Non-Hodgkin Lymphoma B-Cells Induce Intratumoral CD4+CD25− T Cells To Express Foxp3 and Gain Regulatory Function.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1724-1724
Author(s):  
Zhi-Zhang Yang ◽  
Anne J. Novak ◽  
Thomas E. Witzig ◽  
Stephen M. Ansell

Abstract We have previously shown that CD4+CD25+Foxp3+ regulatory T cells from NHL tumors suppress the function of infiltrating CD4+ T cells and cytolytic CD8+ T cells. Expression of Foxp3 has been demonstrated to be crucial to the development and function of CD4+CD25+ regulatory T cells. However, the mechanistic details that drive development of Foxp3 expression in T cells, in both the normal and malignant scenario, remains to be fully elucidated. Previous studies suggest that Foxp3 expression in CD4+CD25− T cells can be upregulated by tolerizing stimuli such as activation through TCR, corticosteroids, estrogen, and TGF-beta. Because lymphoma B cells have been shown to induce T-cell tolerance, we postulated that lymphoma B cells may play a role in the generation of regulatory T cells by inducing Foxp3 expression in CD4+CD25− T cells. FoxP3 expression was initially thought to be restricted to CD4+CD25+ regulatory T cell population. However, recent literature suggests that Foxp3 may also be expressed in CD4+CD25− T cells. Using biopsy specimens from patients with B-cell NHL, we found that a subset, 15%, of infiltrating CD4+CD25− T cells express Foxp3 and are capable of suppressing the proliferation and granule production of infiltrating cytotoxic CD8+ T cells. These initial studies suggest that CD4+CD25−Foxp3+ T cells have regulatory function. To explore the underlying mechanism by which Foxp3 expression is regulated, we determined the effect of costimulatory signals on Foxp3 expression in CD4+CD25−Foxp3− T cells. Activation with OKT3/anti-CD28 Ab as well as DC-mediated activation induced Foxp3 expression in a subset of CD4+CD25− T cells. We also found that the presence of lymphoma B cells during activation augmented the induction of Foxp3 expression in CD4+CD25− T cells and that NHL B cell-mediated Foxp3 expression was cell contact-dependent. To better understand the contribution of NHL B cells in Foxp3 expression, we explored the possibility that CD27-CD70 interaction may be involved in Foxp3 expression. Lymphoma B cells express CD70, but not B7-1 and B7-2, which have been shown to be important in protecting tumor cells from lysis and contributing to cancer pathogenesis. Ligation of CD27 by receptor cross-linking enhanced Foxp3 expression in infiltrating CD4+CD25− T cells in B-cell NHL. Taken together these studies reveal a novel role for NHL B cells in development of regulatory T cells. Our data show that lymphoma B cells induce expression of Foxp3 in infiltrating CD4+CD25− T cells and may result in development of T cells with regulatory function within the tumor microenvironment. Our results also suggest a potential role for CD27-CD70 interactions in this process. The ability of malignant B cells to drive development of regulatory T cells may be one mechanism by which lymphoma B cells protect themselves from anti-tumor immunity. (Supported in part by the Iowa/Mayo Lymphoma SPORE CA97274).

Kidney360 ◽  
2020 ◽  
Vol 1 (5) ◽  
pp. 389-398
Author(s):  
Kenna R. Degner ◽  
Nancy A. Wilson ◽  
Shannon R. Reese ◽  
Sandesh Parajuli ◽  
Fahad Aziz ◽  
...  

