Rho GTPase CDC42 Signals Separately Regulate Directed Migration Versus Random Movement in Neutrophil.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 636-636
Author(s):  
Marie-Dominique Filippi ◽  
Haiming Xu ◽  
Kathleen Szczur ◽  
Yi Zheng ◽  
David A. Williams

Abstract Neutrophils (PMN) are a critical cell in inflammation. In response to external stimuli, they activate various signaling pathways to move rapidly to a site of microbial invasion and perform phagocytosis, cytokine and reactive oxygen species release. Rho GTPases, Rac1, Rac2, CDC42 and Rho, are central regulators of cell movement via actin rearrangement. We have shown the specific role of Rac1 and Rac2 in PMN functions (Gu, Science 2003; Filippi, Nat Immunol, 2004) which raises the question of the role of other Rho GTPases in PMN functions. CDC42 primarily regulates filopodia formation and controls cell polarity and migration in non-hematopoietic cells and some hematopoietic cell lines. Most of previous studies have used dominant active or negative mutants which lack specificity and cannot be used to define in vivo cell biology. Here, we used mice genetically deficient in the CDC42 negative regulator CDC42 GTPase Activating Protein (GAP) to study the role of CDC42 in PMN functions in vitro and in vivo. PMN deficient in CDC42GAP (CDC42GAP−/−) displayed a 2-fold increase in CDC42 activity. In vivo recruitment of PMN in peritoneal cavities was significantly higher in CDC42GAP−/− animals than in WT mice (4.5 ± 0.3x106 vs 3.4 ± 0.2x106, p<0.05) indicating that CDC42 plays a physiological role in neutrophil migration. We examined F-actin assembly upon integrin ligation. Podosome-like structures identified by a vinculin ring surrounding F-actin that are present at the leading edge in WT PMN were significantly reduced in frequency in the mutant cells (15% vs 3%). In addition, CDC42GAP−/− PMN showed increased lateral filopodia-like formation and abnormally elongated uropod with tail filopodia. Thus, CDC42GAP−/− PMN appeared less polarized than WT PMN (50% vs 16%). This abnormal F-actin assembly was associated with abnormal cell motility. In vitro, CDC42GAP−/− PMN showed increase random movement (chemokinesis) compared with WT PMN. By contrast but similar to the loss of CDC42 activity, CDC42GAP−/− PMN displayed defective directed migration towards fMLP suggesting that CDC42 activity plays a critical role in both chemokinesis and directed migration. These functions may be regulated by podosome-like and filopodia formation respectively. To further understand this correlation at a mechanistic level, we examined MAPK signaling. CDC42GAP−/− PMN showed sustained ERK phosphorylation at 15min compared to WT PMN. By contrast, p38MAPK was significantly decreased in CDC42GAP−/− PMN compared to WT at both 5 and 15min. Pharmacological inhibition of ERK activity in CDC42GAP−/− PMN using U0126 rescued the abnormal increased chemokinesis to level similar to WT and was associated with partial rescue of podosome-like formation at the leading edge of the cells. Inhibition of p38MAPK activity in WT PMN using SB203580 reduced directed migration and was associated with increased tail filopodia that mimicked CDC42GAP−/− PMN. Taken together, these results suggest that CDC42GAP plays an important role in PMN chemokinesis and directed migration likely via distinct signaling pathways. CDC42GAP may control chemokinesis via ERK-mediated podosome-like turnover at the leading edge. CDC42GAP may regulate directed migration by inhibiting filopodia at the uropod via p38MAPK and subsequently by restraining filopodia to the leading edge. This reinforces the importance of turnover of attachment structures during cell movement and suggests a new role for CDC42 in attachment structures in neutrophils and for p38MAPK in CDC42-mediated directed migration.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 651-651 ◽  
Author(s):  
Marie-Dominique Filippi ◽  
Haiming Xu ◽  
Jason Towe ◽  
Chad E. Harris ◽  
Kathleen Szczur ◽  
...  

