Human Bone Marrow as a Source of Multifunctional CMV-Specific CD4+ T Cells for Adoptive Cell Therapy.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2973-2973
Author(s):  
Il-Kang Na ◽  
Anne Letsch ◽  
Ines Noack ◽  
Sandra Bauer ◽  
Jens Geginat ◽  
...  

Abstract Introduction Adoptive cell transfer of ex vivo primed and expanded human cytotoxic T lymphocytes (CTLs) has emerged as a promising approach to treat both infectious and malignant diseases in humans. First clinical studies have shown that transfer of Cytomegalovirus (CMV)-specific CD8+ T cells is safe and effective in reconstitution of cellular immunity against CMV disease. Efficacy of adoptive T cell therapy is limited by the numbers of CTLs in vitro and the survival and function after infusion. CD4+ T cells may enhance activity via direct or indirect effector functions (Matloubian 1994 [1]). In this study we have analysed whether bone marrow is superior to peripheral blood for expansion of CMV-specific T cells. Experimental design Paired peripheral blood and bone marrow samples were obtained from patients who underwent total hip arthroplasty. By using two different protocols T cells were expanded in the presence of IL-2 and IL-7 either from bulk culture with exposure of two different peptide pools (IE1 and pp65) or after selection via IFN-γ secretion by stimulation with pp65. CMV specific immune responses were assessed by using multiparameter flow cytometry staining cells for CD3, CD4, CD8, CCR7 and CD45RA and for the cytokines IFN-γ IL-2 and TNF at day 0 and after 10 days of in vitro expansion. Results Similar frequencies of cytokine-producing pp65– and IE1-specific CD4+ and CD8+ T cells were found in unmanipulated paired PB and BM samples. Expansion of CMV-specific T cells from BM resulted in significantly higher frequencies of specific CD4+ T cells than from PB, whereas no difference in frequencies of CMV-specific CD8+ T cells was observed. Interestingly, significantly higher frequencies of BM pp65 and IE1-specific CD4+ T cells were multifunctional, characterized by producing simultaneously IFN-γ, TNF and IL-2 (IE1: BM mean 0.44% ± 0.16; PB mean 0.09% ± 0.05, p=0.031; pp65: BM mean 3.87% ± 2.46; PB mean 1.24% ± 0.90, p=0.031). Expansion of multi-functional CD4+ T cells from BM was observed with both the bulk and selection assay protocol. Both PB and BM CMV-specific CD4+ and CD8+ T cell lines had a predominant CD45RA-CCR7- effector memory phenotype. Conclusions This study implicates the use of human bone marrow as a source for expansion of multifunctional CMV-specific CD4+ T cells. Recent studies in HIV and Leishmania support the crucial role of multifunctional T cells in disease control (Darrah 2007 [2]).

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 206-206 ◽  
Author(s):  
Sonja Schmucker ◽  
Mario Assenmacher ◽  
Jurgen Schmitz ◽  
Anne Richter

