Proteomics Analysis of Bone Marrow Cells of Acute Myeloid Leukemia (M2a) and Its Prognosis Significance.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4297-4297
Author(s):  
Fan Yi Meng ◽  
Shuai Tian ◽  
Jia-ming Tang

Abstract Objective:The distinct proteins of leukemic cells were investigated by proteomics technology between AML-M2a patients before inductive treatments with evidently different duration of first continuous complete remission(CCR1) and AML-M2a patients at replase in order to find their relations with prognosis of AML-M2a. Methods:The bone marrow mononuclear cells(BMMNCs) from 17 cases of AML-M2a patients before inductive treatment were grouped with different duration of CCR1: group A with CCR1 duration exceeded 12 months(11 cases), group B within 6 months(6 cases), and group C was composed of 3 patients at replase among group B. The proteins of BMMNCs from all the patients were separated by two-dimensional electrophoresis, and the part of differentially-expressed proteins were identified by matrix assisted laser desorption/ionization time-of-flight mass spectrometry(MALDI-TOF-MS). Results: 6 differentially-expressed proteins were identified between group A and B by MALDI-TOF-MS: tubulin-specific chaperone B, myeloperoxidase, <TT>Solution Structure Of The Ch Domain Of Human Transgelin-2,</TT> glutathione S-transferase, RING zinc finger protein, glyceraldehyde-3-phosphate dehydrogenase.3 differentially-expressed proteins were identified in group C: NAD(P)H dehydrogenase, hypothetical protein, HES1. Conclusion: The distinct proteins of leukemic cells of AML-M2a patients before inductive treatments were involved in prognosis, and the proteins of BMMNCs from patients at replase have changed.

2010 ◽  
Vol 40 (5) ◽  
pp. 369-379 ◽  
Author(s):  
Uta J. E. Thiel ◽  
Ralph Feltens ◽  
Boris Adryan ◽  
Rita Gieringer ◽  
Christoph Brochhausen ◽  
...  

2018 ◽  
Vol 18 (8) ◽  
pp. 1163-1176 ◽  
Author(s):  
Maryam Ranjpour ◽  
Deepshikha P. Katare ◽  
Saima Wajid ◽  
Swatantra K. Jain

Background: The network interactions link human disease proteins to regulatory cellular pathways leading to better understanding of protein functions and cellular processes. Revealing the network of signaling pathways in cancer through protein-protein interactions at molecular level enhances our understanding of Hepatocellular Carcinoma (HCC). Objective: A rodent model for study of HCC was developed to identify differentially expressed proteins at very early stage of cancer initiation and throughout its progression. Methodology: HCC was induced by administrating N-Nitrosodiethylamine (DEN) and 2-aminoacetylfluorine (2-AAF) to male Wistar rats. Proteomic approaches such as 2D-Electrophoresis, PD-Quest, MALDI-TOF-MS and Western blot analyses have been used to identify, characterize and validate the differentially expressed proteins in HCC-bearing animals vis-a-vis controls. Results: The step-wise analysis of morphological and histological parameters revealed HCC induction and tumorigenesis at 1 and 4 months after carcinogen treatment, respectively. We report a novel protein network of 735 different proteins out of which eight proteins are characterized by MALDI-TOF-MS analysis soon after HCC was chemically induced in rats. We have analyzed four different novel routes representing the association of experimentally identified proteins with HCC progression. Conclusion: The study suggests that A-Raf, transthyretin and epidermal growth factor receptor play major role in HCC progression by regulating MAPK signaling pathway and lipid metabolism leading to continuous proliferation, neoplastic transformation and tumorigenesis.


2009 ◽  
Vol 3 (5) ◽  
pp. 574-583 ◽  
Author(s):  
Antonio Qualtieri ◽  
Elena Urso ◽  
Maria Le Pera ◽  
Sabrina Bossio ◽  
Francesca Bernaudo ◽  
...  

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 5515-5515
Author(s):  
Nicola Sgherza ◽  
Vito Garrisi ◽  
Giacoma De Tullio ◽  
Simona Serratì ◽  
Angela Iacobazzi ◽  
...  

