Human Macrophages Phagocytose Rituximab Opsonised Leukemic Cells Via CD16, CD32 and CD64 but Do Not Mediate ADCC.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2507-2507
Author(s):  
Josee Golay ◽  
Marzia Leidi ◽  
Giuseppe A. Palumbo ◽  
Martino Introna

Abstract Rituximab (Mabthera®) is a chimeric monoclonal IgG1 antibody with therapeutic activity in non-Hodgkin B lymphomas (B-NHL) and B-Chronic Lymphocytic Leukemia (B-CLL). We have recently obtained evidence, using a bulky lymphoma xenograft model in nude mice, that both complement and macrophages are required for the therapeutic activity of rituximab. In order to further investigate the tumor cell killing potential of macrophages and its modulation by different factors, including complement, we have set up in vitro experiments with purified macrophage populations. Human macrophages were obtained from purified peripheral blood monocytes cultured for 4 days in presence of 20% FCS and 20 ng/ml M-CSF. FACS analysis confirmed the phenotype of these cells including CD11b and FcγRs expression (CD16, CD32, CD64). Phagocytosis assays were then carried out with CLL cell as targets in presence or absence of increasing concentrations of rituximab. Phagocytosis was evaluated by counting under an inverted microscope the stained cytospin preparations. From 9.8% to 60.8% of macrophages engulfed at least one tumor target cell in a series of 24 experiments (mean 29.7%± 18.3%). Control irrelevant IgG1k monoclonal antibodies (anti-erbB2 trastuzumab and anti-EGFR cetuximab) did not mediate phagocytosis, and rituximab did not lead to ingestion of CD20 negative cells, demonstrating the specificity of the assay. Phagocytosis was already maximal at around 0.1 μg/ml rituximab concentration. In contrast complement activation required Mab concentration of at least 1 μg/ml. Thus phagocytosis, like ADCC, is active at about 10 fold lower MAb concentrations than complement triggering. Levels of CD20 expression on targets did not significantly affect phagocytosis. The role of different FcγRs was also investigated by addition 5 μg/ml blocking antibodies to CD16, CD32 and CD64. All 3 blocking Mabs reduced significantly phagocytosis (by 45%, 42% and 40% respectively with respect to control). Inhibition increased to 64% in presence of all 3 antibodies. Since previous data had suggested a role of the Val/Phe polymorphism at position 158 of CD16A in the clinical response of lymphoma patients to rituximab as well as in NK-mediated ADCC, we investigated whether this polymorphism also affected phagocytosis. No significant differences in dose response curves were observed using macrophages from either Val-Val or Phe-Phe homozygotes. Perhaps surprisingly, concomitant complement activation induced by addition of human serum did not increase phagocytosis. Whether human macrophages can also mediate antibody dependent cellular cytotoxicity (ADCC) was also studied. CLL or BJAB cells were labeled with Calcein-AM and ADCC measured as released fluorescence after 4 hours at 37°C. Macrophages were unable to mediate ADCC in presence of rituximab even following treatment with IFNγ (100 U/ml) for 48 hours. We conclude that macrophages efficiently mediate phagocytosis but not ADCC in presence of low concentrations of rituximab.

Blood ◽  
1971 ◽  
Vol 37 (4) ◽  
pp. 463-472 ◽  
Author(s):  
SEYMOUR WERTHAMER ◽  
LEONARD AMARAL

Abstract Lymphocytes obtained from patients with chronic lymphocytic leukemia (CLL) respond to the in vitro presence of cortisol by depressed incorporation of precursors into RNA and protein. The decreased incorporation of uridine into RNA is the sum of (1) an inhibition in the synthesis of RNA and (2) an enhanced destruction of newly synthesized RNA. Whereas cortisol was not dependent upon plasma for the manifestation of the above effects, the presence of plasma was an absolute requirement in order for cortisol to have an inhibitory effect on the synthesis of protein. A comparison of leukemic and normal lymphocytes demonstrated that the magnitude of inhibition of precursors into RNA and protein was greater in leukemic cells. Because it is believed that the plasma factor required is transcortin, determination of transcortin levels by cortisolbinding gel filtration technics were performed. These indicated that transcortin levels of CLL plasma were about 50 per cent lower than that of the normal. Consequently, further experiments involving type-specific plasma substitutions were performed. The results obtained from these experiments indicated that the magnitude of the effect of cortisol on the synthesis of lymphocyte protein was directly related to the transcortin level of the plasma employed.


Blood ◽  
1996 ◽  
Vol 87 (8) ◽  
pp. 3327-3335 ◽  
Author(s):  
L Trentin ◽  
A Cerutti ◽  
R Zambello ◽  
R Sancretta ◽  
C Tassinari ◽  
...  