Abstract Adoptive transfer of virus-specific T cells is a promising therapy for the treatment of infections in immunocompromised patients. Virus-specific T cells can readily be obtained from antigen-experienced, but not naïve donors. In this study we describe a cell culture system for the in vitro generation of CMV-specific T cells from naive T cells derived from CMV-seronegative donors. We isolated naïve T cells by magnetic depletion of non-T cells, CD25+ regulatory T cells, and CD45RO+ effector and memory T cells from peripheral blood mononuclear cells (PBMC) of CMV-seronegative donors. These naïve T cells were co-cultured with autologous mature monocyte-derived DC (MoDC) loaded with a pool of overlapping peptides from the CMV protein pp65. CD3-depleted autologous PBMC were used as feeder cells and CD28 antibody, IL-2, IL-7, and IL-15 were added to the culture. Already only 9–13 days after starting the priming culture, frequencies of 0.0024% and 0.009% pp65495–503/A2-tetramer+ cells among CD8+ T cells were found for 2 HLA-A2+ blood donors. In contrast pp65495–503/A2-tetramer+ T cells were not detectable when naive T cells were cultured with unpulsed MoDC. Tetramers are suitable tools for the identification of antigen-specific T cells but are restricted to single epitopes of mainly CD8+ T cells. To analyze primed CD4+ T cells as well as CD8+ T cells having specificities other than for the peptide pp65495–503, we looked for upregulation of the activation marker CD137 after a second stimulation and found increased frequencies of CD137+ CD4+ T cells as well as CD137+ CD8+ T cells in the pp65-primed cell cultures only when restimulated with the peptide pool of pp65. Because IFN-γ is important for the control of CMV infection, we studied the capability of the in vitro primed pp65-specific CD4+ and CD8+ T cells to produce this cytokine. Restimulation of the T cells with pp65 peptide pool induced IFN-γ secretion in up to 3.9% of the CD8+ T cells and up to 3.8% of the CD4+ T cells in each of six donors tested. No specific IFN-γ production was detected after restimulation with an irrelevant IE-1 peptide pool. As expected the frequency of pp65-specific T cells in the priming cultures is low. For generation of T cell lines, we magnetically enrich pp65- specific T cells according to their IFN-γ secretion using the cytokine secretion assay technology. After further cultivation for 2 weeks the antigen-specificity of the expanded T cells was again evaluated. Only if restimulated with the pp65 peptide pool 56.6% of the CD4+ T cells showed upregulated expression of the activation marker CD154 (CD40L). Cytokine analysis of the cells revealed IFN-γ production in 40.2% of the CD4+ T cells, of which 36% co-expressed IL-2, indicating the functionality of the in vitro primed and expanded T cells. In conclusion, we established a cell culture system for in vitro priming of CMV-specific CD4+ and CD8+ T cells derived from peripheral blood of donors not infected by CMV. This should extend the application of adoptive T cell therapy to patients for whom immune donors are not available.


1999 ◽  
Vol 189 (7) ◽  
pp. 1073-1081 ◽  
Author(s):  
Defu Zeng ◽  
David Lewis ◽  
Sussan Dejbakhsh-Jones ◽  
Fengshuo Lan ◽  
Marcos García-Ojeda ◽  
...  

Sorted CD4+ and CD8+ T cells from the peripheral blood or bone marrow of donor C57BL/6 (H-2b) mice were tested for their capacity to induce graft-versus-host disease (GVHD) by injecting the cells, along with stringently T cell–depleted donor marrow cells, into lethally irradiated BALB/c (H-2d) host mice. The peripheral blood T cells were at least 30 times more potent than the marrow T cells in inducing lethal GVHD. As NK1.1+ T cells represented <1% of all T cells in the blood and ∼30% of T cells in the marrow, the capacity of sorted marrow NK1.1− CD4+ and CD8+ T cells to induce GVHD was tested. The latter cells had markedly increased potency, and adding back marrow NK1.1+ T cells suppressed GVHD. The marrow NK1.1+ T cells secreted high levels of both interferon γ (IFN-γ) and interleukin 4 (IL-4), and the NK1.1− T cells secreted high levels of IFN-γ with little IL-4. Marrow NK1.1+ T cells obtained from IL-4−/− rather than wild-type C57BL/6 donors not only failed to prevent GVHD but actually increased its severity. Together, these results demonstrate that GVHD is reciprocally regulated by the NK1.1− and NK1.1+ T cell subsets via their differential production of cytokines.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1211-1211
Author(s):  
Ying Qu ◽  
Zhengxu Sun ◽  
Yan Yuan ◽  
Fen Wang ◽  
Kunpeng Wu ◽  
...  