Abstract BACKGROUND. Chronic Myeloid Leukemia (CML) is a myeloproliferative neoplasm characterized by an aberrant protein (BCR–ABL) which is a constitutively active tyrosine kinase. According to the latest ELN recommendations for the management of CML, molecular response (MR) is best assessed according to the International Scale (IS) as the ratio of BCR-ABL1 transcripts to ABL1 transcripts, or other internationally recognized control transcripts. It is expressed and reported as BCR-ABL1% on a log scale where 10%, 1%, 0.1%, 0.01%, 0.0032%, and 0.001% correspond to a decrease of respectively 1 (MR1), 2 (MR2), 3 (MR3), 4 (MR4), 4.5 (MR4.5) logs below the standard baseline that was used in the IRIS study. Recent advances in the proteomic field have allowed us to better understand the biology of several cancer types and/or discover new candidate biomarkers, but very few data are available in CML. AIMS. The purpose of this study was to evaluate a possible correlation between depth of MR and proteomic profile in sera samples obtained from the peripheral blood and bone marrow of CML patients. PATIENTS AND METHODS Samples were consecutively and prospectively obtained from 20 CML patients observed between January and June 2014 at the Hematology Unit of the National Cancer Research Centre “Istituto Tumori Giovanni Paolo II” in Bari, Italy. Each individual involved in the study signed an informed consent form authorizing the Institute to utilize their biological tissues for research purposes. All patients at diagnosis displayed the classic t(9;22) Ph chromosome according to standard cytogenetics. The BCR/ABL transcript at RT-PCR was b3a2 in 13 patients and b2a2 in 7 patients. Peripheral blood and bone marrow samples were centrifuged within 30 minutes of sample taking. Serum specimens were immediately collected and frozen at −80°C. Twenty sera from peripheral blood were sampled from 5 patients in MR1 response, four in MR2, eight in MR3, two in MR4 and 1 patient at diagnosis; for eleven patients serum from bone marrow was also available; in particular 2 were sampled from patients in MR1, 3 in MR2, 4 in MR3, 1 in MR4 and 1 at diagnosis. Patients were grouped in two cohorts: the first comprised those with lower molecular response to MR3 (group A: 10 patients) and the second greater than or equal to MR3 (group B: 10 patients). The association of proteomic profile with molecular response was performed using the SELDI ToF Mass Spectrometry platform. Each specimen was spotted on an IMAC30 metal affinity protein-chip, prepared according to the manufacturer's instructions, and analyzed in duplicate. RESULTS Fourteen differentially expressed peaks were highlighted when comparing peripheral sera from group A and group B, but none was statistically significant. When comparing 11 available serum samples from the bone marrow of groups A (6) and B (5), four peaks (m/z 10629, m/z 3889, m/z 7772, m/z 7987) were reported as differentially expressed in a statistically significant way (p<0.05). Focusing the differential expression analysis in peripheral sera only on MR1 patients (including one patient at diagnosis) versus MR4 patients, one peak at m/z 11092 was identified as significantly and differentially expressed (p < 0.05) (Figure 1). Similarly, comparing bone marrow sera only from MR1 and MR4 patients respectively, 32 peaks were differentially expressed. Once again the peak at m/z 11092 resulted under expressed in MR1 patients, and interestingly the single patient at diagnosis had the lowest value. No statistical differences were evidenced when comparing peripheral blood and bone marrow sera obtained from b3a2 and b2a2 patients. CONCLUSIONS These preliminary data suggest that an over-expression of m/z 11092 in serum obtained from peripheral blood and bone marrow could be associated with a deeper molecular response; further investigations are needed on a larger number of patients in order to confirm or refute our results and, to definitively characterize the peak at m/z 11092. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3060-3060
Author(s):  
Marion Eveillard ◽  
Even H Rustad ◽  
Mikhail Roshal ◽  
Yanming Zhang ◽  
Amanda Kathryn Ciardiello ◽  
...  

