STAT3 Signaling in Donor-Derived CD4+ T-Cells Plays a Critical Role in the Induction of Acute and Chronic GVHD in Murine Models of alloBMT.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2179-2179
Author(s):  
Vedran Radojcic ◽  
Maria A. Pletneva ◽  
Hung-Rong Yen ◽  
Timothy J. Harris ◽  
Drew M. Pardoll ◽  
...  

Abstract Growing evidence from several murine models suggests that STAT3 signaling in CD4+ T-cells plays a pivotal role in the pathogenesis of autoimmunity. We herein tested the hypothesis that the same pathway plays a critical role in the induction of GVHD in murine models of allogeneic BMT. To test our hypothesis and to compare the differential ability of STAT3 signaling in CD4+ T-cells to mediate GVHD in MHC-mismatched and-matched murine models of alloBMT, CD4-Cre × STAT3flox/flox (STAT3KOCD4+), or corresponding wild-type control mice were used as donors of CD4+ T-cells. In an MHC-mismatched model, groups of lethally irradiated (775 cGy) BALB/c (H-2d) mice received T-cell depleted (TCD) bone marrow (BM) from wild-type C57BL/6 (H-2b) mice alone, TCD B6 BM plus 4 × 105wild-type, or STAT3KOCD4+ T-cells, all on a C57BL/6 background. In repeated experiments we observed significantly decreased clinical signs of GVHD in animals receiving STAT3KOCD4+ in comparison to those receiving wild-type CD4+ T-cells (median GVHD score of 2.25 vs. 5.29; P <.001) but no difference in lethality in chimeras monitored up to day 60 posttransplant. In an MHC-matched, minor histocompatibility mismatched setting, we conducted experiments using the B10.D2 (H-2d) BALB/c (H-2d) model in which GVHD is CD4+ T-cell-mediated and has clinicopathologic consistent with human chronic GVHD. Since the dominant clinical manifestation in this model is cutaneous sclerodermatous GVHD that is associated with in situ dermal mononuclear infiltrates, the use of BALB/c-CD45.1 (CD45.1+) mice as recipients enabled us to examine the fate of skin CD11c+ dendritic cells. After conditioning (775 cGy) recipient mice received B10.D2 (CD45.2+) TCD BM and 9.3 ×106 TCD splenocytes, repleted with 106 wild-type CD8+ and 1.9 ×106 wild-type, or STAT3KOCD4+ T-cells. We reproducibly induced all signs of chronic GVHD in chimeras receiving wild-type CD4+ T-cells, but not in chimeras injected with STAT3KOCD4+ T-cells (median GVHD score of 5.2 vs. 0.0; P <.001). We found that development of cutaneous GVHD was accompanied by prominent dermal infiltration of donor-derived inflammatory monocytes and complete turnover to donor CD11c+ epidermal DC chimerism (88.4±4.3% vs. 0.9±0.6%; P <.001). Interestingly, splenic CD11c+ DC (99.9±0.1% vs. 99.8±0.1%), CD4+ (99.9±0.2% vs. 99.6±0.7%) and CD8+ (99.9±0.2% vs. 99.9±0.2%) T-cell chimerism was nearly completely donor-derived and did not differ between the two sets of described chimeras. In summary, our data suggest that intact STAT3 signaling in CD4+ T-cells is required for clinical manifestations of delayed acute and/or chronic GVHD, but it does not interfere with lymphohematopoietic graft-versus host response and achievement of full donor chimerism. Further exploration of the STAT3 signaling pathway in pathophysiology of delayed acute and/or chronic GVHD is warranted.

2009 ◽  
Vol 20 (17) ◽  
pp. 3783-3791 ◽  
Author(s):  
Shekhar Srivastava ◽  
Lie Di ◽  
Olga Zhdanova ◽  
Zhai Li ◽  
Santosha Vardhana ◽  
...  