BackgroundB cell depletion is a common treatment of antibody-mediated rejection (ABMR). We sought to determine the specific immunopathologic effects of this therapeutic approach in kidney transplantation.MethodsThis was a prospective observational study of recipients of kidney transplants diagnosed with late ABMR (>3 months after transplant). Patients received treatment with pulse steroids, IVIG, and rituximab. Donor-specific HLA antibodies (DSA), kidney allograft pathology, renal function, immune cell phenotypes, and 47 circulating cytokines were assessed at baseline and at 3 months.ResultsWe enrolled 23 patients in this study between April 2015 and March 2019. The majority of patients were male (74%) and white (78%) with an average age of 45.6±13.8 years. ABMR was diagnosed at 6.8±5.9 years (4 months to 25 years) post-transplant. Treatment was associated with a significant decline in circulating HLA class I (P=0.003) and class II DSA (P=0.002) and peritubular capillaritis (ptc; P=0.04) compared to baseline. Serum creatinine, BUN, eGFR, and proteinuria (UPC) remained stable. Circulating B cells were depleted to barely detectable levels (P≤0.001), whereas BAFF (P=0.0001), APRIL (P<0.001), and IL-10 (P=0.02) levels increased significantly post-treatment. Notably, there was a significant rise in circulating CD4+ (P=0.02) and CD8+ T cells (P=0.003). We also noted a significant correlation between circulating cytotoxic CD8+ T cells and BAFF (P=0.05), regulatory T cells and IL-10 (P=0.002), and regulatory T cells and HLA class I DSA (P=0.005).ConclusionsShort-term pulse steroids/IVIG/rituximab therapy was associated with inhibition of ABMR (DSA and ptc), stabilization of kidney function, and increased regulatory B cell and T cell survival cytokines. Additional studies are needed to understand the implications of B cell depletion on the crosstalk between T cells and B cells, and humoral components that regulate ABMR.


Blood ◽  
1992 ◽  
Vol 79 (5) ◽  
pp. 1245-1254 ◽  
Author(s):  
N Chirmule ◽  
N Oyaizu ◽  
VS Kalyanaraman ◽  
S Pahwa

Abstract Despite the occurrence of hypergammaglobulinemia in human immunodeficiency virus (HIV) infection, specific antibody production and in vitro B-cell differentiation responses are frequently impaired. In this study, we have examined the effects of HIV envelope glycoprotein gp120 on T-helper cell function for B cells. In the culture system used, B-cell functional responses were dependent on T-B- cell contact, since separation of T and B cells in double chambers by Transwell membranes rendered the B cells unresponsive in assays of antigen-induced B-cell proliferation and differentiation. Cytokines secreted by T cells were also essential, since anti-CD3 monoclonal antibody (mAb)-activated, paraformaldehyde-fixed T-cell clones failed to induce B-cell proliferation and differentiation. Pretreatment of the CD4+ antigen-specific T cells with gp120 was found to impair their ability to help autologous B cells, as determined by B-cell proliferation, polyclonal IgG secretion, and antigen-specific IgG secretion. The gp120-induced inhibition was specific in that it was blocked by soluble CD4. Furthermore, only fractionated small B cells (which are T-cell-dependent in their function) manifested impaired responses when cultured with gp120-treated T cells. Antigen-induced interleukin (IL)-2 and IL-4, but not IL-6, secretion were markedly reduced in gp120-treated T-cell clones. Addition of exogenous cytokines failed to compensate for defective helper function of gp120-treated T cells. The findings in this study indicate that gp120 impairs helper functions of CD4+ T cells by interfering with T-B-cell contact- dependent interaction; the inhibitory effects of soluble envelope proteins of HIV may contribute to the immunopathogenesis of the HIV- associated disease manifestations.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3905-3905
Author(s):  
Sakura Hosoba ◽  
Christopher R. Flowers ◽  
Catherine J Wu ◽  
Jens R. Wrammert ◽  
Edmund K. Waller