The recently discovered cytokine, interleukin-15 (IL-15), has been demonstrated to share several biologic properties with IL-2 in different cell systems, including T-cell and natural killer (NK) cell compartments. As for B lymphocytes, IL-15 has been shown to provide stimulatory activities in normal preactivated B cells that are mainly transduced through IL- 2 receptor (IL-2R) complex components. Since leukemic B cells from patients with chronic lymphoproliferative disorders (CLD) bear IL-2R and grow in response to IL-2, we investigated whether IL-15 triggers the proliferation of malignant B cells obtained from 12 patients with B-cell chronic lymphocytic leukemia (B-CLL) and five patients with hairy cell leukemia (HCL). Enriched B cells recovered from five healthy subjects were also studied as controls. IL-15 stimulated the proliferation of freshly isolated leukemic B cells, but not resting normal B lymphocytes, the latter being able to grow in the presence of IL-15 only after in vitro preactivation with phorbol myristate acetate. The proliferation elicited by IL-2 on leukemic cells was comparable to that determined by IL-15. Following addition of graded concentrations of IL-15 to low/intermediate-dose IL-2, resting leukemic B cells showed a higher stimulatory rate than that observed using the two cytokines separately. In normal resting B lymphocytes, this cumulative effect was not observed. The role of different IL-2R subunits in IL-15-driven growth of malignant B cells was investigated both by their expression on leukemic cells and by the block of different IL-2R subunits (p55, p75, and p64) with specific monoclonal antibodies (MoAbs). Using flow cytometry and reverse transcriptase-polymerase chain reaction (RT-PCR) analyses we demonstrated that both B-CLL and HCL leukemic B cells express the beta and gamma chains of the IL-2R system. The stimulatory activity achieved by IL-15 decreased significantly, blocking the beta and gamma chains of the IL-2R. Taken together, these findings demonstrate that IL-15 triggers the growth of leukemic B cells through IL-2R system subunits, pointing to the role of this novel cytokine in regulating the neoplastic proliferation in CLD.


Author(s):  
Zizhen Si ◽  
Lei Yu ◽  
Haoyu Jing ◽  
Lun Wu ◽  
Xidi Wang

Abstract Background Long non-coding RNAs (lncRNA) are reported to influence colorectal cancer (CRC) progression. Currently, the functions of the lncRNA ZNF561 antisense RNA 1 (ZNF561-AS1) in CRC are unknown. Methods ZNF561-AS1 and SRSF6 expression in CRC patient samples and CRC cell lines was evaluated through TCGA database analysis, western blot along with real-time PCR. SRSF6 expression in CRC cells was also examined upon ZNF561-AS1 depletion or overexpression. Interaction between miR-26a-3p, miR-128-5p, ZNF561-AS1, and SRSF6 was examined by dual luciferase reporter assay, as well as RNA binding protein immunoprecipitation (RIP) assay. Small interfering RNA (siRNA) mediated knockdown experiments were performed to assess the role of ZNF561-AS1 and SRSF6 in the proliferative actives and apoptosis rate of CRC cells. A mouse xenograft model was employed to assess tumor growth upon ZNF561-AS1 knockdown and SRSF6 rescue. Results We find that ZNF561-AS1 and SRSF6 were upregulated in CRC patient tissues. ZNF561-AS1 expression was reduced in tissues from treated CRC patients but upregulated in CRC tissues from relapsed patients. SRSF6 expression was suppressed and enhanced by ZNF561-AS1 depletion and overexpression, respectively. Mechanistically, ZNF561-AS1 regulated SRSF6 expression by sponging miR-26a-3p and miR-128-5p. ZNF561-AS1-miR-26a-3p/miR-128-5p-SRSF6 axis was required for CRC proliferation and survival. ZNF561-AS1 knockdown suppressed CRC cell proliferation and triggered apoptosis. ZNF561-AS1 depletion suppressed the growth of tumors in a model of a nude mouse xenograft. Similar observations were made upon SRSF6 depletion. SRSF6 overexpression reversed the inhibitory activities of ZNF561-AS1 in vivo, as well as in vitro. Conclusion In summary, we find that ZNF561-AS1 promotes CRC progression via the miR-26a-3p/miR-128-5p-SRSF6 axis. This study reveals new perspectives into the role of ZNF561-AS1 in CRC.


Blood ◽  
2003 ◽  
Vol 101 (5) ◽  
pp. 1962-1969 ◽  
Author(s):  
Luisa Granziero ◽  
Paola Circosta ◽  
Cristina Scielzo ◽  
Elisa Frisaldi ◽  
Stefania Stella ◽  
...  

