Genes Regulating B-Cell Development and Differentiation Are Mutated in 40% of Pediatric Acute Lymphoblastic Leukemia.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 217-217
Author(s):  
Charles G. Mullighan ◽  
Salil Goorha ◽  
Ina Radtke ◽  
Christopher B. Miller ◽  
Elaine Coustan-Smith ◽  
...  

Abstract Chromosomal aberrations are a hallmark of acute lymphoblastic leukemia (ALL) but alone fail to induce leukemia. To identify cooperating oncogenic lesions, we performed genome-wide analysis of leukemic blasts from 242 pediatric ALL patients using high-resolution 100K and 250K Affymetrix single nucleotide polymorphism arrays, and genomic DNA sequencing. Remarkably, our analyses identified deletion, amplification, point mutation and structural rearrangement in genes encoding regulators of B lymphocyte development in over 40% of B-progenitor ALL. PAX5, which encodes a transcription factor critical for B cell commitment and differentiation, was the most frequent target of somatic mutation, being altered in 31.7% of cases. The most frequent PAX5 mutations were copy number alterations with mono-allelic loss in 53 cases, biallelic loss in 3 cases, and an internal amplification in 1 case. PAX5 deletions and the amplification were confirmed by FISH and/or RT-PCR, and were present in over 90% of blasts. Twenty-five of the mono-allelic deletions were confined to PAX5, with the majority deleting only a subset of PAX5 exons. Thus, of the 57 cases with PAX5 copy number changes, the majority had haploinsufficiency of PAX5 (n=30), or generated hypomorphic alleles that produce proteins that lack the DNA-binding domain (n=20) or the transcriptional activation domain (n=7). Four cases contained cryptic PAX5 translocations: PAX5-ETV6 (n=2), PAX5-FOXP1 and PAX5-ZNF521 (1 case each). In addition to the structural alterations, sequencing identified 14 B-ALLs with PAX5 point mutations. Mutations were identified in the DNA-binding paired domain, homeodomain and transactivation domains. The mutations were somatically acquired, and present in a dominant clone. Gel-shift and transcriptional reporter assays demonstrated reduced DNA binding and/or transcriptional activity for each of the identified PAX5 fusion proteins and point mutants. In addition to the PAX5 mutations, deletions were also detected in the B cell regulatory genes Ikaros (20 cases), Aiolos (3), EBF (8), E2A (1), LEF1 (3), and RAG1/2 (11). Importantly, genomic sequencing of Ikaros and EBF revealed no point mutations. Although the high frequency of mutations in genes regulating B-cell development was unexpected, even more surprising was the marked difference in the frequency and type of mutations among the various genetic subtypes of ALL. Hypodiploid ALLs had alterations in B-cell development genes in 100% of cases, with broad deletions of one PAX5 allele, mutation of the other PAX5 allele in 50% of the cases, and mono-allelic deletion of other regulators of B-cell development, frequently with multiple genes affected within a single case. In contrast ETV6-RUNX1 cases exhibited a much more restricted pattern of mutations, with 27% showing focal PAX5 deletion without alterations of the retained allele. At the other end of the spectrum were hyperdiploid ALLs, with only rare cases harboring a deletion of one of these genes. These data demonstrate that disruption of pathways controlling B cell development and differentiation contributes to the pathogenesis of ALL. Moreover, the approach used provides a rational roadmap for the application of genome-wide approaches to the identification of new molecular lesions in cancer.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 10-10
Author(s):  
Joy Nakitandwe ◽  
Shann-Ching Chen ◽  
Noel T. Lenny ◽  
Christopher B. Miller ◽  
Xiaoping Su ◽  
...  