Abstract Introduction: Rituximab (R) administration results in depletion of blood B cells and suppression of B cell reconstitution for several months after, with suggestions that T cell reconstitution may also be impaired. We hypothesized that pre-transplant R would be associated with delayed B and T cell reconstitution after allo-HSCT compared with non-R-treated allo-HSCT recipients. Methods: We conducted a retrospective analysis of 360 patients who underwent allo-HSCT using BM or G-CSF mobilized PB. Recipients of cord blood, T cell depleted grafts and 2nd allo-HSCT were excluded. Analysis of lymphocyte subsets in at least one blood at 1, 3, 6, 12, and 24 months post-allo-HSCT was available for 255 eligible patients. Data on lymphocyte recovery was censored after DLI or post-transplant R therapy. Post-HSCT lymphocyte recovery in 217 patients who never received R (no-R) was compared to 38 patients who had received R before allo-HSCT (+R) including 12 CLL, 19 NHL, and 7 B-cell ALL patients. +R patients received a median of 9 doses of R with the last dose of R at a median of 45 days pre-transplant. Results: Mean lymphocyte numbers in the blood at 1, 3, 6, 12, and 24 months were B-cells: 55 ± 465/µL, 82 ± 159/µL, 150 ± 243/µL, 255 ± 345/µL, and 384 ± 369/µL (normal range 79-835); and T-cells: 65 ± 987/µL, 831 ± 667/µL, 1058 ± 788/µL, 1291 ± 985/µL, and 1477 ± 1222/µL (normal range 675-3085). Lymphocyte reconstitution kinetics did not vary significantly based upon the intensity of the conditioning regimen or related vs. unrelated donors allowing aggregation of patients in the +R and no-R groups (Figure). B cell reconstitution in the +R patients was higher at 1 month post-allo-HSCT (relative value of 143% p=0.008) and lower at 3 months post-transplant (19.2%, p=0.069) compared to no-R patients. Blood B cells in the +R group rebounded by the 6th month post-allo-HSCT and remained higher than the no-R group through the 24th month post-HSCT (197% at the 6th month, p=0.037). Higher levels of B-cells at 1 month in the +R group was due to higher blood B-cells at 1 month post-HSCT among 12 CLL patients compared with no-R patients (423%, p<0.001; Figure), while B-cell counts in the remaining +R patients (B-cell NHL and B-cell ALL) were lower than the no-R patients at both 1 and 3 months. Reconstitution of CD4+ and CD8+ T cells among +R patients were similar to no-R patients in the first month post-allo-HSCT and then rebounded to higher levels than the no-R group of patients (relative value 194%, p=0.077 at the 24th month for CD4+ T cell subset, and 224%, p=0.020 for CD8+ T cell subset; Figure). CLL patients had a striking increase in blood levels of donor-derived CD4+ and CD8+ T cells at 3 months post-transplant concomitant with the disappearance of blood B cells compared with no-R patients (relative value of 178% and 372%, p=0.018 and p=0.003, respectively; Figure). Long term T cell reconstitution remained higher for +R patients compared with no-R patients, even when CLL patients were excluded (relative value of 203%, p=0.005 at 24 months post-HSCT; Figure). Conclusions: We observed higher levels of blood B cells and T cells ³ 6 months post-allo-HSCT in +R patients compared with no-R patients. B cell recovery at 6 months post-transplant is consistent with clearance of residual plasma R given the 1-2 months half-life of R, and the median of 1.5 months between the last dose of R and allo-HSCT. The increased blood CD8+ T cells in the blood of CLL patients at 3 months post-allo-HSCT associated with clearance of the B-cells seen 1 month post-HSCT is consistent with a donor T cell-mediated GVL effect. Pre-transplant R therapy does not appear to have any long-term deleterious effect on immune reconstitution, indicating that post-allo-HSCT vaccination at ≥6 months may be efficacious. Figure: Kinetics of lymphocyte reconstitution after allo-HSCT varied by history of pre-transplant R administration and primary disease. Panels show mean counts of each lymphocyte subset at 1, 3, 6, 12 and 24 months post-allo-HSCT for: (1) B cell, (2) T cell, (3) CD4+ and (4) CD8+ T cells. Solid lines with triangle show no-R group; dashed lines with circles shows subgroups of CLL and NHL/ALL +R patients. Asterisks show p values from t-test of the comparison between CLL +R or the NHL/ALL +R patients with no-R patients. *p<0.05; ** p<0.01; *** p<0.001. Figure:. Kinetics of lymphocyte reconstitution after allo-HSCT varied by history of pre-transplant R administration and primary disease. Panels show mean counts of each lymphocyte subset at 1, 3, 6, 12 and 24 months post-allo-HSCT for: (1) B cell, (2) T cell, (3) CD4+ and (4) CD8+ T cells. Solid lines with triangle show no-R group; dashed lines with circles shows subgroups of CLL and NHL/ALL +R patients. Asterisks show p values from t-test of the comparison between CLL +R or the NHL/ALL +R patients with no-R patients. *p<0.05; ** p<0.01; *** p<0.001. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2003 ◽  
Vol 101 (3) ◽  
pp. 1063-1070 ◽  
Author(s):  
Mohammad-Reza Rezvany ◽  
Mahmood Jeddi-Tehrani ◽  
Hans Wigzell ◽  
Anders Österborg ◽  
Håkan Mellstedt