The Ca2+-activated K+ channel KCa3.1 is required for Ca2+ influx and the subsequent activation of T-cells. We previously showed that nucleoside diphosphate kinase beta (NDPK-B), a mammalian histidine kinase, directly phosphorylates and activates KCa3.1 and is required for the activation of human CD4 T lymphocytes. We now show that the class II phosphatidylinositol 3 kinase C2β (PI3K-C2β) is activated by the T-cell receptor (TCR) and functions upstream of NDPK-B to activate KCa3.1 channel activity. Decreased expression of PI3K-C2β by siRNA in human CD4 T-cells resulted in inhibition of KCa3.1 channel activity. The inhibition was due to decreased phosphatidylinositol 3-phosphate [PI(3)P] because dialyzing PI3K-C2β siRNA-treated T-cells with PI(3)P rescued KCa3.1 channel activity. Moreover, overexpression of PI3K-C2β in KCa3.1-transfected Jurkat T-cells led to increased TCR-stimulated activation of KCa3.1 and Ca2+ influx, whereas silencing of PI3K-C2β inhibited both responses. Using total internal reflection fluorescence microscopy and planar lipid bilayers, we found that PI3K-C2β colocalized with Zap70 and the TCR in peripheral microclusters in the immunological synapse. This is the first demonstration that a class II PI3K plays a critical role in T-cell activation.


Cancers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1687
Author(s):  
Magalie Dosset ◽  
Andrea Castro ◽  
Hannah Carter ◽  
Maurizio Zanetti

Telomerase reverse transcriptase (TERT) is a conserved self-tumor antigen which is overexpressed in most tumors and plays a critical role in tumor formation and progression. As such, TERT is an antigen of great relevance to develop widely applicable immunotherapies. CD4 T cells play a major role in the anti-cancer response alone or with other effector cells such as CD8 T cells and NK cells. To date, efforts have been made to identify TERT peptides capable of stimulating CD4 T cells that are also able to bind diverse MHC-II alleles to ease immune status monitoring and immunotherapies. Here, we review the current status of TERT biology, TERT/MHC-II immunobiology, and past and current vaccine clinical trials. We propose that monitoring CD4 T cell immunity against TERT is a simple and direct way to assess immune surveillance in cancer patients and a new way to predict the response to immune checkpoint inhibitors (ICPi). Finally, we present the initial results of a systematic discovery of TERT peptides able to bind the most common HLA Class II alleles worldwide and show that the repertoire of MHC-II TERT peptides is wider than currently appreciated.


2020 ◽  
Vol 4 (17) ◽  
pp. 4069-4082
Author(s):  
Joji Nagasaki ◽  
Yosuke Togashi ◽  
Takeaki Sugawara ◽  
Makiko Itami ◽  
Nobuhiko Yamauchi ◽  
...  

Abstract Classic Hodgkin lymphoma (cHL) responds markedly to PD-1 blockade therapy, and the clinical responses are reportedly dependent on expression of major histocompatibility complex class II (MHC-II). This dependence is different from other solid tumors, in which the MHC class I (MHC-I)/CD8+ T-cell axis plays a critical role. In this study, we investigated the role of the MHC-II/CD4+ T-cell axis in the antitumor effect of PD-1 blockade on cHL. In cHL, MHC-I expression was frequently lost, but MHC-II expression was maintained. CD4+ T cells highly infiltrated the tumor microenvironment of MHC-II–expressing cHL, regardless of MHC-I expression status. Consequently, CD4+ T-cell, but not CD8+ T-cell, infiltration was a good prognostic factor in cHL, and PD-1 blockade showed antitumor efficacy against MHC-II–expressing cHL associated with CD4+ T-cell infiltration. Murine lymphoma and solid tumor models revealed the critical role of antitumor effects mediated by CD4+ T cells: an anti-PD-1 monoclonal antibody exerted antitumor effects on MHC-I−MHC-II+ tumors but not on MHC-I−MHC-II− tumors, in a cytotoxic CD4+ T-cell–dependent manner. Furthermore, LAG-3, which reportedly binds to MHC-II, was highly expressed by tumor-infiltrating CD4+ T cells in MHC-II–expressing tumors. Therefore, the combination of LAG-3 blockade with PD-1 blockade showed a far stronger antitumor immunity compared with either treatment alone. We propose that PD-1 blockade therapies have antitumor effects on MHC-II–expressing tumors such as cHL that are mediated by cytotoxic CD4+ T cells and that LAG-3 could be a candidate for combination therapy with PD-1 blockade.