Abstract Abstract 10 Over 60% of pediatric B progenitor acute lymphoblastic leukemia (ALL) cases contain somatic mutations in genes regulating B cell development, with PAX5 being the most common target of mutation (>32% of cases). The transcription factor PAX5 is required for commitment and maintenance of the B lymphoid lineage. A variety of PAX5 mutations has been identified including, mono-allelic deletions, sequence mutations, internal deletions, frame-shift mutations and translocations. We have previously shown that these PAX5 mutations result in reduced transcriptional activity either as a result of haploinsufficiency or the generation of altered PAX5 isoforms with reduced DNA-binding and/or transcriptional activity. However, the direct effect of the mutations on normal B cell development remains unknown. To address this question, we assessed the ability of a series of PAX5 mutations to rescue normal B cell development in Pax5-/- bone marrow (BM) cells using a murine in vitro culture system. Whole BM or transduced cells were grown in IL-7 producing stromal-supported cultures for two weeks and then assessed for their extent of B cell differentiation using flow cytometry. Under these in vitro conditions, both Pax5+/+ and Pax5+/− BM cells differentiated to a Hardy fraction D pre-B cell stage of differentiation (CD43−/B220+/CD19+/BP1+), with only a slight decrease in the level of expression of BP1 detected in the Pax5+/− cells. By contrast, Pax5-/- cells failed to undergo significant differentiation under these in vitro growth conditions and were arrested at an early pro-B stage of development (CD43+/−/B220+/CD19−/BP1−). To assess the biological activity of the identified PAX5 mutants, we then transduced lineage-depleted BM cells from Pax5+/+, Pax5+/− and Pax5-/- mice with MSCV-based retroviral vectors expressing either wild type (WT) or mutant PAX5 followed by in vitro culture. Three classes of PAX5 mutations were assessed: DNA binding domain mutations (P80R, P34Q, and V26G), an internal deletion mutation (Δe6-8), and translocation-induced PAX5 chimeric genes (PAX5-ETV6, PAX5-FOXP1 and PAX5-ZNF521). As expected, expression of WTPAX5 resulted in full rescue of Pax5-/- cells and induced no significant effects on the ability of Pax5+/+ and +/− cells to differentiate. By contrast, PAX5 DNA-binding domain mutants resulted in only partial rescue of Pax5-/- cells, with P80R inducing B220+/CD19−/BP1−, P34Q producing B220+/CD19+ cells with weak BP1 expression, and V26G yielding CD19+/BP1+ cells with minimally reduced levels of BP1. Similarly, expression of Δe6-8 resulted in partial rescue with the expansion of B220+/CD19+/−/BP1− cells. In stark contrast, expression of the translocation encoded PAX5 fusion proteins failed to induce any evidence of rescue. Moreover, these fusion proteins induced only minimal perturbations in the ability of Pax5+/+ and +/− cells to differentiate, suggesting that these fusion proteins were weak competitive inhibitors of normal Pax5 transcriptional activity under intra-cellular conditions. To further characterize the effects of these PAX5 mutations on B cell differentiation, we next analyzed the gene expression patterns of the resultant cell populations using the Mouse Genome 430 2.0 Arrays (Affymetrix) and compared the profiles to those obtained from purified Hardy fractions from normal murine BM. The expression signatures of the Pax5-/- cells were identical to those for normal Hardy fraction A and shifted to the signature of Hardy fraction C following rescue with WTPAX5. Transduction of Pax5-/- cells with either V26G or P34Q resulted in a near complete rescue with expression signatures similar to those obtained for Hardy fractions B/C. By contrast, transduction with P80R or Δe6-8 yielded a more incomplete rescue with expression profiles that were between Hardy fractions A and B. Interestingly, a number of genes within the B cell receptor signaling pathway were altered in cells rescued by P80R and Δe6-8, including the down regulation of CD19, Btk and Blnk. In summary, our data demonstrate that leukemia-associated PAX5 mutations have a graded effect on the transcriptional network that controls normal B cell development and differentiation. Defining the differential target gene specificity of the various PAX5 mutants should provide valuable insights into the molecular mechanisms through which these genetic lesions contribute to leukemogenesis. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3580-3580
Author(s):  
Ilaria Iacobucci ◽  
Heike Pfifer ◽  
Annalisa Lonetti ◽  
Cristina Papayannidis ◽  
Anna Ferrari ◽  
...  