Abstract T-cell receptor–B-variable (TCR-BV) gene usage and the CDR3 size distribution pattern were analyzed by reverse transcription–polymerase chain reaction (RT-PCR) in patients with B-cell chronic lymphocytic leukemia (B-CLL) to assess the T-cell repertoire. The use of TCR-BV families in CD4 and CD8 T cells stimulated with autologous activated leukemic cells was compared with that of freshly obtained blood T cells. Overexpression of individual TCR-BV families was found in freshly isolated CD4 and CD8 T cells. Polyclonal, oligoclonal, and monoclonal TCR-CDR3 patterns were seen within such overexpressed native CD4 and CD8 TCR-BV families. In nonoverexpressed TCR-BV families, monoclonal and oligoclonal populations were noted only within the CD8 subset. After in vitro stimulation of T cells with autologous leukemic B cells, analyses of the CDR3 length patterns showed that in expanded TCR-BV populations, polyclonal patterns frequently shifted toward a monoclonal/oligoclonal profile, whereas largely monoclonal patterns in native overexpressed TCR-BV subsets remained monoclonal. Seventy-five percent of CD8 expansions found in freshly obtained CD8 T cells further expanded on in vitro stimulation with autologous leukemic B cells. This suggests a memory status of such cells. In contrast, the unusually high frequency of CD4 T-cell expansions found in freshly isolated peripheral blood cells did not correlate positively to in vitro stimulation as only 1 of 9 expansions continued to expand. Our data suggest that leukemia cell–specific memory CD4 and CD8 T cells are present in vivo of patients with CLL and that several leukemia cell–associated antigens/epitopes are recognized by the patients' immune system, indicating that whole leukemia cells might be of preference for vaccine development.


2021 ◽  
Vol 12 ◽  
Author(s):  
Claire Germain ◽  
Priyanka Devi-Marulkar ◽  
Samantha Knockaert ◽  
Jérôme Biton ◽  
Hélène Kaplon ◽  
...  

The presence of tertiary lymphoid structures (TLS) in the tumor microenvironment is associated with better clinical outcome in many cancers. In non-small cell lung cancer (NSCLC), we have previously showed that a high density of B cells within TLS (TLS-B cells) is positively correlated with tumor antigen-specific antibody responses and increased intratumor CD4+ T cell clonality. Here, we investigated the relationship between the presence of TLS-B cells and CD4+ T cell profile in NSCLC patients. The expression of immune-related genes and proteins on B cells and CD4+ T cells was analyzed according to their relationship to TLS-B density in a prospective cohort of 56 NSCLC patients. We observed that tumor-infiltrating T cells showed marked differences according to TLS-B cell presence, with higher percentages of naïve, central-memory, and activated CD4+ T cells and lower percentages of both immune checkpoint (ICP)-expressing CD4+ T cells and regulatory T cells (Tregs) in the TLS-Bhigh tumors. A retrospective study of 538 untreated NSCLC patients showed that high TLS-B cell density was even able to counterbalance the deleterious impact of high Treg density on patient survival, and that TLS-Bhigh Treglow patients had the best clinical outcomes. Overall, the correlation between the density of TLS-Bhigh tumors with early differentiated, activated and non-regulatory CD4+ T cell cells suggest that B cells may play a central role in determining protective T cell responses in NSCLC patients.


