scholarly journals Cortactin Promotes Migration and Platelet-derived Growth Factor-induced Actin Reorganization by Signaling to Rho-GTPases

2009 ◽  
Vol 20 (14) ◽  
pp. 3209-3223 ◽  
Author(s):  
Frank P.L. Lai ◽  
Malgorzata Szczodrak ◽  
J. Margit Oelkers ◽  
Markus Ladwein ◽  
Filippo Acconcia ◽  
...  

Dynamic actin rearrangements are initiated and maintained by actin filament nucleators, including the Arp2/3-complex. This protein assembly is activated in vitro by distinct nucleation-promoting factors such as Wiskott-Aldrich syndrome protein/Scar family proteins or cortactin, but the relative in vivo functions of each of them remain controversial. Here, we report the conditional genetic disruption of murine cortactin, implicated previously in dynamic actin reorganizations driving lamellipodium protrusion and endocytosis. Unexpectedly, cortactin-deficient cells showed little changes in overall cell morphology and growth. Ultrastructural analyses and live-cell imaging studies revealed unimpaired lamellipodial architecture, Rac-induced protrusion, and actin network turnover, although actin assembly rates in the lamellipodium were modestly increased. In contrast, platelet-derived growth factor-induced actin reorganization and Rac activation were impaired in cortactin null cells. In addition, cortactin deficiency caused reduction of Cdc42 activity and defects in random and directed cell migration. Reduced migration of cortactin null cells could be restored, at least in part, by active Rac and Cdc42 variants. Finally, cortactin removal did not affect the efficiency of receptor-mediated endocytosis. Together, we conclude that cortactin is fully dispensable for Arp2/3-complex activation during lamellipodia protrusion or clathrin pit endocytosis. Furthermore, we propose that cortactin promotes cell migration indirectly, through contributing to activation of selected Rho-GTPases.

1990 ◽  
Vol 10 (5) ◽  
pp. 2359-2366
Author(s):  
D K Morrison ◽  
D R Kaplan ◽  
S G Rhee ◽  
L T Williams

We investigated the interaction of phospholipase C-gamma (PLC-gamma) with wild-type and mutant forms of the platelet-derived growth factor (PDGF) beta-receptor both in vivo and in vitro. After PDGF treatment of CHO cell lines expressing wild-type or either of two mutant (delta Ki and Y825F) PDGF receptors, PLC-gamma became tyrosine phosphorylated and associated with the receptor proteins. The receptor association and tyrosine phosphorylation of PLC-gamma correlated with the ability of these receptors to mediate ligand-induced phosphatidylinositol turnover. However, both the delta Ki and Y825F mutant receptors were deficient in transmitting mitogenic signals, suggesting that the PDGF-induced tyrosine phosphorylation and receptor association of PLC-gamma are not sufficient to account for the growth-stimulatory activity of PDGF. Wild-type and delta Ki mutant PDGF receptor proteins expressed with recombinant baculovirus vectors also associated in vitro with mammalian PLC-gamma. However, baculovirus-expressed c-fms, v-fms, c-src, and Raf-1 proteins failed to associate with PLC-gamma under similar conditions. Phosphatase treatment of the baculovirus-expressed PDGF receptor greatly decreased its association with PLC-gamma. This requirement for receptor phosphorylation was also observed in vivo, where PLC-gamma could not associate with a mutant PDGF receptor (K602A) defective in autophosphorylation. PLC-gamma also coimmunoprecipitated with two other putative receptor substrates, the serine-threonine kinase Raf-1 and the 85-kilodalton phosphatidylinositol-3' kinase, presumably through its association with the ligand-activated receptor. Furthermore, baculovirus-expressed Raf-1 phosphorylated purified PLC-gamma in vitro at sites which showed increased serine phosphorylation in vivo in response to PDGF. These results suggest that PDGF directly influences PLC activity by inducing the association of PLC-gamma with a receptor signaling complex, resulting in increased tyrosine and serine phosphorylation of PLC-gamma.


Neoplasia ◽  
2009 ◽  
Vol 11 (8) ◽  
pp. 732-W7 ◽  
Author(s):  
Debora Faraone ◽  
Maria Simona Aguzzi ◽  
Gabriele Toietta ◽  
Angelo M. Facchiano ◽  
Francesco Facchiano ◽  
...  

1994 ◽  
Vol 14 (10) ◽  
pp. 6715-6726 ◽  
Author(s):  
A K Arvidsson ◽  
E Rupp ◽  
E Nånberg ◽  
J Downward ◽  
L Rönnstrand ◽  
...  

Ligand stimulation of the platelet-derived growth factor (PDGF) beta-receptor leads to activation of its intrinsic tyrosine kinase and autophosphorylation of the intracellular part of the receptor. The autophosphorylated tyrosine residues mediate interactions with downstream signal transduction molecules and thereby initiate different signalling pathways. A pathway leading to activation of the GTP-binding protein Ras involves the adaptor molecule GRB2. Here we show that Tyr-716, a novel autophosphorylation site in the PDGF beta-receptor kinase insert, mediates direct binding of GRB2 in vitro and in vivo. In a panel of mutant PDGF beta-receptors, in which Tyr-716 and the previously known autophosphorylation sites were individually mutated, only PDGFR beta Y716F failed to bind GRB2. Furthermore, a synthetic phosphorylated peptide containing Tyr-716 bound GRB2, and this peptide specifically interrupted the interaction between GRB2 and the wild-type receptor. In addition, the Y716(P) peptide significantly decreased the amount of GTP bound to Ras in response to PDGF in permeabilized fibroblasts as well as in porcine aortic endothelial cells expressing transfected PDGF beta-receptors. The mutant PDGFR beta Y716F still mediated activation of mitogen-activated protein kinases and an increased DNA synthesis in response to PDGF, indicating that multiple signal transduction pathways transduce mitogenic signals from the activated PDGF beta-receptor.