Abstract Abstract 3580 Introduction: Although treatment with tyrosine kinase inhibitors (TKIs) has revolutionized the management of adult patients with BCR-ABL1 -positive acute lymphoblastic leukemia (ALL) and significantly improved response rates, relapse is still an expected and early event in the majority of them. It is usually attributed to the emergence of resistant clones with mutations in BCR-ABL1 kinase domain or to BCR-ABL1 -independent pathways but many questions remain unresolved about the genetic abnormalities responsible for relapse after TKI and chemotherapy-based regimens. Patients and methods: In an attempt to better understand the genetic mechanisms responsible for this phenomenon, we have analyzed matched diagnosis-relapse samples from 30 adult BCR-ABL1 -positive ALL patients using high resolution Affymetrix single nucleotide polymorphism (SNP) arrays (GeneChip® Human Mapping 250K NspI, n=15 pairs and Genome-Wide Human SNP 6.0, n= 15 pairs). Genetic differences were analyzed in terms of copy number changes and loss of heterozygosity (LOH) events. 20 patients were enrolled in clinical trials of GIMEMA AL Working Party and treated with imatinib alone or in combination with conventional chemotherapy (40%) or dasatinib as frontline therapy (60%). The median age at diagnosis was 54 years (range 23–74) and the median blast cell count was 97% (range 60–99). The median time to relapse was 27 months (range, 9–104). 10 patients were treated according to the GMALL trials, a high-dose chemotherapy based protocol in combination with imatinib. The median age at diagnosis was 65 years (range 19–79) and the median leucocyte count was 37300/μl (range 5000 – 220000/μl). The median time to relapse was 9.8 months (range, 3 – 25). Results: First, we compared diagnosis and relapse samples for the presence of macroscopic (> 1.5 MB) copy number alterations (CNA). Novel acquired macroscopic CNAs were detected in 7/20 (35%) TKI relapse cases and included losses of 3p12-p14, 5q34, 9q34, 10q24 and 12p13-p12 and gains of 1q, 9q34-q33 and 22q and in 4/10 (40%) chemotherapy-relapse cases and included losses of 9p21 and 12q21–22 and gains of all chromosome 8 or part of it in 2 patients. Since no common patterns of acquired alterations were observed, it is likely that relapse may be due to a more generalized genetic instability rather than to specific mechanisms. Moreover, chemotherapy did not select resistant clones with higher number of alterations. 8/20 (40%) TKI resistant cases and 4/10 chemotherapy resistant patients harbored the same CNAs present in the matched diagnosis sample (losses of 9p21 in 7 cases, 7p and 22q11 in single cases and gains of chromosomes 1q, 4, 8q, 17q and 21), indicating a common clonal origin. In contrast, in 5/20 (25%) TKI resistant cases and 4/10 (40%) chemotherapy resistant patients macroscopic CNAs present at diagnosis were lost at relapse (losses of chromosomes 7, 11q, 14q, 15q, 16q and 19p and gains of 5q, 8q, 9q34 and 22q11). Thereafter, we compared diagnosis and relapse samples for microscopic CNAs (< 1.5 MB). The alteration most frequently acquired at relapse was loss of the tumor suppressor CDKN2A (53% vs 33 % of diagnosis). Other common acquired CNAs at relapse included gains of ABC transporter genes, such as ABCC1, ABCC6 (1q41) and BCL8 (15q11); losses affected EBF1 (5q33) and IGLL3 (22q11) genes involved in B-cell development, BTG1 (12q21) involved in cell cycle regulation and CHEK2 (22q12) involved in DNA repair. Interestingly, for all relapse cases analysis of IKZF1 deletions, identified in 80% of patients, demonstrated a clonal relationship between diagnostic and relapse samples, suggesting that this alteration is not acquired with relapse but it is maintained with fidelity from diagnosis working as a marker of disease. The majority (92%) of relapse samples harbored at least some of the CNAs present in the