Abstract Neutrophils (PMN) are a critical cell in inflammatory processes. In response to environmental stimuli, they activate various signal transduction pathways allowing them to move rapidly to a site of microbial invasion and to perform phagocytosis, cytokine and oxygen substrate release. Rho GTPase proteins, Rac1, Rac2, CDC42 and Rho, are central regulators of cell movement via actin rearrangement. We have demonstrated the specific role of Rac1 and Rac2 in PMN functions (Gu and Filippi et al, Science 2003; Filippi et al. Nat Immuol., 2004) which raises the question of the specificity of the other Rho GTPases. CDC42 primarily regulates the formation of filopodia. CDC42 controls cell polarity and migration in hematopoietic cell lines. Most of previous studies have utilized dominant active or negative mutants which lack specificity and cannot be easily used to define in vivo cell biology. Here, we used mice genetically deficient in the CDC42 negative regulator CDC42 GTPase Activating Protein (GAP) to study the role of CDC42 in neutrophil functions in vitro and in vivo. Heterozygote (CDC42GAP+/−) or homozygote (CDC42GAP−/−) mutant mice displayed normal neutrophil differentiation in vitro and in vivo. PMN deficient in CDC42GAP displayed 2-fold increased in CDC42 activity. In vivo recruitment of PMN in peritoneal cavities after thioglycollate exposure was significantly impaired in CDC42GAP+/− mice compared with wild type (WT) mice (25.5±0.76 x 105 vs 35.7±0.38 x 105, p<0.05). Both CDC42GAP+/− and CDC42GAP−/− PMN demonstrated defective directed migration in vitro in response to fMLP in a Boyden chamber assay compared with WT (248±31 and 199±20 versus 314±29 migrated cells, p<0.05), suggesting that CDC42 plays a critical role in neutrophil migration in vitro and in vivo. To further understand the role of CDC42GAP in neutrophil migration, single-cell analysis by time-lapse videomicroscopy was performed. Surprisingly, CDC42GAP+/− PMN demonstrated higher migration velocity compared with WT cells in response to fMLP, but this increased speed was associated with an abnormal shape. Upon beta-2 integrin ligation, CDC42GAP+/− PMN demonstrated abnormal elongated trailing tail associated with increased tail filopodia. Importantly, the podosome-like structures identified by a vinculin ring surrounding F-actin at the ventral plasma membrane that are present in the leading edge of WT PMN was absent in the mutant cells. CDC42GAP−/− PMN demonstrated more dramatic F-actin impairment upon integrin ligation compared with CDC42GAP+/− and WT cells and remarkably showed complete loss of cell polarity, consistent with the known role of CDC42 in cell polarity. We hypothesize that the lack of podosome formation in mutant cells could account for the increased speed observed in CDC42GAP+/− cells and therefore result in ineffective directed migration in vivo. Altogether, this suggests that regulation of CDC42 activity plays a pivotal role in neutrophil migration likely via integrin-dependent podosome-like formation. This reinforces the importance of turnover of attachment structures during cell movement and suggests a new role for CDC42 in actin-based attachment structure in neutrophils.


2006 ◽  
Vol 17 (10) ◽  
pp. 4564-4575 ◽  
Author(s):  
Scott A. Myers ◽  
Laura R. Leeper ◽  
Chang Y. Chung

The role of WASP-interacting protein (WIP) in the process of F-actin assembly during chemotaxis of Dictyostelium was examined. Mutations of the WH1 domain of WASP led to a reduction in binding to WIPa, a newly identified homolog of mammalian WIP, a reduction of F-actin polymerization at the leading edge, and a reduction in chemotactic efficiency. WIPa localizes to sites of new pseudopod protrusion and colocalizes with WASP at the leading edge. WIPa increases F-actin elongation in vivo and in vitro in a WASP-dependent manner. WIPa translocates to the cortical membrane upon uniform cAMP stimulation in a time course that parallels F-actin polymerization. WIPa-overexpressing cells exhibit multiple microspike formation and defects in chemotactic efficiency due to frequent changes of direction. Reduced expression of WIPa by expressing a hairpin WIPa (hp WIPa) construct resulted in more polarized cells that exhibit a delayed response to a new chemoattractant source due to delayed extension of pseudopod toward the new gradient. These results suggest that WIPa is required for new pseudopod protrusion and prompt reorientation of cells toward a new gradient by initiating localized bursts of actin polymerization and/or elongation.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 631-631
Author(s):  
Marie-Dominique Filippi ◽  
Pierre-Yves Berclaz ◽  
Kathleen Szczur ◽  
Chad Harris ◽  
David A. Williams