Introduction In multiple myeloma (MM), the absence of measurable residual disease (MRD) after completed therapy is associated with longer progression free survival. Different techniques are available to detect low levels of plasma cells in bone marrow (BM) either by flow cytometry or by next-generation sequencing as a gold standard of molecular methods. But these techniques are limited because they require a representative bone marrow sample obtained by an invasive procedure. Therefore, detecting low levels of disease in blood would be ideal, because serial sampling is much easier and fully representative, and it would allow for the detection of extramedullary disease. Mass spectrometry-based methods have been shown to be more sensitive for detecting monoclonal proteins (M-protein) in serum. In this study, we were motivated to evaluate MALDI-TOF mass spectrometry (MALDI-TOF MS) head-to-head with an established BM-based MRD assays. Patients and Methods This cohort included 71 patients treated at Memorial Sloan Kettering Cancer Center (MSKCC) who had serum samples available at 2 timepoints including during active disease and within 60 days of MRD results as determined by flow cytometry of bone marrow aspirates (Flow-BM-MRD). The cohort enrolled 26 females and 45 males with a median age of 61 years (range 37-78 years). Twenty-seven patients had high-risk cytogenetics at baseline. The median time between diagnosis and the MRD timepoint was 13.4 months (3.4-91 months). MALDI-TOF MS analysis was performed according to the method published by Mills et al. Immunoglobulins were purified from serum samples using CaptureSelect beads specific of each isotype and were then eluted from the beads. Light chains and heavy chains were separated by the addition of a reducing agent. Purified samples were mixed in matrix and spotted onto a stainless steel MALDI plate and were analyzed using a Microflex LT MALDI-TOF mass spectrometer (Bruker). Samples taken during active disease were used to identify the mass to charge ratio (m/z) of the M-protein and served as a surrogate marker in the analysis of subsequent samples. MALDI-TOF MS results were compared to the Flow-BM-MRD assay, performed using the MSKCC's ten-color, single-tube method. Results MALDI-TOF MS detected an M-protein in all 71 active disease samples and in 25 MRD samples. MALDI-TOF-MS results at the MRD timepoint were concordant with Flow-BM-MRD for 44/71 patients (p=0.342, chi-square test). Eight patients were positive and 36 negative by both techniques. Twenty-seven patients were discordant, including 10 patients detectable only by Flow-BM-MRD and 17 detectable only by MALDI-TOF MS. Among the 10 patients detectable by flow cytometry but not by MALDI, the median MRD level was 0.00092% (+<0.0001% - 0.011%). The M-protein could have been present but below the polyclonal background. Regarding the 17 patients positive only by MALDI-TOF-MS, the BM sample for flow analysis was not suitable for 3 patients due to hemodilution. The others 14 samples reached the target of sensitivity with a limit of detection of 0.0001%. Alternatively, the MALDI-TOF result could be a false positive in terms of disease detection. MS is likely not falsely detecting M-proteins and indeed, immunofixation was also positive in 11/17 of these samples. However, low levels of M-protein may not indicate the presence of active disease. Indeed, a confounding factor is that immunoglobulins have a long half-life in serum. To determine the clinical utility of more sensitive M-protein detection, we evaluated the clinical outcome for the 48 newly diagnosed MM patients in CR at the MRD timepoint with a median follow-up of 11 months. Of these 48 patients, 2 of the 3 that were positive by both techniques relapsed during follow-up. One out of 27 patients that were negative by both techniques relapsed. None of the 10 patients who were positive only by MALDI-TOF relapsed and 1 of the 8 patients who were positive only by Flow-BM-MRD relapsed. Conclusions This study is important because it is a first step in understanding how to use a more sensitive blood test for the follow-up of MM patients. MALDI-TOF MS analysis may provide complementary results to Flow-BM-MRD especially for the follow-up of patients in CR and during maintenance therapy to detect poor responders that would be positive by both techniques. In summary, our results suggest that MALDI-TOF may be quite useful for early detection of relapse. Disclosures Roshal: Physicians' Education Resource: Other: Provision of services; Celgene: Other: Provision of Services; Auron Therapeutics: Equity Ownership, Other: Provision of services. Hassoun:Celgene: Research Funding; Janssen: Research Funding; Novartis: Consultancy. Smith:Celgene: Consultancy, Patents & Royalties, Research Funding; Fate Therapeutics and Precision Biosciences: Consultancy. Lesokhin:Takeda: Consultancy, Honoraria; Serametrix Inc.: Patents & Royalties; Genentech: Research Funding; GenMab: Consultancy, Honoraria; BMS: Consultancy, Honoraria, Research Funding; Janssen: Research Funding; Juno: Consultancy, Honoraria. Mailankody:Juno: Research Funding; Celgene: Research Funding; Janssen: Research Funding; Takeda Oncology: Research Funding; CME activity by Physician Education Resource: Honoraria. Landgren:Abbvie: Membership on an entity's Board of Directors or advisory committees; Sanofi: Membership on an entity's Board of Directors or advisory committees; Karyopharm: Membership on an entity's Board of Directors or advisory committees; Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Theradex: Other: IDMC; Adaptive: Honoraria, Membership on an entity's Board of Directors or advisory committees; Merck: Other: IDMC; Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Takeda: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding.


2019 ◽  
Vol 20 (S19) ◽  
Author(s):  
Hsin-Yao Wang ◽  
Wen-Chi Li ◽  
Kai-Yao Huang ◽  
Chia-Ru Chung ◽  
Jorng-Tzong Horng ◽  
...  

