Genetic Abnormalities Underlying B-Cell Development Are Characteristic for a New Subgroup of Childhood Precursor B-ALL with a Very Poor Prognosis

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 788-788
Author(s):  
Marjon van Slegtenhorst ◽  
Renee X de Menezes ◽  
Rob Pieters ◽  
M. L Den Boer

Abstract Gene expression signatures are a promising tool to predict lineage and genetic subtypes of acute lymphoblastic leukemia (ALL) and other types of cancer. Using a 110 probe set signature, we correctly identified patients belonging to the 4 major subtypes of pediatric ALL (T-ALL, TELAML1-positive, hyperdiploid and E2A-rearranged ALL). In addition, we identified a novel subtype of precursor B-ALL. The signature of this group was most similar to true BCRABL-positive cases, whereas these cases did not have the BCRABL-translocation. We therefore describe this group as BCRABL-like. The existence of BCRABL-like patients was confirmed in an independent validation cohort of 107 patients. Most importantly, they represent 15–20% of precursor B-ALL cases with a highly unfavorable prognosis (5-year disease-free survival 60±11%) compared to other precursor B-ALL cases (84±4%; p=0.009), resembling that of true BCRABL-positive cases. To investigate the genetic abnormalities in BCRABL-like patients, we applied array-comparative genomic hybridization analysis. In 44 BCRABL-like patients, we found seven recurrent deletions. Most abnormalities were found in chromosome 9p, while other chromosomes affected included 20q, 22q11, 7p12, 11q, 13q14 and 19p13. Interestingly, many of these deleted regions harbor genes that play an important role in B-cell development. In total, 82% of BCRABL-like patients had abnormalities in one or more genes that are involved in B-cell development including PAX 5 (16 patients), VpreB1 (17 patients), Ikaros (17 patients), EBF1 (6 patients) and TCF3/E2A (3 patients). Bi-allelic loss was frequently found in VpreB1 and PAX5, including inactivating point mutations in exon 2 (V26G) in PAX5. The frequency of B-cell development gene deletions was also high in BCRABL-positive cases (80%), but was significant lower in a control group of precursor B-ALL, including TELAML1-positive, hyperdiploid, MLL-rearranged en B-other patients (36%, p=0.0002). In summary, these results indicate that the BCRABL-like group is a novel high-risk subtype of precursor B-ALL with a high percentage of deletions in B-cell development genes. Currently experiments are being done to determine the biological significance of the recurrent changes in the BCRABL-like group.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1334-1334
Author(s):  
Hongsheng Wang ◽  
Jianxun Feng ◽  
Chang Hoon Lee ◽  
Herbert Morse

Abstract Interferon regulatory factor 8 (IRF8), also known as interferon consensus sequence-binding protein (ICSBP), is a transcription factor that expresses in T cells, B cells and macrophages and plays a role in myeloid development. Targeted deletion of IRF8 in mice (IRF8−/−) induced progressive increase in the numbers of granulocytes in various lymphoid organs and development of a syndrome similar to human chronic myelogenous leukemia. In addition to defective development of macrophages and dendritic cells, B cell development was also impaired in IRF8−/− mice. This includes decreased numbers of early B cells, expanded marginal zone (MZ) B cells and diminished follicular (OF) B2 cells. Because abnormal myeloid cells could alter microenvironment required for normal B cell development, we have generated IRF8 conditional knockout mice to specifically investigate the function of IRF8 in B lineage cells. Mice were engineered to have exon 2, encoding the DNA binding domain of IRF8, flanked by loxP sites (designated IRF8f/+). These mice were then crossed with the CD19Cre strain in which the expression of Cre-recombinase is controlled by the endogenous CD19 locus. Homozygous mice (designated (IRF8f/f x Cre)F1) underwent germline excision of IRF8 in CD19+ B lineage cells. As a result, there was no detectable mRNA and protein of IRF8 in their splenic B cells. Flow cytometry analysis revealed expanded MZ B cells and reduced OF B2 cells in the spleen of (IRF8f/f x Cre)F1 mice. Interestingly, the expression level of CD23 on OF B cells was significantly decreased in (IRF8f/f x Cre)F1 mice, indicating that IRF8 is required for maintaining a normal OF phenotype. In the peritoneum of (IRF8f/f x Cre)F1 mice, while the numbers of B1a and B2 cells were slightly decreased, the number of B1b cells was slightly increased. Furthermore, BXH2 mice carrying a mutation (C915T) in the Icsbp1 gene exhibited similar expansion of MZ B cells and low expression of CD23 in OF B cells. Taken together, these analyses indicate that IRF8 is required for development of normal MZ and B2 cells.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 10-10
Author(s):  
Joy Nakitandwe ◽  
Shann-Ching Chen ◽  
Noel T. Lenny ◽  
Christopher B. Miller ◽  
Xiaoping Su ◽  
...  