Aplastic anemia (AA) is a hematopoietic disorder resulted from immune-related hypocellular hematopoiesis in bone marrow (BM). It has been clearly addressed that the activated T cells contribute to the exhaustion of hematopoietic progenitors and hypo-hematopoiesis. The adipogenic BM is one of the characteristics to make AA diagnosis. However, little is known about the relationship of intra-BM immune imbalance and hematopoietic microenvironment abnormity in this disease entity. Functional hematopoiesis relies on not only abundant hematopoietic stem cells (HSCs) but also the balanced supportive hematopoietic niche. Intra-BM immune balance, at either cellular or cytokine level, is one of the key footstones to maintain hematopoietic microenvironment. Various intra-BM immune cellular components play both sides of one coin. Among them, myeloid-derived suppressive cells (MDSCs) are heterogeneous myeloid progenitor cells characterized by the negative immune response in cancers and other inflammatory diseases. In BM aspiration and biopsy samples from the patients who were diagnosed as AA in our study, massive activated lymphocytes infiltration and adipocytes accumulation were observed. Interestingly, the absolute numbers of immune modulatory MDSCs either in AA patients' PB or in BM of immune-related AA mice were reduced, indicating a potential link between polarized BM adipo-osteogenic microenvironment and immune disorder under AA circumstance. We thus adopted AA mice model to look into the embedded details both in vivo and in vitro. We clarified that BM components were more vulnerable to the attack of CD8+ T cells than that of CD4+ T cells. Taking into the fact that BM adipocytes are more abundant either in AA patients or in AA mice models, we differentiated mesenchymal stromal cells (MSCs), the major BM stroma cells, into osteoblastic or adipogenic lineages to mimic the osteo-adipogenic differentiation in BM microenvironment. Interestingly, CD8+ T cells and interferon-γ(IFN-γ) exerted dramatically adipocytic stimulation on BM-MSCs either in vitro or in vivo, by determination of increasing expression of adipogenetic genes including Ap2, Perilipin, Pparg and Cebpα, as well as staining of Oil Red O and perilipin. To dissect intra-BM cellular immune balance, MDSCs were isolated as representative immune regulating population to investigate their function on osteo-adipogenic balance. Interestingly, not CD11b+Ly6G+Ly6C-granulocytic-MDSCs (gMDSCs) but CD11b+Ly6G-Ly6C+monocytic-MDSCs (mMDSCs) inhibited both T cell proliferation and IFN-γ production. Addition of L-NMMA, the antagonist of iNOS pathway in mMDSCs-containing system restored T cell proliferative curve and cell numbers, whereas Nor-NOHA, the antagonist of Arg-1 pathway didn't abrogate mMDSCs' immune-regulation properties, indicating that mMDSCs inhibited T cell proliferation via iNOS pathway. We then performed single dose or multi-dose injection of mMDSCs in AA mice to see whether mMDSCs are able to reconstitute the impacted hematopoiesis. Single injection of mMDSCs was able to prevent from CTL infiltration in a very short term. However, multi-injection of mMDSCs showed significant benefit in overall survival rate compared to AA mice. We further detected the function of mMDSCs on polarized BM-MSCs adipo-osteogenic differentiation potential. To detect sequential BM adipogenetic progression in AA microenvironment, we performed in vivo fluorescent microscopy on AP2 (Fabp4)-Cre×mT/mG reporting mice at different transfusion time points of T cells and mMDSCs. GFP-expressing AP2+ adipocytes accumulated adjacently to perivascular niches whose boarders were labelled by Dextran-CY5 in a time-dependent manner after T cell infusion. Monocytic MDSCs transfused AA mice showed decreased GFP+ adipocytes which was coincident with our in vitro findings. In conclusion, intra-BM immune balance is one of the environmental factors seesawing by activating and suppressive ends to support functional hematopoiesis. Adoptive transfusion of mMDSCs, the immune-suppressive population might be a novel immune-regulating strategy to treat AA, relying on not only restoring the intra-BM immune balance but also improving stroma's multi-differentiating microenvironment. Figure Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3161-3161 ◽  
Author(s):  
Greg E. Pietz ◽  
Mark Tometsko ◽  
Wilbert B. Copeland ◽  
Elizabeth Whalen ◽  
Frank Schmitz ◽  
...  