2007 ◽  
Vol 204 (3) ◽  
pp. 489-495 ◽  
Author(s):  
Tim Worbs ◽  
Thorsten R. Mempel ◽  
Jasmin Bölter ◽  
Ulrich H. von Andrian ◽  
Reinhold Förster

In contrast to lymphocyte homing, little is known about molecular cues controlling the motility of lymphocytes within lymphoid organs. Applying intravital two-photon microscopy, we demonstrate that chemokine receptor CCR7 signaling enhances the intranodal motility of CD4+ T cells. Compared to wild-type (WT) cells, the average velocity and mean motility coefficient of adoptively transferred CCR7-deficient CD4+ T lymphocytes in T cell areas of WT recipients were reduced by 33 and 55%, respectively. Both parameters were comparably reduced for WT T lymphocytes migrating in T cell areas of plt/plt mice lacking CCR7 ligands. Importantly, systemic application of the CCR7 ligand CCL21 was sufficient to rescue the motility of WT T lymphocytes inside T cell areas of plt/plt recipients. Comparing the movement behavior of T cells in subcapsular areas that are devoid of detectable amounts of CCR7 ligands even in WT mice, we failed to reveal any differences between WT and plt/plt recipients. Furthermore, in both WT and plt/plt recipients, highly motile T cells rapidly accumulated in the subcapsular region after subcutaneous injection of the CCR7 ligand CCL19. Collectively, these data identify CCR7 and its ligands as important chemokinetic factors stimulating the basal motility of CD4+ T cells inside lymph nodes in vivo.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 591-591 ◽  
Author(s):  
Patricia Taylor ◽  
Angela Panoskaltsis-Mortari ◽  
Gordon Freeman ◽  
Arlene Sharpe ◽  
Randolph Noelle ◽  
...  

Abstract ICOS, a CD28/CTLA-4 family member, is expressed on activated T cells. ICOS Ligand, a B7 family member, is constitutively expressed on B cells, monocytes and some T cells. Through the use of blocking anti-ICOS mAb and ICOS deficient (−/−) mice, we found that ICOS:ICOSL interactions play an important role in GVHD and BM graft rejection. Anti-ICOS mAb (given d-1 to d28 post BMT) significantly delayed or reduced mortality at 2 different T cell doses in a full MHC-disparate GVHD model. ICOS−/− T cells led to delayed or reduced mortality at 3 different cell doses compared to wild-type T cells. ICOS−/− CD4+ or CD8+ T cells infused into class II- or class I-disparate recipients, respectively, revealed that ICOS:ICOSL interactions regulate both CD4+ and CD8+ T cell alloresponses. Anti-ICOS inhibited GVHD in a CD28-independent fashion. Anti-ICOS inhibited GVHD mediated by either stat 4−/− or stat 6−/− T cells indicating that the ICOS pathway regulates both Th2 and Th1-mediated GVHD. In contrast to blockade of the B7:CD28/CTLA-4, CD40L:CD40 or the OX40:OX40L pathway, anti-ICOS mAb inhibited GVHD even when delayed until d5 post BMT, a time when substantial T cell expansion has occurred. A TCR transgenic model of GVHD was used to further study effects of ICOS:ICOSL blockade. All CB6 F1 recipients of anti-host alloreactive 2C CD8+ and TEa CD4+ T cells succumbed to GVHD mortality by d18 after transfer of cells. In contrast, 88% of anti-ICOS-treated mice survived long-term. Evaluation of spleens early after transplant revealed that anti-ICOS mAb reduced the number of TEa CD4+ cells by 44% and 2C CD8+ cells by 83%. Green fluorescent protein (GFP) 2C CD8+ and GFP TEa CD4+ T cells were infused into irradiated CB6 F1 mice and irrelevant or anti-ICOS mAb was administered. Mice were imaged on d4, 7 and 12 after T cell transfer. By d7, pronounced infiltration of GFP+ cells was noted in the peripheral and mesenteric LN, spleen, Peyer’s patches (PP), skin, gingiva, liver, kidney, lung, ileum, and colon of GVHD control mice. In contrast, there were fewer GFP+ cells in the spleen, ileum, colon, kidney, lung, skin and gingiva of anti-ICOS-treated mice, although there was no decrease in GFP+ cells in LNs or PP. To study the role of host ICOS expression in BM graft rejection, wild-type or ICOS−/− mice were sublethally irradiated and given allogeneic BM and evaluated for donor chimerism at 6 weeks post BMT. Five of 10 wild type mice engrafted (ave − 26% donor) in contrast to all 10 of ICOS−/− mice (ave − 71% donor). Collectively, these data indicate that ICOS:ICOSL interactions play an important role in GVHD, whether mediated by CD4+ Th1 or Th2 T cells or CD8+ T cells. Importantly, blockade of ICOS:ICOSL after initiation of alloresponses inhibited GVHD, in contrast to blockade of other costimulatory pathways, suggesting that the ICOS pathway may be a novel therapeutic target in primed transplantation situations. Anti-ICOS interfered with expansion of donor T cells in the spleen early after transplant and reduced the number of effector cells in several GVHD target tissues. These data suggest this pathway may be indicated for therapeutic targeting for the inhibition of GVHD and BM graft rejection.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 708-708
Author(s):  
Hongwei Wang ◽  
F. Cheng ◽  
K. Wright ◽  
J. Tao ◽  
M. Smith ◽  
...  