Abstract Abstract 10 Over 60% of pediatric B progenitor acute lymphoblastic leukemia (ALL) cases contain somatic mutations in genes regulating B cell development, with PAX5 being the most common target of mutation (>32% of cases). The transcription factor PAX5 is required for commitment and maintenance of the B lymphoid lineage. A variety of PAX5 mutations has been identified including, mono-allelic deletions, sequence mutations, internal deletions, frame-shift mutations and translocations. We have previously shown that these PAX5 mutations result in reduced transcriptional activity either as a result of haploinsufficiency or the generation of altered PAX5 isoforms with reduced DNA-binding and/or transcriptional activity. However, the direct effect of the mutations on normal B cell development remains unknown. To address this question, we assessed the ability of a series of PAX5 mutations to rescue normal B cell development in Pax5-/- bone marrow (BM) cells using a murine in vitro culture system. Whole BM or transduced cells were grown in IL-7 producing stromal-supported cultures for two weeks and then assessed for their extent of B cell differentiation using flow cytometry. Under these in vitro conditions, both Pax5+/+ and Pax5+/− BM cells differentiated to a Hardy fraction D pre-B cell stage of differentiation (CD43−/B220+/CD19+/BP1+), with only a slight decrease in the level of expression of BP1 detected in the Pax5+/− cells. By contrast, Pax5-/- cells failed to undergo significant differentiation under these in vitro growth conditions and were arrested at an early pro-B stage of development (CD43+/−/B220+/CD19−/BP1−). To assess the biological activity of the identified PAX5 mutants, we then transduced lineage-depleted BM cells from Pax5+/+, Pax5+/− and Pax5-/- mice with MSCV-based retroviral vectors expressing either wild type (WT) or mutant PAX5 followed by in vitro culture. Three classes of PAX5 mutations were assessed: DNA binding domain mutations (P80R, P34Q, and V26G), an internal deletion mutation (Δe6-8), and translocation-induced PAX5 chimeric genes (PAX5-ETV6, PAX5-FOXP1 and PAX5-ZNF521). As expected, expression of WTPAX5 resulted in full rescue of Pax5-/- cells and induced no significant effects on the ability of Pax5+/+ and +/− cells to differentiate. By contrast, PAX5 DNA-binding domain mutants resulted in only partial rescue of Pax5-/- cells, with P80R inducing B220+/CD19−/BP1−, P34Q producing B220+/CD19+ cells with weak BP1 expression, and V26G yielding CD19+/BP1+ cells with minimally reduced levels of BP1. Similarly, expression of Δe6-8 resulted in partial rescue with the expansion of B220+/CD19+/−/BP1− cells. In stark contrast, expression of the translocation encoded PAX5 fusion proteins failed to induce any evidence of rescue. Moreover, these fusion proteins induced only minimal perturbations in the ability of Pax5+/+ and +/− cells to differentiate, suggesting that these fusion proteins were weak competitive inhibitors of normal Pax5 transcriptional activity under intra-cellular conditions. To further characterize the effects of these PAX5 mutations on B cell differentiation, we next analyzed the gene expression patterns of the resultant cell populations using the Mouse Genome 430 2.0 Arrays (Affymetrix) and compared the profiles to those obtained from purified Hardy fractions from normal murine BM. The expression signatures of the Pax5-/- cells were identical to those for normal Hardy fraction A and shifted to the signature of Hardy fraction C following rescue with WTPAX5. Transduction of Pax5-/- cells with either V26G or P34Q resulted in a near complete rescue with expression signatures similar to those obtained for Hardy fractions B/C. By contrast, transduction with P80R or Δe6-8 yielded a more incomplete rescue with expression profiles that were between Hardy fractions A and B. Interestingly, a number of genes within the B cell receptor signaling pathway were altered in cells rescued by P80R and Δe6-8, including the down regulation of CD19, Btk and Blnk. In summary, our data demonstrate that leukemia-associated PAX5 mutations have a graded effect on the transcriptional network that controls normal B cell development and differentiation. Defining the differential target gene specificity of the various PAX5 mutants should provide valuable insights into the molecular mechanisms through which these genetic lesions contribute to leukemogenesis. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3580-3580
Author(s):  
Ilaria Iacobucci ◽  
Heike Pfifer ◽  
Annalisa Lonetti ◽  
Cristina Papayannidis ◽  
Anna Ferrari ◽  
...  