Abstract Neutrophils are a critical cell in inflammatory processes by moving rapidly to tissue sites of inflammation to perform phagocytosis, cytokine and reactive oxygen species release. Members of the small Rho GTPase family, Rac1, Rac2, CDC42 and RhoA, are central regulators of cell movement via cytoskeleton rearrangement. We have previously demonstrated that the Rho family GTPase Rac2 is a critical regulator of neutrophil functions in vitro and in vivo (Roberts et al, Immunity 1999). We have also demonstrated that in response to formyl-methionyl-leucyl-phenylalanine (fMLP), the related GTPase Rac1 plays a distinct, but as yet ill-defined role in tail retraction during cell movement and cell spreading in vitro (Gu and Filippi et al, Science 2003). Here, we further demonstrate that Rac1 appears to be critical for β2-integrin mediated adhesion and migration likely via cross talk with another Rho GTPase, RhoA. Although, Rac1−/− PMNs show normal in vitro migration in response to fMLP using the Boyden chamber assay, Rac1−/− PMNs demonstrate a dramatic defect compared with WT cells in haptotaxis using transwell precoated with fibrinogen (1.3±0.3x103 vs 9.8±0.5x103). In addition, Rac1−/− PMNs displayed increased frequency in pseudopodia formation associated with lack of cell body contraction upon integrin ligation compared with WT (80% vs 40%). We noted that this phenotype closely mimics deregulation of the related Rho GTPase, RhoA. Remarkably, Rac1-deficiency leads to mislocalization of RhoA in neutrophils after integrin ligation and reintroduction of Rac1 into Rac1−/− cells completely restores the correct localization of RhoA. These data are consistent with the hypothesis that Rho GTPases interact in a time- and space-dependent manner. Because fMLP-induced PMN migration into the lung has previously been shown to be beta2-integrin dependent (Mackarel, Am. J. Respir. Cell. Mol. Biol 2000), we used a model of neutrophil associated lung inflammation induced by intratracheal (IT) injection of fMLP to address the physiological role of Rac1 in neutrophil-derived inflammatory processes in vivo,. To study the role of Rac1 specifically in bone marrow-derived cells, we reconstituted C57BL/6 mice with either wild type or Rac1Flox/Flox bone marrow cells. After Cre-mediated deletion of Rac1, reconstituted mice were treated with one dose of fMLP (20mg) IT. One day after fMLP exposure, bronchoalveolar lavage (BAL) from reconstituted animals showed complete loss of Rac1 expression and demonstrated significantly reduced numbers of migrated neutrophils in BAL compared with mice reconstituted with WT cells (3.1±0.65 vs 9.56±2, p&lt;0.05). Importantly, 5 weeks after fMLP exposure IT, Rac1−/− recipients displayed a significant reduction in emphysematous lesions as compared with WT as assessed by morphometric measurement of alveolar spaces (57.6±7.8 vs 73.3±3.04, p&lt;0.05), demonstrating the physiological relevance of Rac1 in neutrophil-related inflammatory responses in vivo. Taken together, these results suggest that Rac1 activity regulates b2 integrin-induced cell shape change and RhoA subcellular localization in PMNs and demonstrate the existence of physiological cross talk between Rac1 and RhoA where RhoA activity depends at least in part on Rac1. Thus, Rac1 and RhoA appear to coordinately regulate PMN migration into the lung during inflammation.


2006 ◽  
Vol 176 (1) ◽  
pp. 35-42 ◽  
Author(s):  
Erik Sahai ◽  
Raquel Garcia-Medina ◽  
Jacques Pouysségur ◽  
Emmanuel Vial

Rho GTPases participate in various cellular processes, including normal and tumor cell migration. It has been reported that RhoA is targeted for degradation at the leading edge of migrating cells by the E3 ubiquitin ligase Smurf1, and that this is required for the formation of protrusions. We report that Smurf1-dependent RhoA degradation in tumor cells results in the down-regulation of Rho kinase (ROCK) activity and myosin light chain 2 (MLC2) phosphorylation at the cell periphery. The localized inhibition of contractile forces is necessary for the formation of lamellipodia and for tumor cell motility in 2D tissue culture assays. In 3D invasion assays, and in in vivo tumor cell migration, the inhibition of Smurf1 induces a mesenchymal–amoeboid–like transition that is associated with a more invasive phenotype. Our results suggest that Smurf1 is a pivotal regulator of tumor cell movement through its regulation of RhoA signaling.