Abstract STAT3 signaling has emerged as a negative regulator of inflammatory responses in immune cells. In bone-marrow derived antigen-presenting cells (APCs), genetic or pharmacologic disruption of STAT3 led to inflammatory cells that effectively prime antigen-specific T-cell responses and restore the responsiveness of tolerized T-cells. In contrast, enhanced Stat3 activity in APCs resulted in increased production of the immunosuppressive cytokine IL-10 and induction of T-cell tolerance1. B-cell lymphomas being tumors derived from B-lymphocytes display intrinsic antigen-presenting capabilities. Augmentation of this APC function has been shown to result in effective anti-lymphoma immunity2. In this study we determined whether targeting Stat3 signaling might influence the intrinsic APC function of malignant B-cells and the responsiveness –or not- of antigen-specific CD4+ T-cells. First, we specifically block STAT3 signaling in A20 lymphoma B-cells by using a dominant negative variant of STAT3, Stat3b. Inhibition of STAT3 resulted in tumor cells capable not only of fully priming naïve antigen-specific CD4+T-cells but also able of restoring the responsiveness of tolerant T-cells from lymphoma bearing mice. Conversely, transfection of A20 B-cells with Stat3c, a constitutively activated mutant form of STAT3, led to T-cell unresponsiveness. Of note, manipulation of STAT3 in B cell tumors was associated with changes in the mRNA expression and protein levels of IL-10. Second, we evaluated the effects of two novel Stat3 inhibitors, CPA-7 (a platinum-containing compound that disrupts STAT3 DNA binding activity) and S3I-201 (inhibitor of Stat3:Stat3 complex formation and Stat3 DNA binding and transcriptional activities) in a murine model of Mantle Cell Lymphoma (MCL). In vitro treatment of FC-muMCL1 cells - derived from a tumor elicited in Em-Cyclin D1 transgenic mice- with increasing concentrations of either CPA-7 or S3I-201 resulted in an enhanced presentation of OVA-peptide to naïve CD4+ T-cells specific for a MHC class II restricted epitope of ovalbumin (OT-II cells). Indeed, these T-cells produce higher levels of IL-2 and IFN-gamma compared to anti-OVA T cells that encountered cognate antigen in untreated FC-muMCL1 cells. More importantly, MCL cells treated with CPA-7 restored the responsiveness of tolerized anti-OVA CD4+ T-cells. Finally, in vivo treatment of MCL-bearing mice with CPA-7 (5 mg/kg/iv given on days +21, +24 and +27 after tumor challenge) resulted in significant inhibition of p-Stat3 in malignant B-cells and augmentation of their APC function. Taken together, STAT3 signaling is involved in the regulation of the antigen-presenting capabilities of B-cell lymphomas and as such represents a novel molecular target to augment the immunogenicity of these tumors.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 521-521 ◽  
Author(s):  
Daniel H. Fowler ◽  
Miriam E. Mossoba ◽  
Bazetta Blacklock Schuver ◽  
Paula Layton ◽  
Frances T Hakim ◽  
...  