Abstract Abstract 3580 Introduction: Although treatment with tyrosine kinase inhibitors (TKIs) has revolutionized the management of adult patients with BCR-ABL1 -positive acute lymphoblastic leukemia (ALL) and significantly improved response rates, relapse is still an expected and early event in the majority of them. It is usually attributed to the emergence of resistant clones with mutations in BCR-ABL1 kinase domain or to BCR-ABL1 -independent pathways but many questions remain unresolved about the genetic abnormalities responsible for relapse after TKI and chemotherapy-based regimens. Patients and methods: In an attempt to better understand the genetic mechanisms responsible for this phenomenon, we have analyzed matched diagnosis-relapse samples from 30 adult BCR-ABL1 -positive ALL patients using high resolution Affymetrix single nucleotide polymorphism (SNP) arrays (GeneChip® Human Mapping 250K NspI, n=15 pairs and Genome-Wide Human SNP 6.0, n= 15 pairs). Genetic differences were analyzed in terms of copy number changes and loss of heterozygosity (LOH) events. 20 patients were enrolled in clinical trials of GIMEMA AL Working Party and treated with imatinib alone or in combination with conventional chemotherapy (40%) or dasatinib as frontline therapy (60%). The median age at diagnosis was 54 years (range 23–74) and the median blast cell count was 97% (range 60–99). The median time to relapse was 27 months (range, 9–104). 10 patients were treated according to the GMALL trials, a high-dose chemotherapy based protocol in combination with imatinib. The median age at diagnosis was 65 years (range 19–79) and the median leucocyte count was 37300/μl (range 5000 – 220000/μl). The median time to relapse was 9.8 months (range, 3 – 25). Results: First, we compared diagnosis and relapse samples for the presence of macroscopic (> 1.5 MB) copy number alterations (CNA). Novel acquired macroscopic CNAs were detected in 7/20 (35%) TKI relapse cases and included losses of 3p12-p14, 5q34, 9q34, 10q24 and 12p13-p12 and gains of 1q, 9q34-q33 and 22q and in 4/10 (40%) chemotherapy-relapse cases and included losses of 9p21 and 12q21–22 and gains of all chromosome 8 or part of it in 2 patients. Since no common patterns of acquired alterations were observed, it is likely that relapse may be due to a more generalized genetic instability rather than to specific mechanisms. Moreover, chemotherapy did not select resistant clones with higher number of alterations. 8/20 (40%) TKI resistant cases and 4/10 chemotherapy resistant patients harbored the same CNAs present in the matched diagnosis sample (losses of 9p21 in 7 cases, 7p and 22q11 in single cases and gains of chromosomes 1q, 4, 8q, 17q and 21), indicating a common clonal origin. In contrast, in 5/20 (25%) TKI resistant cases and 4/10 (40%) chemotherapy resistant patients macroscopic CNAs present at diagnosis were lost at relapse (losses of chromosomes 7, 11q, 14q, 15q, 16q and 19p and gains of 5q, 8q, 9q34 and 22q11). Thereafter, we compared diagnosis and relapse samples for microscopic CNAs (< 1.5 MB). The alteration most frequently acquired at relapse was loss of the tumor suppressor CDKN2A (53% vs 33 % of diagnosis). Other common acquired CNAs at relapse included gains of ABC transporter genes, such as ABCC1, ABCC6 (1q41) and BCL8 (15q11); losses affected EBF1 (5q33) and IGLL3 (22q11) genes involved in B-cell development, BTG1 (12q21) involved in cell cycle regulation and CHEK2 (22q12) involved in DNA repair. Interestingly, for all relapse cases analysis of IKZF1 deletions, identified in 80% of patients, demonstrated a clonal relationship between diagnostic and relapse samples, suggesting that this alteration is not acquired with relapse but it is maintained with fidelity from diagnosis working as a marker of disease. The majority (92%) of relapse samples harbored at least some of the CNAs present in the matched diagnosis sample, indicating a common clonal origin. Conclusions: Genomic copy number changes evolving from diagnosis to relapse have been identified demonstrating that a diversity of alterations contributes to relapse and with the most common alterations targeting key regulators of tumor suppression, cell cycle control, and lymphoid/B cell development. Supported by European LeukemiaNet, AIL, AIRC, Fondazione Del Monte di Bologna e Ravenna, FIRB 2006, PRIN 2009, Ateneo RFO grants, PIO program, Programma di Ricerca Regione – Università 2007 – 2009. Disclosures: Soverini: Novartis: Consultancy; ARIAD: Consultancy; Bristol-Myers Squibb: Consultancy. Baccarani:Pfizer Oncology: Consultancy; Novartis: Consultancy; BMS: Consultancy; Ariad: Consultancy; Novartis: Research Funding; Pfizer Oncology: Honoraria; Novartis: Honoraria; BMS: Honoraria; Ariad: Honoraria; Novartis: Membership on an entity's Board of Directors or advisory committees; BMS: Membership on an entity's Board of Directors or advisory committees; Ariad: Membership on an entity's Board of Directors or advisory committees. Ottmann:Novartis Corporation: Consultancy, Honoraria, Research Funding, Speakers Bureau. Martinelli:Novartis: Consultancy, Honoraria; BMS: Consultancy, Honoraria; Pfizer: Consultancy.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1466-1466
Author(s):  
Christopher D Chien ◽  
Elizabeth D Hicks ◽  
Paul P Su ◽  
Haiying Qin ◽  
Terry J Fry