Growth and survival of chronic B-cell tumors are favored by the malignant cell's capacity to respond to selected microenvironmental stimuli provided by nontumoral bystander cells. To investigate which mechanisms operate in these crosstalks and whether they are malignancy-related or reproduce the mechanisms used by normal B cells we have studied the expression and functional role of semaphorin CD100 (now called Sema4D) in chronic lymphocytic leukemia (CLL) cells and normal CD5+ B cells. We demonstrate here that (1) leukemic and normal CD5+ B lymphocytes uniformly express CD100; (2) the CD100 high-affinity receptor Plexin-B1 is expressed by bone marrow stromal cells, follicular dendritic cells, and activated T lymphocytes, and is thus available to CD100+ lymphocytes in different specific microenvironments; and (3) upon interaction between CD100 and Plexin-B1 both CLL and normal CD5+ B cells increase their proliferative activity and extend their life span. These findings establish that Plexin-B1 is an easily accessible receptor for CD100 within the immune system. The encounter of CD100+ leukemic cells with Plexin-B1 may promote the proliferation and survival of malignant cells. The crosstalk operated by the CD100/Plexin-B1 interaction is not malignancy related but reproduces a mechanism used by normal CD5+ B cells.


2017 ◽  
Vol 10 ◽  
pp. 117906601773156 ◽  
Author(s):  
Mohammad Althubiti

Spleen tyrosine kinase (SYK) is a cytoplasmic enzyme that promotes survival and proliferation of B cells. SYK inhibition has shown promising results in the treatment of arthritis and chronic lymphocytic leukemia (CLL). However, in other context, it has been shown that SYK overexpression in epithelial cancer cells induced senescence in p53-dependent mechanism, which underscored its antineoplastic activity in vitro. Here, we show that SYK was induced in response of DNA damage in parallel with p53 levels. In addition, using chemical inhibitors of SYK reduced p53 levels in HCT116 and HT1080 cell lines, which underlines the role of SYK inhibition on p53 activity. Furthermore, SYK inhibition modulated the cell growth, which resulted in a decreasing in cell death. Interestingly, SYK expression showed a positive prognosis in patients with solid tumors in correlations with their survival rates, as expected negative correlation was seen between SYK expression and survival rate of patients with CLL. In conclusion, these findings demonstrate that SYK inhibition modulates p53 expression and activity in HCT116 and HT1080 cells. Reconsidering using of SYK inhibitors in clinical setting in the future should be evaluated carefully in accordance with these findings to prevent the formation of secondary malignancies.


2020 ◽  
Author(s):  
Hui Guo ◽  
Jianping Zou ◽  
Ling Zhou ◽  
Yan He ◽  
Miao Feng ◽  
...  

Abstract Background:Nucleolar and spindle associated protein (NUSAP1) is involved in tumor initiation, progression and metastasis. However, there are limited studies regarding the role of NUSAP1 in gastric cancer (GC). Methods: The expression profile and clinical significance of NUSAP1 in GC were analysed in online database using GEPIA, Oncomine and KM plotter, which was further confirmed in clinical specimens.The functional role of NUSAP1 were detected utilizing in vitro and in vivo assays. Western blotting, qRT-PCR, the cycloheximide-chase, immunofluorescence staining and Co-immunoprecipitaion (Co-IP) assays were performed to explore the possible molecular mechanism by which NUSAP1 stabilizes YAP protein. Results:In this study, we found that the expression of NUSAP1 was upregulated in GC tissues and correlates closely with progression and prognosis. Additionally, abnormal NUSAP1 expression promoted malignant behaviors of GC cells in vitro and in a xenograft model. Mechanistically, we discovered that NUSAP1 physically interacts with YAP and furthermore stabilizes YAP protein expression, which induces the transcription of Hippo pathway downstream target genes. Furthermore, the effects of NUSAP1 on GC cell growth, migration and invasion were mainly mediated by YAP. Conclusions:Our data demonstrates that the novel NUSAP1-YAP axis exerts an critical role in GC tumorigenesis and progression, and therefore could provide a novel therapeutic target for GC treatment.


Blood ◽  
1992 ◽  
Vol 79 (8) ◽  
pp. 2076-2083 ◽  
Author(s):  
D Grander ◽  
M Heyman ◽  
K Brondum-Nielsen ◽  
Y Liu ◽  
E Lundgren ◽  
...  