Abstract Abstract 521 Ex-vivo culture of murine donor CD4+ T cells using rapamycin, co-stimulation, and IL-4 yielded a defined T cell population (T-rapa cells) that favorably modulated the balance between GVHD, graft rejection, and GVT effects. To translate these findings, we conducted a multi-center clinical trial (NCT0074490) to evaluate T-rapa cell therapy after allogeneic HCT. T-rapa cells were manufactured by ex vivo culture of donor CD4+ T cells using CD3/CD28 co-stimulation in media containing IL-4, IL-2, and rapamycin. T-rapa cells had a mixed Th2/Th1 phenotype with minimal Treg content (intra-cellular flow, n=48 products; median transcription factor expression: 11.5% [GATA-3], 5.1% [T-bet], and 0.1% [FoxP3]). Median T-rapa cell cytokine secretion (pg/ml; re-stimulation at harvest) was 1.3 [IL-4], 20.6 [IL-5], 9.7 [IL-10], 23.7 [IL-13], 34.7 [IFN-g], and 17.1 [IL-2]. Patients received an HLA-matched sibling, T cell-replete, G-CSF mobilized allograft, and GVHD prophylaxis of cyclosporine plus short-course sirolimus (to d14 post-HCT). Two protocol arms evaluated T-rapa cell therapy after induction chemotherapy and outpatient, low-intensity preparative chemotherapy (Table I). First, patients (n=25) were accrued to arm A to evaluate T-rapa infusion at d +14 post-HCT; subsequently, accrual was initiated to arm B (n=25) to evaluate T-rapa infusion on d0 of HCT. Arm A was then expanded to n=40 patients. Patients accrued to arms A and B were similar for recipient age, high-risk malignancy diagnosis, chemotherapy refractoriness, and prior regimen number (Table I). Most recipients were not in remission at the time of HCT. High-risk NHL was the most frequent diagnosis (25/65 patients), followed by non-high-risk NHL (11/65), AML/MDS (8/65), myeloma (7/65), CLL (6/65), Hodgkin's disease (5/65), and CML (3/65). Arm A and B recipients had similar mean donor myeloid cell chimerism at d +14, +28, and +100 (arm A, 43%, 74%, and 89%; arm B, 50%, 62%, and 84%). At d +14, arm A and B recipients also had mixed donor T cell chimerism (mean values, 60% in each arm; Table I). At d +28 and +100, T cell chimerism increased in arm A to 80% and 89%; in arm B, these values increased to only 67% and 69%. Four recipients on arm B had < 10% donor T cell chimerism at d +100; in contrast, the lowest donor T cell chimerism value observed at d +100 on arm A was 36%. T-rapa therapy on arm A was relatively safe as there was: no engraftment syndrome, a 10% rate of acute grade II to IV GVHD, a 67% incidence of chronic GVHD, and no transplant-related mortality (Table I). On arm A, 37.5% (15/40) of recipients are in sustained complete remission, with a median survival probability of 63.6% at 24 months post-HCT. Therefore, pre-emptive donor lymphocyte infusion with ex-vivo manufactured T-rapa cells that express a balanced Th2/Th1 effector phenotype represents a novel approach to safely accelerate alloengraftment and harness allogeneic GVT effects after low-intensity conditioning.Table IArm AArm BLow-Intensity Regimen    Induction Chemotherapy1EPOCH-FREPOCH-FR    2Terminal Chemotherapy3Flu (120 mg/m2)EPOCH-FRCy (1200 mg/m2)T-Rapa Cell TimingD +14 post-HCTD 0 of HCTPatient Characteristics    & of Patients Accrued4025    Age (median, range)55 (25–67)51 (32–66)    & of Prior Regimens3 (1–6)3 (1–8)    High-Risk Malignancy65% (26/40)52% (13/25)    Chemotherapy Refractory50% (20/40)48% (12/25)    CR (at time of HCT)25% (10/40)8% (2/25)% Donor T Cell ChimerismMean Median (Range)Mean Median (Range)Day 14 post-HCT6061(8–97)6060(4–100)Day 28 post-HCT8089(27–100)6773(10–100)Day 100 post-HCT8993(36–100)6982(0–100)Clinical Results    Engraftment Syndrome0% (0/40)0% (0/25)    Acute GVHD10% (4/40)23% (5/22)    Chronic GVHD67% (22/33)75% (15/20)    Complete Remission38% (15/40)28% (7/25)    Transplant-related Mortality0% (0/40)0% (0/25)    Percent Survival65% (26/40)40% (10/25)    Median Survival27.5 mo11.2 mo    Survival Prob. at 24 mo63.6%44.0%1EPOCH-FR, EPOCH with fludarabine (Flu) and rituximab.2Terminal (preparative) chemotherapy administered one week prior to HCT.3Flu/Cy [cyclophosphamide] doses are total doses, given over 4 days (Cy dose is 75% lower than 4800 mg/m2 “reduced-intensity” Cy dose). Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 77-77
Author(s):  
Hong Xu ◽  
Jun Yan ◽  
Ziqiang Zhu ◽  
Yiming Huang ◽  
Yujie Wen ◽  
...  