matched diagnosis sample, indicating a common clonal origin. Conclusions: Genomic copy number changes evolving from diagnosis to relapse have been identified demonstrating that a diversity of alterations contributes to relapse and with the most common alterations targeting key regulators of tumor suppression, cell cycle control, and lymphoid/B cell development. Supported by European LeukemiaNet, AIL, AIRC, Fondazione Del Monte di Bologna e Ravenna, FIRB 2006, PRIN 2009, Ateneo RFO grants, PIO program, Programma di Ricerca Regione – Università 2007 – 2009. Disclosures: Soverini: Novartis: Consultancy; ARIAD: Consultancy; Bristol-Myers Squibb: Consultancy. Baccarani:Pfizer Oncology: Consultancy; Novartis: Consultancy; BMS: Consultancy; Ariad: Consultancy; Novartis: Research Funding; Pfizer Oncology: Honoraria; Novartis: Honoraria; BMS: Honoraria; Ariad: Honoraria; Novartis: Membership on an entity's Board of Directors or advisory committees; BMS: Membership on an entity's Board of Directors or advisory committees; Ariad: Membership on an entity's Board of Directors or advisory committees. Ottmann:Novartis Corporation: Consultancy, Honoraria, Research Funding, Speakers Bureau. Martinelli:Novartis: Consultancy, Honoraria; BMS: Consultancy, Honoraria; Pfizer: Consultancy.


2019 ◽  
pp. 107-118.e1
Author(s):  
Harry W. Schroeder ◽  
Andreas Radbruch ◽  
Claudia Berek

PLoS ONE ◽  
2015 ◽  
Vol 10 (7) ◽  
pp. e0133844 ◽  
Author(s):  
Mia Olsson ◽  
Katarina Tengvall ◽  
Marcel Frankowiack ◽  
Marcin Kierczak ◽  
Kerstin Bergvall ◽  
...  

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1618-1618
Author(s):  
John K. Choi ◽  
Siyuan Song ◽  
Jonathan Cooperman ◽  
Danielle L. Letting ◽  
Gerd A. Blobel

Abstract The transcription factor E2A is required for very early B cell development. The exact mechanism by which E2A promotes B cell development is unclear and cannot be explained by the known E2A targets, components of the pre-B cell receptor and cyclin dependent kinase inhibitors, indicating additional pathways and targets remain to be identified. We had previously reported that E2A can promote precursor B cell expansion, promote G1 cell cycle progression, and induce the expressions of multiple G1 phase cyclins including cyclin D3, suggesting that E2A induction of these genes may contribute to early B cell development. To better understand the mechanism by which E2A induces these cyclins, we characterized the relationship between E2A and the cyclin D3 gene promoter. E2A transactivated a luciferase reporter plasmid containing the 1kb promoter of cyclin D3 that contains two consensus E2A binding sites (E-boxes); however, deletion of the E-boxes did not disrupt the transactivation by E2A. We hypothesized three possible mechanisms: 1) indirect activation of cyclin D3 via another transcription factor, 2) binding of E2A to cryptic non-E-boxes, or 3) recruitment of E2A to the promoter via interaction with other DNA binding factor. To test the first possibility, promoter occupancy was examined using the DamID approach. In this approach, a fusion protein consisting of E. coli DNA adenosine methyltransferase (DAM) and a transcription factor of interest is expressed at low levels, resulting in specific methylation of adenosine residues within 2–5 kb of the transcription factor target sites. A fusion construct composed of E2A and DAM (E47Dam), was subcloned in lentiviral vectors, and used to transduce precursor B cell lines. The methylated adenosine residues were detected using a sensitive ligation-mediated PCR (LM-PCR) assay that required only 1 ug of genomic DNA and can detect methylation even if only 3% of the cells express E47Dam; no methylated adenosines were detected in control cells, indicating that all methylated residues resulted from E47Dam. Specific adenosine methylation was identified at the IgH intronic enhancer, a known E2A target site, but