2010 ◽  
Vol 33 (5-6) ◽  
pp. 191-205 ◽  
Author(s):  
S. Marchán ◽  
S. Pérez-Torras ◽  
A. Vidal ◽  
J. Adan ◽  
F. Mitjans ◽  
...  

Background: Pancreatic cancer, the fifth leading cause of adult cancer death in Western countries, lacks early detection, and displays significant dissemination ability. Accumulating evidence shows that integrin-mediated cell attachment to the extracellular matrix induces phenotypes and signaling pathways that regulate tumor cell growth and migration.Methods: In view of these findings, we examined the role ofβ3in pancreatic cancer by generating two stableβ3-expressing pancreatic human cell lines and characterizing their behavior in vitro and in vivo.Results: Transduction ofβ3selectively augmented the functional membraneαvβ3integrin levels, as evident from the enhanced adhesion and migration abilities related to active Rho GTPases. No effects on in vitro anchorage-dependent growth, but higher anoikis were detected inβ3-overexpressing cells. Moreover, tumors expressingβ3displayed reduced growth. Interestingly, treatment of mice with anαv-blocking antibody inhibited the growth ofβ3-expressing tumors to a higher extent.Conclusion: Our results collectively support the hypothesis thatαvβ3integrin has dual actions depending on the cell environment, and provide additional evidence on the role of integrins in pancreatic cancer, which should eventually aid in improving prediction of the effects of therapies addressed to modulate integrin activities in these tumors.


2011 ◽  
Vol 22 (21) ◽  
pp. 4016-4028 ◽  
Author(s):  
Brian R. Graziano ◽  
Amy Grace DuPage ◽  
Alphee Michelot ◽  
Dennis Breitsprecher ◽  
James B. Moseley ◽  
...  

Formins are a conserved family of actin assembly–promoting factors with diverse biological roles, but how their activities are regulated in vivo is not well understood. In Saccharomyces cerevisiae, the formins Bni1 and Bnr1 are required for the assembly of actin cables and polarized cell growth. Proper cable assembly further requires Bud6. Previously it was shown that Bud6 enhances Bni1-mediated actin assembly in vitro, but the biochemical mechanism and in vivo role of this activity were left unclear. Here we demonstrate that Bud6 specifically stimulates the nucleation rather than the elongation phase of Bni1-mediated actin assembly, defining Bud6 as a nucleation-promoting factor (NPF) and distinguishing its effects from those of profilin. We generated alleles of Bud6 that uncouple its interactions with Bni1 and G-actin and found that both interactions are critical for NPF activity. Our data indicate that Bud6 promotes filament nucleation by recruiting actin monomers to Bni1. Genetic analysis of the same alleles showed that Bud6 regulation of formin activity is critical for normal levels of actin cable assembly in vivo. Our results raise important mechanistic parallels between Bud6 and WASP, as well as between Bud6 and other NPFs that interact with formins such as Spire.


1971 ◽  
Vol 49 (3) ◽  
pp. 595-613 ◽  
Author(s):  
Brian S. Spooner ◽  
Kenneth M. Yamada ◽  
Norman K. Wessells

The role of microfilaments in generating cell locomotion has been investigated in glial cells migrating in vitro. Such cells are found to contain two types of microfilament systems: First, a sheath of 50–70-A in diameter filaments is present in the cytoplasm at the base of the cells, just inside the plasma membrane, and in cell processes. Second, a network of 50-A in diameter filaments is found just beneath the plasma membrane at the leading edge (undulating membrane locomotory organelle) and along the sides of the cell. The drug, cytochalasin B, causes a rapid cessation of migration and a disruption of the microfilament network. Other organelles, including the microfilament sheath and microtubules, are unaltered by the drug, and protein synthesis is not inhibited. Removal of cytochalasin results in complete recovery of migratory capabilities, even in the absence of virtually all protein synthesis. Colchicine, at levels sufficient to disrupt all microtubules, has no effect on undulating membrane activity, on net cell movement, or on microfilament integrity. The microfilament network is, therefore, indispensable for locomotion.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Scott D Hansen ◽  
R Dyche Mullins