Abstract Background Group B streptococcus (GBS) is an important pathogen that is responsible for invasive infections, including sepsis and meningitis. GBS serotyping is an essential means for the investigation of possible infection outbreaks and can identify possible sources of infection. Although it is possible to determine GBS serotypes by either immuno-serotyping or geno-serotyping, both traditional methods are time-consuming and labor-intensive. In recent years, the matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has been reported as an effective tool for the determination of GBS serotypes in a more rapid and accurate manner. Thus, this work aims to investigate GBS serotypes by incorporating machine learning techniques with MALDI-TOF MS to carry out the identification. Results In this study, a total of 787 GBS isolates, obtained from three research and teaching hospitals, were analyzed by MALDI-TOF MS, and the serotype of the GBS was determined by a geno-serotyping experiment. The peaks of mass-to-charge ratios were regarded as the attributes to characterize the various serotypes of GBS. Machine learning algorithms, such as support vector machine (SVM) and random forest (RF), were then used to construct predictive models for the five different serotypes (Types Ia, Ib, III, V, and VI). After optimization of feature selection and model generation based on training datasets, the accuracies of the selected models attained 54.9–87.1% for various serotypes based on independent testing data. Specifically, for the major serotypes, namely type III and type VI, the accuracies were 73.9 and 70.4%, respectively. Conclusion The proposed models have been adopted to implement a web-based tool (GBSTyper), which is now freely accessible at http://csb.cse.yzu.edu.tw/GBSTyper/, for providing efficient and effective detection of GBS serotypes based on a MALDI-TOF MS spectrum. Overall, this work has demonstrated that the combination of MALDI-TOF MS and machine intelligence could provide a practical means of clinical pathogen testing.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1678-1678
Author(s):  
Junya Kuroda ◽  
Mio Yamamoto ◽  
Eishi Ashihara ◽  
Hisao Nagoshi ◽  
Tsutomu Kobayashi ◽  
...  

Abstract Abstract 1678 We recently identifid that galectin-3 (Gal-3) is specifically induced in leukemic cells due to the support of the bone marrow microenvironment and promotes cell proliferation and resistance in leukemic cells to a variety of drugs, including imatinib mesylate, dasatinib, or genotoxic agents, especially in the case of chronic myelogenous leukemia (CML). In the current study, we continued and extended our study in order to identify the role of Gal-3 in the disease development of CML. First, we used a transmigration assay to investigate the role of Gal-3 in cell migration of leukemic cells. HS-5 conditioned medium (CM/HS-5) was used as the source of bone marrow stromal cells (BMSCs)-derived chemotactic stimuli. HS-5 is an immortalized human BMSC-derived cell line, which potently secretes G-CSF, GM-CSF, M-CSF, Kit ligand, MIP-1a, and interleukin (IL)-6, IL-8, or IL-11. When MYL cells, a CML cell line, were compared with Gal-3 overexpressing MYL cells (MYL/G3), which were generated by means of gene introduction, the latter showed a greater capacity for cell migration induced by CM/HS-5. Next, we investigated the involvement of Gal-3 in malignant niche formation, since recent studies have hypothesized that leukemic cells excrete growth factors which stimulate, via paracrine and autocrine loops, the growth of adjacent leukemic cells as well as of bone marrow supporting cells such as BMSCs or endothelial cells. When MYL cells and MYL/G3 cells were cultured with media containing conditioning medium (CM) from MYL cells and MYL/G3 cells in various ratios (designated as CM/MYL and CM/MYL/G3, respectively), both MYL cells and HS-5 cells proliferated more at higher concentrations of CM/MYL/G3, indicating that MYL/G3 cells excrete more growth factors for the MYL cells themselves as well as BMSCs. These findings were the same for cases with CML cell line K562 and Gal-3 overexpressing K562. We finally examined the in vivo role of Gal-3 in CML. Approval was obtained from the institutional review board at Kyoto University Hospital for the use of mice for this study which was conducted in accordance with the ethical principles of the Declaration of Helsinki. Fourteen male NOD/SCID mice at 6 weeks of age were sublethally irradiated (2 Gy) and 1.0×106 MYL cells (Group A) or 1.0×106 MYL/G3 cells (Group B) were transplanted intravenously via their tail veins into seven mice each. Body weight (BW) and the percentage of leukemic cells in peripheral blood (PB) were monitored at least twice a week. Although transplanted leukemic cells increased in a similar manner in the PB of both groups during the first three weeks, the number of PB leukemic cells of Group A mice then gradually decreased, while those of Group B mice remained the same until death. Although we had initially hypothesized that Group B might have a shorter survival than Group A, the actual result was the opposite, with the survival of Group A being significantly shorter than that of Group B (p =0.025). Surprisingly, the sites of disease involvement at death showed major differences between the two groups. Most mice from Group A showed extensive extramedullary involvement, such as intra-abdominal, mediastinal and/or subcutaneous tumors isolated from BM, while only one of seven mice showed BM involvement at the time of death. In contrast, all mice in Group B showed BM involvement, which sometimes outgrew BM, but none showed tumors isolated from BM. These results indicate that Gal-3 overexpression may facilitate BM homing and lodgment of CML cells. We also speculate that the reason for the shorter survival of Group A is that the tumors expanded much faster once leukemic cells had advanced outside BM and that this may have had a significantly more deleterious effect on the mice in Group A than on those in Group B. In conclusion, the findings of our study suggest that BMME-induced Gal-3 in leukemic cells plays a crucial role in disease development of CML, especially in the BM milieu. Disclosures: No relevant conflicts of interest to declare.