Abstract Abstract 77 Adaptive immunity, especially T cells, has long been believed to be the dominant immune barrier in allogeneic transplantation. Targeting host T cells significantly reduces conditioning for bone marrow cell (BMC) engraftment. Innate immunity has been recently shown to pose a significant barrier in solid organ transplantation, but has not been addressed in bone marrow transplantation (BMT). Using T cell deficient (TCR-β/δ−/−) or T and B cell deficient (Rag−/−) mice, we found that allogeneic BMC rejection occurred early before the time required for T cell activation and was T- and B-cell independent, suggesting an effector role for innate immune cells in BMC rejection. Therefore, we hypothesized that by controlling both innate and adaptive immunity, the donor BMC would have a window of advantage to engraft. Survival of BMC in vivo was significantly improved by depleting recipient macrophages and/or NK cells, but not neutrophils. Moreover, depletion of macrophages and NK cells in combination with co-stimulatory blockade with anti-CD154 and rapamycin as a novel form of conditioning resulted in 100% allogeneic engraftment without any irradiation and T cell depletion. Donor chimerism remained stable and durable up to 6 months. Moreover, specific Vβ5½ and Vβ11 clonal deletion was detected in host CD4+ T cells in chimeras, indicating central tolerance to donor alloantigens. Whether and how the innate immune system recognizes or responds to allogeneic BMCs remains unknown. Toll-like receptors (TLRs) are a class of proteins that play a key role in the innate immune system. The signaling function of TLR depends on intracellular adaptors. The adaptor MyD88 transmits signals emanating from all TLR, except TLR3 while TRIF specifically mediates TLR3 and TLR4 signaling via type 1 IFN. To further determine the innate signaling pathways in allogeneic BMC rejection, B6 background (H2b) MyD88−/− and TRIF−/− mice were conditioned with anti-CD154/rapamycin plus 100 cGy total body irradiation and transplanted with 15 × 106 BALB/c (H2d) BMC. Only 33.3% of MyD88−/− recipients engrafted at 1 month, resembling outcomes for wild-type B6 mice. In contrast, 100% of TRIF−/− mice engrafted. The level of donor chimerism in TRIF−/− mice was 5.1 ± 0.6% at one month, significantly higher than in MyD88−/− and wild-type B6 controls (P < 0.005). To determine the mechanism of innate signaling in BMC rejection, we examined whether TRIF linked TLR3 or TLR4 is the key pattern recognition receptor involved in BMC recognition. To this end, TLR3−/− and TLR4−/− mice were transplanted with BALB/c BMC with same conditioning. None of the TLR3−/− mice engrafted. In contrast, engraftment was achieved in 100% of TLR4−/− mice up to 6 months follow up. Taken together, these results suggest that rejection of allogeneic BMC is uniquely dependent on the TLR4/TRIF signaling pathway. Thus, our results clearly demonstrate a previously unappreciated role for innate immunity in allogeneic BMC rejection. Our current findings are distinct from prior reports demonstrating a critical role of MyD88 in rejection of allogeneic skin grafts and lung, and may reflect unique features related to BMC. The findings of the role of innate immunity in BMC rejection would lead to revolutionary changes in our understanding and management of BMT. This would be informative in design of more specific innate immune targeted conditioning proposals in BMT to avoid the toxicity. Disclosures: Bozulic: Regenerex LLC: Employment. Ildstad:Regenerex LLC: Equity Ownership.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3817-3817
Author(s):  
Hua Jin ◽  
Xiong Ni ◽  
Ruishu Deng ◽  
James Young ◽  
Heather F Johnston ◽  
...  