1972 ◽  
Vol 136 (1) ◽  
pp. 49-67 ◽  
Author(s):  
Marc Feldmann ◽  
Antony Basten

Tissue cultures with two compartments, separated by a cell impermeable nuclepore membrane (1 µ pore size), were used to investigate the mechanism of T-B lymphocyte cooperation. It was found that collaboration was as effective when the T and B lymphocyte populations were separated by the membrane as when they were mixed together. Critical tests were performed to verify that the membranes used were in fact cell impermeable. The specificity of the augmentation of the B cell response by various T cell populations was investigated. Only the response of B cells reactive to determinants on the same molecule as recognized by the T cells was augmented markedly. Specific activation of thymocytes by antigen was necessary for efficient collaboration across the membrane. The response of both unprimed and hapten-primed spleen cells was augmented by the T cell "factor" although, as expected, hapten-primed cells yielded greater responses. The T cell factor acted as efficiently if T cells were present or absent in the lower chamber. Thus the site of action of the T cell factor was not on other T cells, but was either on macrophages or the B cells themselves. The T cell-specific immunizing factor did not pass through dialysis membranes. The experiments reported here help rule out some of the possible theories of T-B cell collaboration. Clearly T-B cell contact was not necessary for successful cooperation to occur in this system. Possible theoretical interpretations of the results and their bearing on the detailed mechanism of T-B lymphocyte cooperation are discussed.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1933-1933
Author(s):  
Said Dermime ◽  
Cynthia Lehe ◽  
Hazem Ghebeh ◽  
Abdullah Al-Sulaiman ◽  
Ghofran Al Qudaihi ◽  
...  

Abstract Compelling evidences indicate a key role for regulatory T cells (Tregs) on the host response to cancer and recent studies indicated that the generation of effective WT1-specific cytotoxic T cells can be largely affected by the presence of Tregs. This is the first study to describe human Tregs generated specifically against the WT1 antigen which is overexpressed in several human leukemias and provide the mechanism by which these anti-WT1 Tregs inhibit the immune response in leukemia patients. We have generated T cell lines and clones that specifically recognized a WT1-84 peptide in an HLA DRB1*0402/TCR-Vb8-restricted manner. Importantly, they recognized HLADRB1* 04-matched fresh leukemic cells expressing the WT1 antigen. These clones exerted a Th2 cytokine profile, had a CD4+CD25+Foxp3+GITR+CD127− Tregs phenotype, and significantly inhibited the proliferative activity of allogeneic T cells independently of cell-contact. Priming of allo-reactive T cells in the presence of Tregs strongly inhibited the expansion of NK; NK-T and CD8+ T cells, had an inhibitory effect on NK/NK-T cytotoxic activity but not on CD8+ T cells. Furthermore, priming of T cells with the WT1- 126 HLA-A0201-restricted peptide in the presence of Tregs strongly inhibited the induction of anti-WT1-126 CD8+ CTL responses as evidenced by both very low cytotoxic activity and IFN-g production. Moreover, these Tregs clones specifically produced Granzyme-B and selectively induced apoptosis in WT1-84 pulsed-autologous APCs but not in apoptoticresistant DR4-matched leukemic cells. Importantly, we have also detected anti-WT1-84 IL-5+/Granzyme-B+/Foxp3+ CD4+ Tregs in 5 out of 8 HLA-DR4+ AML patients. These findings suggest a critical role for anti-WT1 Tregs in the inhibition of T cell responses against leukemia. This study may have important implications for the clinical manipulation of Tregs such as immuno-targeting of TCR-Vb-8 with mAbs to eliminate anti-WT1 Tregs in leukemia patients in order to enhance GVL before vaccination with the WT1 antigen. On the other hand, leukemia patients with GVHD should be clinically-tried for vaccination with the current WT1-84 peptide or adoptively-treated with ex-vivo anti-WT1 Treg cells to specifically enhance their frequency, which is known to be very low in these patients.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3319-3319 ◽  
Author(s):  
Shimrit Ringelstein-Harlev ◽  
Irit Avivi ◽  
Shoham Shivtiel-Arad ◽  
Tami Katz

