

Macrophages have emerged as a key player in tumor biology. However, their number and phenotype in human bone marrow of biopsy (BMB) samples of chronic myeloid leukemia (CML) and their association with disease progression from an initial chronic phase (CP) to accelerated phase (AP) to advanced blast phase (BP) are still unclear. BMB samples from 127 CML patients and 30 patients with iron-deficiency anemia (IDA) as control group were analyzed by immunohistochemistry. The expression levels of CD68, CD163, and CD206 in BMB samples of CML patients were significantly higher than those in the patients of control group (P<0.01), and we observed that their positive expression was gradually elevated during the transformation of CML-CP to AP to BP (P<0.01). However, the expressions of CD68, CD163, and CD206 in released group were downregulated and contrasted to these in control group; there exists statistical significance (P<0.01). The percentage ratio of CD163 and CD206 to CD68 was pronounced to be increasing from CML-CP to AP to BP (P<0.01). Hence, the higher proportion of CD68+, CD163+ and CD206+ macrophages in BMB samples can be considered a key factor for disease progression of CML patients. Targeting macrophages, especially the M2 phenotype may help in designing therapeutic strategies for CML.


2016 ◽  
Vol 35 (4) ◽  
pp. 810-813 ◽  
Author(s):  
Uday Deotare ◽  
Marwan Shaheen ◽  
Joseph M. Brandwein ◽  
Bethany Pitcher ◽  
Suzanne Kamel-Reid ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document