2019 ◽  
Vol 52 (1) ◽  
pp. 81-89 ◽  
Author(s):  
Hsiao-Chuan Lin ◽  
Jang-Jih Lu ◽  
Lee-Chung Lin ◽  
Cheng-Mao Ho ◽  
Kao-Pin Hwang ◽  
...  

2021 ◽  
Vol 10 (8) ◽  
pp. 1570
Author(s):  
Zuzanna Pawlak ◽  
Szymon Andrusiów ◽  
Magdalena Pajączkowska ◽  
Adriana Janczura

Background: A growing incidence of invasive fungal infections, especially among immunocompromised patients, has given increased significance to microbiological diagnostics of yeast-like fungi. More accurate and faster fungi identification methods that can compete with classical methods are being searched for. In this paper, classical microbiological methods are compared to MALDI–TOF MS (matrix-assisted laser desorption/ionization time-of-flight mass spectrometry). Methods: The diagnostic material was collected from buccal mucosa from 98 adults, including 69 with HIV. Only positive cultures were included in the study. Results: Matching results were obtained in 45 samples, and there were nonmatching results in 35 samples, with the majority of these in the study group, constituting 50% of identifications within this group. A particularly common mistake resulting from the use of classical methods is the false identification of C. dubliniensis as C. albicans. Additionally, C. tropicalis proves to be difficult to identify. Conclusions: Our results and literature data suggest that MALDI–TOF MS should be considered an effective alternative to classical methods in terms of fungi identification, especially among HIV-positive patients, due to the different morphology of fungal colonies.


2009 ◽  
Vol 27 (15_suppl) ◽  
pp. e22072-e22072
Author(s):  
D. Hawke ◽  
C. Mazouni ◽  
F. André ◽  
K. Baggerly ◽  
K. Baggerly ◽  
...  

e22072 Evaluation of serum profiles changes after neoadjuvant chemotherapy for breast cancer using MALDI-TOF / MS procedure. Background: Response to primary chemotherapy (CT) for breast cancer is heterogeneous among patients and a more tailored treatment would be beneficial in term of reducing exposure to an unnecessary toxicity and optimization of response rates. Mass spectrometry analysis of serum might be helpful in detecting specific changes in response to primary CT. Methods: An applied Biosystems 4700 Proteomics Analyzer matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometer was used. A breast cancer cohort of 78 sera samples from 39 HER2 positive patients consisting of matched pretreatment and (6 months) posttreatment samples was used. Blood samples were collected serially before each treatment cycle every 3 weeks of neoadjuvant CT. Samples were divided into those who achieved pathological complete response (pCR, n= 20) and those who had residual disease (RD, n=19). Low-mass differentially expressed peptides were identified using MALDI-TOF/TOF. Results: This procedure yielded a total of 2329 and 3152 peaks respectively, for the responders and non-responders. Biological variation analysis revealed a total of 32 peaks for responders and 643 peaks for non-responders to be differentially regulated with a false discovery rate less than 20%. A total of 8 differentially expressed proteins were identified from their peptides after digestion and LC-MALDI-TOF/TOF. Four in tumors with pCR (AFM, C3, hemopexin, SAP) and four proteins in the RD group were identified (AP1, hemopexin, Complement B, amyloid P component) Conclusions: Our study suggests that MALDI mass spectrometry may be used to predict the tumor response to neoadjuvant chemotherapy. Proteomic analysis may be useful in developing tailored chemotherapy for breast cancer. No significant financial relationships to disclose.


Sign in / Sign up

Export Citation Format

Share Document