Abstract Introduction: Chronic lymphocytic leukemia (CLL) cells utilize several mechanisms of survival, some propagating proliferation and preventing apoptosis through intrinsic cell cycle signals, and others suppressing anti-tumor immune responses. Patients often present with a predominant population of regulatory T-cells (Tregs), and general features of T-cell exhaustion. Given the unique phenotype of CLL cells and the observed T-cell abnormalities we hypothesized that these cells function as regulatory B-cells (Bregs). Bregs, mostly explored in the autoimmune disease setting, produce interleukin-10 (IL10), which mediates attenuation of effector T-cell responses and enhances regulatory activity. These features have also been suggested to be responsible for weakening of anti-tumor immune responses. Breg activation requires stimulation of various combinations of Toll-like receptors (TLRs), the B-cell receptor (BCR) and CD40. Our previous studies have demonstrated that TLR9-stimulated CLL cells "acquire" Breg markers as well as PD1 and PDL1, which, while not being classic Breg discriminators, are established players in immune modulation. Moreover, such stimulation resulted in inhibition of proliferation of autologous T-cells. The current study aimed to further explore the regulatory characteristics of CLL cells focusing on additional suppressive mechanisms that may have a role in CLL immune evasion, particularly, the PD1/PDL1 axis. Methods: B-cells were isolated from peripheral blood mononuclear cells (PBMCs) of untreated CLL patients (Rai stages 0-IV). These B-CLL cells were stimulated with TLR-9 agonist (ODN) or CD40 ligand (CD40L) followed by their co-culture with isolated autologous CD4+ T cells. The regulatory features of B-CLL cells were studied by testing their effect on T cells. Their proliferation was evaluated using the CFSE method following stimulation with anti-CD3/CD28 antibodies and IL2; induction of Tregs (CD4+CD25highFoxp3+ population) was assessed by FACS analysis. The involvement of the PD1/PDL1 axis was examined by incubating B-cells with antiPD1 neutralizing antibodies prior to co-culture. Cell contact dependence was evaluated by plating B-cells in hanging cell culture inserts denying B and T cell contact while allowing flow of small soluble molecules. Results: CLL cells stimulated with ODN or CD40L, induced a significant increase in Tregs: 1.35±0.1-fold (p=0.03, N=12) for ODN and 1.7±0.2-fold (p=0.008, N=14) for CD40L, occurring in 68% and 80% of patients, respectively, while co-culture with unstimulated B-CLL cells did not result in the expansion of the Treg population. Treg induction was observed only under contact conditions (N=5), suggesting that this regulatory function requires cell-to-cell contact and cannot be carried out solely by secreted factors like IL10. Neutralization of PD1 on CLL B-cells affects both Treg induction and T-cell proliferation. Following CD40L stimulation, a 1.3-fold reduction in Treg percentage was observed when PD1 signaling was blunted (N=10). In contrast, PD1 blockage of ODN-stimulated CLL cells did not reduce Treg induction; however, it did adversely affect inhibition of T-cell proliferation (10%-decrease in inhibited T-cells; N=6). Conclusions: CLL cells "acquire" a Breg phenotype and function, inhibiting T-cell proliferation and inducing Tregs. These properties, while working together to promote immune regulation and cancer evasion, are elicited by different ligands in the cell environment and are likely to be mediated via separate pathways. The involvement of B-cell-associated PD1 in the induction of Tregs and inhibition of T-cell proliferation suggests a biologic role of PD1 signaling in CLL cells, strengthening the Breg phenotype. The current study has shown that CLL cells recruit several mechanisms operating cooperatively to support immune modulation and promote their survival. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2007 ◽  
Vol 110 (7) ◽  
pp. 2537-2544 ◽  
Author(s):  
Zhi-Zhang Yang ◽  
Anne J. Novak ◽  
Steven C. Ziesmer ◽  
Thomas E. Witzig ◽  
Stephen M. Ansell