Abstract Various aspects of the interferon (IFN) system were studied in malignant cells from 37 unselected patients with acute lymphocytic leukemia (ALL). It was found that leukemic cells from two of 37 patients had a complete loss of alpha- and beta-IFN genes, whereas cells from four of 37 had lost one of the alpha-/beta-IFN alleles. In 25 cases, viable cells were also available for functional studies. Cell clones with loss of one of the alpha-/beta-IFN alleles produced low amounts of IFN after virus induction in vitro. Some clones with an apparently normal set of IFN genes were unable to produce detectable amounts of IFN. All clones studied were found to carry high-affinity alpha-IFN receptors. In clones carrying deletions of IFN genes, the cells were sensitive to IFN in vitro as measured by alpha-IFN-induced enhancement of 2′,5′-oligoadenylate synthetase (2′,5′-A synthetase). Cells from four patients with an apparently normal set of IFN genes were insensitive to this effect of IFN. We conclude that of the 17 patients in which IFN genes, IFN production, alpha-IFN receptors, and IFN-induced enhancement of 2′,5′-A synthetase were studied, nine (53%) showed some abnormality in their IFN system. This finding may add some support to the hypothesis that defects in the IFN system could be a step on the path to malignant transformation in ALL. Moreover, patients whose malignant cells carry IFN gene deletions or other defects in their IFN-producing capacity, but are still sensitive to exogenous IFN, could represent a subgroup of ALL with a greater likelihood of responding to IFN therapy.


Blood ◽  
2002 ◽  
Vol 100 (8) ◽  
pp. 2973-2979 ◽  
Author(s):  
Anne J. Novak ◽  
Richard J. Bram ◽  
Neil E. Kay ◽  
Diane F. Jelinek

B-cell chronic lymphocytic leukemia (B-CLL) is defined by the accumulation of CD5+ B cells in the periphery and bone marrow. This disease is not characterized by highly proliferative cells but rather by the presence of leukemic cells with significant resistance to apoptosis and, therefore, prolonged survival. B-lymphocyte stimulator (BLyS) is a newly identified tumor necrosis factor (TNF) family member shown to be critical for maintenance of normal B-cell development and homeostasis and it shares significant homology with another TNF superfamily member, APRIL. The striking effects of BLyS on normal B-cell maintenance and survival raises the possibility that it may be involved in pathogenesis and maintenance of hematologic malignancies, including B-CLL. In this study, we investigated the status of APRIL and BLyS expression, as well as their receptors, in this disease. All B-CLL patient cells studied expressed one or more of 3 known receptors for BLyS; however, the pattern of expression was variable. In addition, we demonstrate for the first time that B-CLL cells from a subset of patients aberrantly express BLyS and APRIL mRNA, whereas these molecules were not detectable in normal B cells. Furthermore, we provide in vitro evidence that BLyS protects B-CLL cells from apoptosis and enhances cell survival. Because these molecules are key regulators of B-cell homeostasis and tumor progression, leukemic cell autocrine expression of BLyS and APRIL may be playing an important role in the pathogenesis of this disease.


1974 ◽  
Vol 139 (5) ◽  
pp. 1154-1174 ◽  
Author(s):  
Seth E. Anderson ◽  
Jack S. Remington

Human macrophages derived from in vitro culture of peripheral blood monocytes were studied under a variety of conditions to determine their microbicidal capacity for the obligate intracellular protozoan, Toxoplasma gondii. The effect of macrophages on intracellular Toxoplasma was evaluated morphologically by light and phase microscopy and by autoradiography. When macrophages from dye test (DT)-negative or DT-positive individuals were infected with Toxoplasma in the presence of normal human serum, the organisms were able to multiply intracellularly with resultant destruction of the monolayer. Once organisms were intracellular, the presence of antibody-containing serum in the medium did not alter this inability of the macrophages to kill Toxoplasma. However, when Toxoplasma were incubated in the presence of heat-inactivated DT-positive serum just before infection of the monolayers, the intracellular organisms were inhibited or killed by normal macrophages. Attempts were made to activate macrophages in vitro to kill Toxoplasma. Macrophages incubated in the presence of sensitized lymphocytes and Streptokinase-Streptodornase (SK-SD) or Toxoplasma lysate antigen (TLA) were found to kill Toxoplasma when compared to macrophages incubated in the presence of lymphocytes from DT-negative individuals and TLA or lymphocytes alone. Thus, in vitro induction of resistance (both specifically and nonspecifically) in human macrophages was accomplished by culturing these cells in the presence of specifically sensitized lymphocytes and antigen. These results suggest that, as in the mouse model, activated human macrophages have the ability to inhibit or kill intracellular Toxoplasma and that these cells may be important as effector cells in cell-mediated immunity (CMI) to toxoplasmosis in man.


Sign in / Sign up

Export Citation Format

Share Document