not at the non-target sites, CD19, HPRT, and GAPDH promoters. Specific methylation was detected at the cyclin D3 promoter but not 10 kb down-stream, despite similar concentrations of E-boxes at both sites. Chromatin immunoprecipitation analysis confirmed the DamID findings and further localized the binding to within 1 kb of the two E-boxes in the cyclin D3 promoter. To distinguish between the two remaining mechanisms (cryptic non-E-boxes versus recruitment via other DNA binding factors), two point mutations were introduced into E47Dam that disrupted its DNA binding activity. The mutated E47Dam continued to methylate at the cyclin D3 promoter. We conclude that E2A can be recruited to the cyclin D3 promoter, independent of E-boxes or E2A DNA binding activity. Our findings raise the possibility that some direct E2A target genes may lack functional E-boxes. Furthermore, mutated E2A, lacking an E2A DNA binding domain, that is seen in 6% of pediatric ALLs may still activate a subset of E2A target genes. Finally, our application of lentiviral vectors and LM-PCR to the DamID approach should permit analysis of primary human precursor B cells, despite the limitations in cell number and transduction efficiency.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 788-788
Author(s):  
Marjon van Slegtenhorst ◽  
Renee X de Menezes ◽  
Rob Pieters ◽  
M. L Den Boer

Abstract Gene expression signatures are a promising tool to predict lineage and genetic subtypes of acute lymphoblastic leukemia (ALL) and other types of cancer. Using a 110 probe set signature, we correctly identified patients belonging to the 4 major subtypes of pediatric ALL (T-ALL, TELAML1-positive, hyperdiploid and E2A-rearranged ALL). In addition, we identified a novel subtype of precursor B-ALL. The signature of this group was most similar to true BCRABL-positive cases, whereas these cases did not have the BCRABL-translocation. We therefore describe this group as BCRABL-like. The existence of BCRABL-like patients was confirmed in an independent validation cohort of 107 patients. Most importantly, they represent 15–20% of precursor B-ALL cases with a highly unfavorable prognosis (5-year disease-free survival 60±11%) compared to other precursor B-ALL cases (84±4%; p=0.009), resembling that of true BCRABL-positive cases. To investigate the genetic abnormalities in BCRABL-like patients, we applied array-comparative genomic hybridization analysis. In 44 BCRABL-like patients, we found seven recurrent deletions. Most abnormalities were found in chromosome 9p, while other chromosomes affected included 20q, 22q11, 7p12, 11q, 13q14 and 19p13. Interestingly, many of these deleted regions harbor genes that play an important role in B-cell development. In total, 82% of BCRABL-like patients had abnormalities in one or more genes that are involved in B-cell development including PAX 5 (16 patients), VpreB1 (17 patients), Ikaros (17 patients), EBF1 (6 patients) and TCF3/E2A (3 patients). Bi-allelic loss was frequently found in VpreB1 and PAX5, including inactivating point mutations in exon 2 (V26G) in PAX5. The frequency of B-cell development gene deletions was also high in BCRABL-positive cases (80%), but was significant lower in a control group of precursor B-ALL, including TELAML1-positive, hyperdiploid, MLL-rearranged en B-other patients (36%, p=0.0002). In summary, these results indicate that the BCRABL-like group is a novel high-risk subtype of precursor B-ALL with a high percentage of deletions in B-cell development genes. Currently experiments are being done to determine the biological significance of the recurrent changes in the BCRABL-like group.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1466-1466
Author(s):  
Christopher D Chien ◽  
Elizabeth D Hicks ◽  
Paul P Su ◽  
Haiying Qin ◽  
Terry J Fry