Foxp3 expression was initially thought to be restricted to the CD4+CD25+ regulatory T-cell population. However, recent studies suggest that forkhead box P3 (Foxp3) is expressed in CD4+CD25− T cells in aged mice. In the present study in B-cell non-Hodgkin lymphoma (NHL), we found that a subset of intratumoral but not peripheral blood CD4+CD25− T cells, comprising about 15% of intratumoral CD4+ T cells, express Foxp3 and are capable of suppressing the proliferation of autologous infiltrating CD8+ T cells. In vitro activation with OKT3/anti-CD28 antibody (Ab) or dendritic cells (DCs) induced Foxp3 expression in a subset of these CD4+CD25−Foxp3− T cells. We found that the presence of lymphoma B cells during activation augmented activation-induced Foxp3 expression in CD4+CD25− T cells. We also found that CD70+ lymphoma B cells significantly contributed to the activation-induced Foxp3 expression in intratumoral CD4+CD25− T cells. Furthermore, the blockade of CD27-CD70 interaction by anti-CD70 Ab abrogated lymphoma B-cell–mediated induction of Foxp3 expression in intratumoral CD4+CD25− T cells. Taken together, these studies reveal a novel role for NHL B cells in the development of intratumoral regulatory T cells.


mBio ◽  
2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Tyler C. Moore ◽  
Ronald J. Messer ◽  
Lorena M. Gonzaga ◽  
Jennifer M. Mather ◽  
Aaron B. Carmody ◽  
...  

ABSTRACTFriend virus (FV) is a naturally occurring mouse retrovirus that infects dividing cells of the hematopoietic lineage, including antigen-presenting cells (APCs). The infection of APCs by viruses often induces their dysfunction, and it has been shown that FV infection reduces the ability of dendritic cells (DCs) to prime critical CD8+T cell responses. Nonetheless, mice mount vigorous CD8+T cell responses, so we investigated whether B cells might serve as alternative APCs during FV infection. Directex vivoanalysis of B cells from FV-infected mice revealed that infected but not uninfected B cells upregulated expression of the costimulatory molecules CD80, CD86, and CD40, as well as major histocompatibility complex class II (MHC-II) molecules. Furthermore,in vitrostudies showed that, compared to uninfected B cells from the same mice, the FV-infected B cells had significantly enhanced APC function, as measured by their capacity to prime CD8+T cell activation and proliferation. Thus, in contrast to DCs, infection of B cells with FV enhanced their APC capacity and ability to stimulate the CD8+T cell responses essential for virus control. FV infections also induce the activation and expansion of regulatory T cells (Tregs), so it was of interest to determine the impact of Tregs on B cell activation. The upregulation of costimulatory molecule expression and APC function of B cells was even more strongly enhanced byin vivodepletion of regulatory T cells than infection. Thus, Tregs exert potent homeostatic suppression of B cell activation that is partially overcome by FV infection.IMPORTANCEThe primary role of B cells in immunity is considered the production of pathogen-specific antibodies, but another, less-well-studied, function of B cells is to present foreign antigens to T cells to stimulate their activation and proliferation. Dendritic cells (DCs) are considered the most important antigen-presenting cells (APCs) for CD8+T cells, but DCs lose APC function when infected with Friend virus (FV), a model retrovirus of mice. Interestingly, B cells were better able to stimulate CD8+T cell responses when they were infected with FV. We also found that the activation status of B cells under homeostatic conditions was potently modulated by regulatory T cells. This study illustrates an important link between B cell and T cell responses and illustrates an additional mechanism by which regulatory T cells suppress critical T cell responses during viral infections.


Sign in / Sign up

Export Citation Format

Share Document