Abstract Abstract 1466 Pediatric acute lymphoblastic leukemia (ALL) is the most common childhood malignancy. Although cure rates for this disease are approximately 90%, ALL remains one of the leading causes cancer-related deaths in children. Thus, new treatments are needed for those patients that do not respond to or recur following standard chemotherapy. Understanding the mechanisms underlying resistance of pediatric ALL to therapy offers one approach to improving outcomes. Recent studies have demonstrated the importance of communication between cancer cells and their microenvironment and how this contributes to the progression and therapeutic resistance but this has not been well studied in the context of ALL. Since the bone marrow is presumed to be the site of initiation of B precursor ALL we set out in our study to determine how ALL cells utilize the bone marrow milieu in a syngeneic transplantable model of preB cell ALL in immunocompetent mice. In this model, intravenously injected preB ALL develops first in the bone marrow, followed by infiltration into the spleen, lymph node, and liver. Using flow cytometry to detect the CD45.2 isoform following injection into B6CD45.1+ congenic recipients, leukemic cells can be identified in the bone marrow as early as 5 days after IV injection with a sensitivity of 0.01%-0.1%. The pre-B ALL line is B220+/CD19+/CD43+/BP1+/IL-7Ralpha (CD127)+/CD25-/Surface IgM-/cytoplasmic IgM+ consistent with a pre-pro B cell phenotype. We find that increasing amounts of leukemic infiltration in the bone marrow leads to an accumulation of non-malignant developing B cells at stages immediately prior to the pre-pro B cell (CD43+BP1-CD25-) and a reduction in non-malignant developing pre B cells at the developmental stage just after to the pre-pro B cell stage (CD43+BP1+CD25+). These data potentially suggest occupancy of normal B cell developmental niches by leukemia resulting in block in normal B cell development. Further supporting this hypothesis, we find significant reduction in early progression of ALL in aged (10–12 month old) mice known to have a deficiency in B cell developmental niches. We next explored whether specific factors that support normal B cell development can contribute to progression of precursor B cell leukemia. The normal B cell niche has only recently been characterized and the specific contribution of this niche to early ALL progression has not been extensively studied. Using a candidate approach, we examined the role of specific cytokines such as Interleukin-7 (IL-7) and thymic stromal lymphopoietin (TSLP) in early ALL progression. Our preB ALL line expresses high levels of IL-7Ralpha and low but detectable levels of TLSPR. In the presence of IL-7 (0.1 ng/ml) and TSLP (50 ng/ml) phosphSTAT5 is detectable indicating that these receptors are functional but that supraphysiologic levels of TSLP are required. Consistent with the importance of IL-7 in leukemia progression, preliminary data demonstrates reduced lethality of pr-B cell ALL in IL-7 deficient mice. Overexpression of TSLP receptor (TSLPR) has been associated with high rates of relapse and poor overall survival in precursor B cell ALL. We are currently generating a TSLPR overepressing preBALL line to determine the effect on early ALL progression and are using GFP-expressing preB ALL cells to identify the initial location of preB ALL occupancy in the bone marrow. In conclusion, or model of early ALL progression provides insight into the role of the bone marrow microenvironment in early ALL progression and provides an opportunity to examine how these microenvironmental factors contribute to therapeutic resistance. Given recent advances in immunotherapy for hematologic malignancies, the ability to study this in an immunocompetent host will be critical. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2008 ◽  
Vol 112 (9) ◽  
pp. 3798-3806 ◽  
Author(s):  
Jaime Acquaviva ◽  
Xiaoren Chen ◽  
Ruibao Ren