Blood ◽  
2002 ◽  
Vol 99 (6) ◽  
pp. 2045-2053 ◽  
Author(s):  
Francesco De Marchis ◽  
Domenico Ribatti ◽  
Claudia Giampietri ◽  
Alessandro Lentini ◽  
Debora Faraone ◽  
...  

Abstract Basic fibroblast growth factor (bFGF) and platelet-derived growth factor-BB (PDGF-BB) modulate vascular wall cell function in vitro and angiogenesis in vivo. The aim of the current study was to determine how bovine aorta endothelial cells (BAECs) respond to the simultaneous exposure to PDGF-BB and bFGF. It was found that bFGF-dependent BAEC migration, proliferation, and differentiation into tubelike structures on reconstituted extracellular matrix (Matrigel) were inhibited by PDGF-BB. The role played by PDGF receptor α (PDGF-Rα) was investigated by selective stimulation with PDGF-AA, by blocking PDGF-BB-binding to PDGF-Rα with neomycin, or by transfecting cells with dominant-negative forms of the receptors to selectively impair either PDGF-Rα or PDGF-Rβ function. In all cases, PDGF-Rα impairment abolished the inhibitory effect of PDGF-BB on bFGF-directed BAEC migration. In addition, PDGF-Rα phosphorylation was increased in the presence of bFGF and PDGF, as compared to PDGF alone, whereas mitogen-activated protein kinase phosphorylation was decreased in the presence of PDGF-BB and bFGF compared with bFGF alone. In vivo experiments showed that PDGF-BB and PDGF-AA inhibited bFGF-induced angiogenesis in vivo in the chick embryo chorioallantoic membrane assay and that PDGF-BB inhibited bFGF-induced angiogenesis in Matrigel plugs injected subcutaneously in CD1 mice. Taken together these results show that PDGF inhibits the angiogenic properties of bFGF in vitro and in vivo, likely through PDGF-Rα stimulation.


2008 ◽  
Vol 295 (5) ◽  
pp. C1113-C1122 ◽  
Author(s):  
Anne E. Kruchten ◽  
Eugene W. Krueger ◽  
Yu Wang ◽  
Mark A. McNiven

Cortactin is an actin-binding protein that is overexpressed in many cancers and is a substrate for both tyrosine and serine/threonine kinases. Tyrosine phosphorylation of cortactin has been observed to increase cell motility and invasion in vivo, although it has been reported to have both positive and negative effects on actin polymerization in vitro. In contrast, serine phosphorylation of cortactin has been shown to stimulate actin assembly in vitro. Currently, the effects of cortactin serine phosphorylation on cell migration are unclear, and furthermore, how the distinct phospho-forms of cortactin may differentially contribute to cell migration has not been directly compared. Therefore, we tested the effects of different tyrosine and serine phospho-mutants of cortactin on lamellipodial protrusion, actin assembly within cells, and focal adhesion dynamics. Interestingly, while expression of either tyrosine or serine phospho-mimetic cortactin mutants resulted in increased lamellipodial protrusion and cell migration, these effects appeared to be via distinct processes. Cortactin mutants mimicking serine phosphorylation appeared to predominantly affect actin polymerization, whereas mutation of cortactin tyrosine residues resulted in alterations in focal adhesion turnover. Thus these findings provide novel insights into how distinct phospho-forms of cortactin may differentially contribute to actin and focal adhesion dynamics to control cell migration.


2017 ◽  
Vol 216 (9) ◽  
pp. 2859-2875 ◽  
Author(s):  
M. Angeles Juanes ◽  
Habib Bouguenina ◽  
Julian A. Eskin ◽  
Richa Jaiswal ◽  
Ali Badache ◽  
...  

Cell motility depends on tight coordination between the microtubule (MT) and actin cytoskeletons, but the mechanisms underlying this MT–actin cross talk have remained poorly understood. Here, we show that the tumor suppressor protein adenomatous polyposis coli (APC), which is a known MT-associated protein, directly nucleates actin assembly to promote directed cell migration. By changing only two residues in APC, we generated a separation-of-function mutant, APC (m4), that abolishes actin nucleation activity without affecting MT interactions. Expression of full-length APC carrying the m4 mutation (APC (m4)) rescued cellular defects in MT organization, MT dynamics, and mitochondrial distribution caused by depletion of endogenous APC but failed to restore cell migration. Wild-type APC and APC (m4) localized to focal adhesions (FAs), and APC (m4) was defective in promoting actin assembly at FAs to facilitate MT-induced FA turnover. These results provide the first direct evidence for APC-mediated actin assembly in vivo and establish a role for APC in coordinating MTs and actin at FAs to direct cell migration.


Sign in / Sign up

Export Citation Format

Share Document