Abstract We recently reported that in a chronic graft versus host disease (GVHD) model of DBA/2 donor to MHC-matched BALB/c recipient, donor CD4+ T and B cell interaction resulted in not only hyperglobulinemia and glomerulonephritis but also scleroderma (J. Immunol. 2012). It is well known that glomerulonephritis is caused by immune complex deposition. However, the role of antibodies from donor B cells in the pathogenesis of scleroderma remains unclear. To address this question, we generated DBA/2 mice whose B cells have APC function but cannot secrete antibodies by backcrossing IgHµg1 mice from Dr. Rajewsky’s lab (JEM 2007). We observed that, while transplanting T-cell-depleted bone marrow (TCD-BM) and spleen cells from littermate control mice induced proteinuria and scleroderma, transplanting BM and spleen cells from IgHµg1 DBA/2 mice induced no proteinuria, but the recipients developed scleroderma ~35 days after HCT. Interestingly, the scleroderma gradually recovered ~55 days after HCT. 40 days after HCT, scleroderma recipients transplanted with WT spleen cells (Rec-WT) or recipients transplanted with IgHµg1 spleen cells (Rec-IgHµg1) both had high percentage (~12%) of IFN-g+ or IL-17+ CD4+ T cells in the peripheral lymph node (PLN) and skin tissues, as compared to that (~3%) of GVHD-free recipients given TCD-BM alone (Rec-TCD). While Rec-WT had severe reduction of CD4+CD8+ thymocytes, the Rec-IgHµg1 had no reduction of the thymocytes, as compared to that of Rec-TCD. By day 60 after HCT, the Rec-WT with ongoing scleroderma still had ~10% IFN-g+ or IL-17+ CD4+ T cells in the PLN and skin tissues; in contrast, although the Rec-IgHµg1 with reversal of scleroderma still had >10% IFN-g+or IL-17+ CD4+ T cells in the PLN, those cells in the skin had reduced to <2%. This reduction was associated with DC upregulation of B7H1 and T cell upregulation of PD-1. These results suggest that antibodies from B cells are required for maintaining inflammatory status of tissue DCs and persistence of scleroderma in chronic GVHD. (This work was supported by NIH R01 AI066008). Disclosures No relevant conflicts of interest to declare.


2008 ◽  
Vol 76 (8) ◽  
pp. 3628-3631 ◽  
Author(s):  
Sumana Chakravarty ◽  
G. Christian Baldeviano ◽  
Michael G. Overstreet ◽  
Fidel Zavala

ABSTRACT The protective immune response against liver stages of the malaria parasite critically requires CD8+ T cells. Although the nature of the effector mechanism utilized by these cells to repress parasite development remains unclear, a critical role for gamma interferon (IFN-γ) has been widely assumed based on circumstantial evidence. However, the requirement for CD8+ T-cell-mediated IFN-γ production in protective immunity to this pathogen has not been directly tested. In this report, we use an adoptive transfer strategy with circumsporozoite (CS) protein-specific transgenic T cells to examine the role of CD8+ T-cell-derived IFN-γ production in Plasmodium yoelii-infected mice. We show that despite a marginal reduction in the expansion of naive IFN-γ-deficient CS-specific transgenic T cells, their antiparasite activity remains intact. Further, adoptively transferred IFN-γ-deficient CD8+ T cells were as efficient as their wild-type counterparts in limiting parasite growth in naive mice. Taken together, these studies demonstrate that IFN-γ secretion by CS-specific CD8+ T cells is not essential to protect mice against live sporozoite challenge.


Sign in / Sign up

Export Citation Format

Share Document