Abstract Abstract 1466 Pediatric acute lymphoblastic leukemia (ALL) is the most common childhood malignancy. Although cure rates for this disease are approximately 90%, ALL remains one of the leading causes cancer-related deaths in children. Thus, new treatments are needed for those patients that do not respond to or recur following standard chemotherapy. Understanding the mechanisms underlying resistance of pediatric ALL to therapy offers one approach to improving outcomes. Recent studies have demonstrated the importance of communication between cancer cells and their microenvironment and how this contributes to the progression and therapeutic resistance but this has not been well studied in the context of ALL. Since the bone marrow is presumed to be the site of initiation of B precursor ALL we set out in our study to determine how ALL cells utilize the bone marrow milieu in a syngeneic transplantable model of preB cell ALL in immunocompetent mice. In this model, intravenously injected preB ALL develops first in the bone marrow, followed by infiltration into the spleen, lymph node, and liver. Using flow cytometry to detect the CD45.2 isoform following injection into B6CD45.1+ congenic recipients, leukemic cells can be identified in the bone marrow as early as 5 days after IV injection with a sensitivity of 0.01%-0.1%. The pre-B ALL line is B220+/CD19+/CD43+/BP1+/IL-7Ralpha (CD127)+/CD25-/Surface IgM-/cytoplasmic IgM+ consistent with a pre-pro B cell phenotype. We find that increasing amounts of leukemic infiltration in the bone marrow leads to an accumulation of non-malignant developing B cells at stages immediately prior to the pre-pro B cell (CD43+BP1-CD25-) and a reduction in non-malignant developing pre B cells at the developmental stage just after to the pre-pro B cell stage (CD43+BP1+CD25+). These data potentially suggest occupancy of normal B cell developmental niches by leukemia resulting in block in normal B cell development. Further supporting this hypothesis, we find significant reduction in early progression of ALL in aged (10–12 month old) mice known to have a deficiency in B cell developmental niches. We next explored whether specific factors that support normal B cell development can contribute to progression of precursor B cell leukemia. The normal B cell niche has only recently been characterized and the specific contribution of this niche to early ALL progression has not been extensively studied. Using a candidate approach, we examined the role of specific cytokines such as Interleukin-7 (IL-7) and thymic stromal lymphopoietin (TSLP) in early ALL progression. Our preB ALL line expresses high levels of IL-7Ralpha and low but detectable levels of TLSPR. In the presence of IL-7 (0.1 ng/ml) and TSLP (50 ng/ml) phosphSTAT5 is detectable indicating that these receptors are functional but that supraphysiologic levels of TSLP are required. Consistent with the importance of IL-7 in leukemia progression, preliminary data demonstrates reduced lethality of pr-B cell ALL in IL-7 deficient mice. Overexpression of TSLP receptor (TSLPR) has been associated with high rates of relapse and poor overall survival in precursor B cell ALL. We are currently generating a TSLPR overepressing preBALL line to determine the effect on early ALL progression and are using GFP-expressing preB ALL cells to identify the initial location of preB ALL occupancy in the bone marrow. In conclusion, or model of early ALL progression provides insight into the role of the bone marrow microenvironment in early ALL progression and provides an opportunity to examine how these microenvironmental factors contribute to therapeutic resistance. Given recent advances in immunotherapy for hematologic malignancies, the ability to study this in an immunocompetent host will be critical. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 231-231
Author(s):  
Heike Pfeifer ◽  
Katharina Raum ◽  
Sandra Markovic ◽  
Stephanie Fey ◽  
Julia Obländer ◽  
...  