Interferon regulatory factor-4 (IRF-4) is a hematopoietic cell–restricted transcription factor important for hematopoietic development and immune response regulation. It was also originally identified as the product of a proto-oncogene involved in chromosomal translocations in multiple myeloma. In contrast to its oncogenic function in late stages of B lymphopoiesis, expression of IRF-4 is down-regulated in certain myeloid and early B-lymphoid malignancies. In this study, we found that the IRF-4 protein levels are increased in lymphoblastic cells transformed by the BCR/ABL oncogene in response to BCR/ABL tyrosine kinase inhibitor imatinib. We further found that IRF-4 deficiency enhances BCR/ABL transformation of B-lymphoid progenitors in vitro and accelerates disease progression of BCR/ABL-induced acute B-lymphoblastic leukemia (B-ALL) in mice, whereas forced expression of IRF-4 potently suppresses BCR/ABL transformation of B-lymphoid progenitors in vitro and BCR/ABL-induced B-ALL in vivo. Further analysis showed that IRF-4 inhibits growth of BCR/ABL+ B lymphoblasts primarily through negative regulation of cell-cycle progression. These results demonstrate that IRF-4 functions as tumor suppressor in early B-cell development and may allow elucidation of new molecular pathways significant to the lymphoid leukemogenesis by BCR/ABL. The context dependent roles of IRF-4 in oncogenesis should be an important consideration in developing cancer therapies targeting IRF-4.


Blood ◽  
2016 ◽  
Vol 128 (7) ◽  
pp. e10-e19 ◽  
Author(s):  
Tiago F. Brazão ◽  
Jethro S. Johnson ◽  
Jennifer Müller ◽  
Andreas Heger ◽  
Chris P. Ponting ◽  
...  