Enabled/Vasodilator (Ena/VASP) proteins promote actin filament assembly at multiple locations, including: leading edge membranes, focal adhesions, and the surface of intracellular pathogens. One important Ena/VASP regulator is the mig-10/Lamellipodin/RIAM family of adaptors that promote lamellipod formation in fibroblasts and drive neurite outgrowth and axon guidance in neurons. To better understand how MRL proteins promote actin network formation we studied the interactions between Lamellipodin (Lpd), actin, and VASP, both in vivo and in vitro. We find that Lpd binds directly to actin filaments and that this interaction regulates its subcellular localization and enhances its effect on VASP polymerase activity. We propose that Lpd delivers Ena/VASP proteins to growing barbed ends and increases their polymerase activity by tethering them to filaments. This interaction represents one more pathway by which growing actin filaments produce positive feedback to control localization and activity of proteins that regulate their assembly.


2020 ◽  
Vol 11 (9) ◽  
Author(s):  
Yunchang Liu ◽  
Liping Zeng ◽  
Yong Yang ◽  
Chen Chen ◽  
Daowen Wang ◽  
...  

Abstract In this study, we first established the doxorubicin-induced cardiotoxicity (DIC) model with C57BL/6 mice and confirmed cardiac dysfunction with transthoracic echocardiography examination. RNA-sequencing was then performed to explore the potential mechanisms and transcriptional changes in the process. The metabolic pathway, biosynthesis of polyunsaturated fatty acid was significantly altered in DOX-treated murine heart, and Acot1 was one of the leading-edge core genes. We then investigated the role of Acot1 to ferroptosis that was reported recently to be related to DIC. The induction of ferroptosis in the DOX-treated heart was confirmed by transmission electron microscopy, and the inhibition of ferroptosis using Fer-1 effectively prevented the cardiac injury as well as the ultrastructure changes of cardiomyocyte mitochondrial. Both in vitro and in vivo experiments proved the downregulation of Acot1 in DIC, which can be partially prevented with Fer-1 treatment. Overexpression of Acot1 in cell lines showed noteworthy protection to ferroptosis, while the knock-down of Acot1 sensitized cardiomyocytes to ferroptosis by DIC. Finally, the heart tissue of αMHC-Acot1 transgenic mice presented altered free fatty acid composition, indicating that the benefit of Acot1 in the inhibition of ferroptosis lies biochemically and relates to its enzymatic function in lipid metabolism in DIC. The current study highlights the importance of ferroptosis in DIC and points out the potential protective role of Acot1 in the process. The beneficial role of Acot1 may be related to its biochemical function by shaping the lipid composition. In all, Acot1 may become a potential treating target in preventing DIC by anti-ferroptosis.


2009 ◽  
Vol 20 (14) ◽  
pp. 3209-3223 ◽  
Author(s):  
Frank P.L. Lai ◽  
Malgorzata Szczodrak ◽  
J. Margit Oelkers ◽  
Markus Ladwein ◽  
Filippo Acconcia ◽  
...  

Dynamic actin rearrangements are initiated and maintained by actin filament nucleators, including the Arp2/3-complex. This protein assembly is activated in vitro by distinct nucleation-promoting factors such as Wiskott-Aldrich syndrome protein/Scar family proteins or cortactin, but the relative in vivo functions of each of them remain controversial. Here, we report the conditional genetic disruption of murine cortactin, implicated previously in dynamic actin reorganizations driving lamellipodium protrusion and endocytosis. Unexpectedly, cortactin-deficient cells showed little changes in overall cell morphology and growth. Ultrastructural analyses and live-cell imaging studies revealed unimpaired lamellipodial architecture, Rac-induced protrusion, and actin network turnover, although actin assembly rates in the lamellipodium were modestly increased. In contrast, platelet-derived growth factor-induced actin reorganization and Rac activation were impaired in cortactin null cells. In addition, cortactin deficiency caused reduction of Cdc42 activity and defects in random and directed cell migration. Reduced migration of cortactin null cells could be restored, at least in part, by active Rac and Cdc42 variants. Finally, cortactin removal did not affect the efficiency of receptor-mediated endocytosis. Together, we conclude that cortactin is fully dispensable for Arp2/3-complex activation during lamellipodia protrusion or clathrin pit endocytosis. Furthermore, we propose that cortactin promotes cell migration indirectly, through contributing to activation of selected Rho-GTPases.


Sign in / Sign up

Export Citation Format

Share Document