Abstract Philadelphia chromosome positive (Ph+) acute lymphoblastic leukemia (ALL) is traditionally considered the subtype with the worst prognosis, despite recent improvements in long-term survival brought about by the use of tyrosine kinase inhibitors (TKI) such as imatinib or dasatinib. Allogeneic stem cell transplantation (aSCT) remains the most effective curative post-remission therapy in adults but appears to be less critical in children, indicating a substantial clinical and biological heterogeneity within the subgroup of Ph+ ALL. The ability to segregate Ph+ ALL into subgroups with different prognosis on the basis of reductions of BCR-ABL1 transcript levels during therapy lends further support to the heterogeneity of this type of leukemia, for which the genetic basis is not known. Microarray-based genome-wide profiling studies conducted predominantly in pediatric ALL patients have recently revealed novel recurrent submicroscopic aberrations of genes involved in B-cell development and cell cycle regulation, such as CDKN2A/B, IKZF1, PAX5, ETV6, RB1, BTG1 and EBF1. Deletions of IKZF1, CDKN2A/B and PAX genes have received the most attention due to their high frequency particularly in BCR-ABL1-positive ALL and their association with an inferior prognosis in the setting of combined TKI and chemotherapy. Their prognostic relevance in the setting of allogeneic SCT for adult or pediatric high risk BCP-ALL is not known. We therefore examined whether the negative prognostic role of IKZF1 aberrations and other frequent microdeletions of genes associated with B-cell development can be overcome by allogeneic SCT in CR1. A total of 137 newly diagnosed Ph+ ALL pts. (median age 42 years, range 18-64y, 79 male 58 female) treated within the prospective multicenter GMALL study 07/03 were analyzed. 96 of these patients underwent aSCT in first complete remission (CR), 8 pts. were primary refractory, 12 CR pts. did not undergo aSCT and relapsed, 11 pts. died during induction. Genome-wide copy number analysis in search for acquired copy number alterations (CNA) was performed with Affymetrix SNP 6.0 arrays with anonymous references. Copy number polymorphisms were excluded from the data by comparison with known copy number polymorphisms registered in the UCSC genome browser http://genome.ucsc.edu/, (hg-18). Putatively acquired CNAs were validated by multiplex ligation-dependent probe amplification (MLPA) and germline matched SNP array analysis of n=20 samples within the study. Of the 96 pts. transplanted in CR1, 48 remain in CR (CCR), 30 pts. relapsed after aSCT and 7 died of treatment related causes, survival data only are available for one patient. CDKN2A/B genomic alterations were identified in 41% (40/97) of patients, deletions of IKZF1 and PAX5 were observed in 61% (59/97) and 39% (38/97) of pts., respectively. Univariate analysis of the complete cohort revealed that deletion of CDKN2A/B was the only aberration with a statistically significant negative effect on overall survival (OS) (p=0.003). Among patients transplanted in CR1, IKZF1-deletions were associated with inferior median time to relapse after SCT (56 mos vs. n.r., p=0.01), DFS from SCT (15.6 mos. vs. n.r.; p=0.024) and OS (median 40 mos. vs. not reached (n.r.) p=0.04) compared with the IKZF1 wildtype cohort. Similarly, the prognosis of pts. with CDKN2A/B deletions was inferior in terms of DFS (median 10.6 mos. vs. n.r.; p=0.022) and OS (median 25 mos. vs. n.r.; p=0.01), but not of remission duration from SCT. PAX5 (p=0.07) but not the combination of all three lesions (p=0.14) showed a trend to a worse prognosis. Of the more uncommon genetic aberrations BTLA, EBF1, ETV6, RB1 and BTG1, only the latter was associated with a lower probability of remaining in CR (0% vs. 67% at 5 years; p=0.012) or DFS (0% vs. 52% at 5 years; p=0.043), with a trend towards shorter OS (median 35 mos. vs. 87 mos; p=0.078). In conclusion, genomic lesions of IKZF1, CDKN2 and PAX5 identify a subgroup of Ph+ ALL pts. who have an inferior survival despite undergoing aSCT in CR1. Their poor outcome is attributable primarily to a high relapse rate after SCT, emphasizing the need to introduce additional treatment elements prior to and after aSCT. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document