AbstractLong noncoding RNAs (lncRNAs) are potentially important regulators of cell differentiation and development, but little is known about their roles in B lymphocytes. Using RNA-seq and de novo transcript assembly, we identified 4516 lncRNAs expressed in 11 stages of B-cell development and activation. Most of these lncRNAs have not been previously detected, even in the closely related T-cell lineage. Comparison with lncRNAs previously described in human B cells identified 185 mouse lncRNAs that have human orthologs. Using chromatin immunoprecipitation-seq, we classified 20% of the lncRNAs as either enhancer-associated (eRNA) or promoter-associated RNAs. We identified 126 eRNAs whose expression closely correlated with the nearest coding gene, thereby indicating the likely location of numerous enhancers active in the B-cell lineage. Furthermore, using this catalog of newly discovered lncRNAs, we show that PAX5, a transcription factor required to specify the B-cell lineage, bound to and regulated the expression of 109 lncRNAs in pro-B and mature B cells and 184 lncRNAs in acute lymphoblastic leukemia.


Blood ◽  
2011 ◽  
Vol 118 (11) ◽  
pp. 3080-3087 ◽  
Author(s):  
Jinghui Zhang ◽  
Charles G. Mullighan ◽  
Richard C. Harvey ◽  
Gang Wu ◽  
Xiang Chen ◽  
...  

Abstract We sequenced 120 candidate genes in 187 high-risk childhood B-precursor acute lymphoblastic leukemias, the largest pediatric cancer genome sequencing effort reported to date. Integrated analysis of 179 validated somatic sequence mutations with genome-wide copy number alterations and gene expression profiles revealed a high frequency of recurrent somatic alterations in key signaling pathways, including B-cell development/differentiation (68% of cases), the TP53/RB tumor suppressor pathway (54%), Ras signaling (50%), and Janus kinases (11%). Recurrent mutations were also found in ETV6 (6 cases), TBL1XR1 (3), CREBBP (3), MUC4 (2), ASMTL (2), and ADARB2 (2). The frequency of mutations within the 4 major pathways varied markedly across genetic subtypes. Among 23 leukemias expressing a BCR-ABL1-like gene expression profile, 96% had somatic alterations in B-cell development/differentiation, 57% in JAK, and 52% in both pathways, whereas only 9% had Ras pathway mutations. In contrast, 21 cases defined by a distinct gene expression profile coupled with focal ERG deletion rarely had B-cell development/differentiation or JAK kinase alterations but had a high frequency (62%) of Ras signaling pathway mutations. These data extend the range of genes that are recurrently mutated in high-risk childhood B-precursor acute lymphoblastic leukemia and highlight important new therapeutic targets for selected patient subsets.


2021 ◽  
Author(s):  
Brigette Boast ◽  
Kaiyue Helian ◽  
T. Daniel Andrews ◽  
Xi Li ◽  
Vicky Cho ◽  
...  

AbstractPAX5 is the master transcription factor controlling B cell identity. In humans, mutations in PAX5 account for 30% of B cell acute lymphoblastic leukemia (B-ALL) cases. Investigating the causal effects of PAX5 mutations has however been difficult due to the premature lethality of Pax5−/− mice. Here we describe a novel mouse strain with a premature STOP mutation in Pax5 (Y351*) that produces a truncated protein and reduction in protein function, yet still allows for some B cell development to occur. A population of uncommitted and multipotent CD19+B220− B cells develops in the bone marrow of homozygous mice leading to the development of B-ALL. We show that the tumors frequently acquire secondary mutations in Jak3, and Ptpn11 highlighting key pathways interacting with PAX5 during malignant transformation. Analysis of the PAX5Y351* mice provide insight not only into the functional consequence of reduced PAX5 activity on B cell development and identity, but also provides an avenue in which to study PAX5-driven B-ALL in mice.One Sentence SummaryReduction in PAX5 function in mice induces the development of uncommitted B cells that have multipotent and malignant potential.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 287-287
Author(s):  
Stefan Koehrer ◽  
Ondrej Havranek ◽  
R Eric Davis ◽  
Felix Seyfried ◽  
Greg Coffey ◽  
...  

Abstract A pivotal step during B-cell development is the expression of the precursor B-cell receptor (pre-BCR) by pre-B lymphocytes (cyto-Igµ+, surface-IgM-). The pre-BCR represents an immature form of the BCR and consists of two immunoglobulin heavy chains (IgH), two surrogate light chains (SLC) and the signal transducing adapter proteins Igα and Igβ. A functional pre-BCR drives proliferation of pre-B-cells, ensuring their further differentiation into mature B-cells. By immunophenotype, ~20% of B-cell acute lymphoblastic leukemia (B-ALL) cases originate from the pre-B-cell stage (pre-B-ALL) of lymphocyte development and might therefore also express the pre-BCR. In view of the importance of pre-BCR signaling for normal pre-B-cell development, we hypothesize that it is exploited by pre-B-ALL for malignant growth and proliferation. A hallmark of active pre-BCR signaling is the continuous internalization of pre-BCRs, resulting in low pre-BCR surface expression. Using this phenotype of active pre-BCR signaling (low pre-BCR expression and high phosphorylation of the pre-BCR associated kinases LYN and SYK), we identified pre-BCR+ ALL cell lines (RCH-ACV, SMS-SB and Nalm6) and xenograft expanded patient samples. To study the role of the pre-BCR in these cells, we rendered RCH-ACV and SMS-SB pre-BCR null by using CRISPR/CAS9 gene editing with guide RNAs specific for the hypervariable region (recombined V, D, and J segments) of their expressed IgH allele. As identified by flow cytometry for the pre-BCR, deficient RCH-ACV and SMS-SB cells exhibited reduced viability and impaired proliferation when compared to their pre-BCR+ controls (Figure 1). Pre-BCR- cells showed reduced baseline phosphorylation of CD19, VAV1 and AKT. Interestingly, BTK and ERK phosphorylation were not affected. These results provide evidence for the dependency of pre-BCR+ ALL on pre-BCR signaling and suggest selective involvement of the PI3K-AKT pathway. We also investigated the effects of pharmacological pre-BCR inhibition by treating pre-BCR+ and pre-BCR- ALL cell lines and xenograft expanded primary patient samples with PRT318, a small-molecule inhibitor of spleen tyrosine kinase (SYK). In pre-BCR+ ALL PRT318 blocked cell proliferation and selectively inhibited AKT phosphorylation, thus mimicking the effects of IgH knockout. Pre-BCR- ALL cells were resistant to PRT318. Key effectors of the pre-BCR during normal B-cell development are FOXO transcription factors. In line with this, we found reduced FOXO1 phosphorylation and increased FOXO1 total protein levels after IgH knockout as well as after treatment with PRT318. This was accompanied by an increase in the FOXO1 transcriptional targets p27 and BLNK, suggesting increased FOXO1 transcriptional activity in response to the inhibition of pre-BCR signaling. To study the contribution of FOXO1 to the effects of IgH knockout and SYK inhibition more thoroughly, we expressed constitutively active FOXO1 (FOXO1-3A) in the pre-BCR+ ALL cell line RCH-ACV and consequently assessed its effects on cell proliferation and protein expression. Similar to IgH knockout and PRT318, FOXO1-3A reduced cell proliferation and increased p27 and BLNK protein levels, confirming FOXO1 as an important downstream target of pre-BCR signaling in B-ALL. To identify additional effectors of the pre-BCR in B-ALL we performed gene expression profiling (GEP) to compare pre-BCR+ and pre-BCR- cells of RCH-ACV and SMS-SB. Gene set enrichment analysis (GSEA) showed that IgH knockout resulted in significant enrichment for gene sets associated with down-modulation of MYC activity. This was confirmed by Western blot analysis of MYC total protein levels, and consistent with the finding of reduced MYC protein in PRT318-treated and FOXO1-3A-expressing pre-BCR+ cells, all indicating that pre-BCR signaling modulates MYC activity through a mechanism involving SYK and FOXO1. In conclusion, we provide evidence for the dependence of certain B-ALL subgroups on pre-BCR signaling. According to our data this is mainly due to pre-BCR-induced inactivation of FOXO1 and the subsequent deregulation of MYC. Importantly, pharmacological inhibition of pre-BCR signaling with the SYK inhibitor PRT318 completely reversed these effects, therefore providing a rationale for the use of SYK inhibitors in pre-BCR+ subgroups of B-ALL. Figure 1: Figure 1 Figure 1. Disclosures Coffey: Portola Pharmaceuticals: Employment, Equity Ownership.


Sign in / Sign up

Export Citation Format

Share Document