Abstract BACKGROUND: Loss of immune surveillance is critical in the pathogenesis of multiple myeloma (MM) and the progression from smoldering to symptomatic MM. To date, no clear efficacy signal has been observed with programmed-death 1 and programmed death ligand-1 inhibitors in patients with MM. General immune dysfunction in MM is well documented, but the evolving immune landscape in relapsed/refractory MM (RRMM) vs newly diagnosed MM (NDMM) is less well characterized. This study aimed to characterize immune profiles in peripheral blood and bone marrow from patients with NDMM and RRMM. METHODS: Peripheral blood samples were collected from 35 NDMM and 146 RRMM patients and 36 age-matched healthy volunteers (HVs). Cell surface and intracellular antigen staining using fluorochrome labeled antibodies was performed on a BD FACSCanto II flow cytometer. Bone marrow aspirates were collected from 26 NDMM and 73 RRMM patients, and the transcriptome was assessed by mRNA-Seq. RESULTS: In peripheral blood, T-cell populations differed between HVs and NDMM and RRMM patients. Absolute numbers of lymphocytes were higher in HVs than in NDMM and RRMM, regardless of the MM disease state. Absolute numbers of total CD4+ T cells and naïve CD4+ T cells were lower in RRMM patients, whereas CD4+ effector memory T cells as a proportion of total CD4+ T cells were increased in RRMM patients. Blood from RRMM patients also contained increased levels of proliferating CD4+ T cells, as evidenced by Ki67, ICOS, and HLA-DR, compared with blood from NDMM patients; HVs had values much closer to those from NDMM than from RRMM patients, suggesting a trend influenced by disease state or therapeutic intervention. In bone marrow, immunologic gene expression signatures were elevated in NDMM vs RRMM patients; the differences were similar to those in peripheral blood. Using limma to model the differential expression of all measured genes between NDMM and RRMM, we identified 367 genes that were elevated in NDMM patients vs 52 in RRMM patients. Gene set analyses using Molecular Signatures Database immunologic signatures (C7) applied to those 367 genes showed that naïve T-cell genes were increased in the bone marrow of NDMM vs RRMM patients. Gene set enrichment analysis with limma, using 489 gene sets from xCell representing 64 cell types and controlling for differences in tumor burden, indicated that macrophage, monocyte, and neutrophil genes were upregulated and T cells, particularly naïve CD4+ T cells, were downregulated in RRMM patients. Immunohistochemistry results from bone marrow biopsies showed increased programmed death-ligand 1 expression on tumor and infiltrating immune cells and increased CD8 infiltration into bone marrow in RRMM vs NDMM patients. Multiparameter immunofluorescence is underway to confirm these findings and further understand the tumor immune microenvironment in patient subsets. As expected, baseline RRMM immune cell populations depended on prior lines of therapy. Daratumumab-exposed RRMM patients had elevated total CD8+ T cells in peripheral blood but decreased CD38+, CD4+, and CD8+ T cells, as well as decreased total natural killer cells, compared with the daratumumab-naïve patients. Transcriptome analyses of bone marrow from daratumumab-exposed RRMM patients revealed increased T-cell gene expression signatures relative to marrow from daratumumab-naïve patients. Additionally, pomalidomide-exposed RRMM patients had increased activated CD4+ and CD8+ T cells vs pomalidomide-naïve patients. CONCLUSIONS: These data indicate that RRMM patients have peripheral blood and bone marrow environments with highly differentiated T-cell populations, whereas NDMM patients show elevated T-cell levels with proliferative capacity. Furthermore, the bone marrow of RRMM patients is enriched with neutrophils and macrophages; investigation is ongoing to determine if these cell types contribute to an immunosuppressive tumor microenvironment. Understanding immune system function based on disease progression, patient segments, and prior lines of therapy is imperative as treatment of MM improves, and it may inform the administration and sequence of next generation immunotherapeutics and identify predictive biomarkers for optimal treatment selection. Disclosures Pietz: Celgene Corporation: Employment. Tometsko:Celgene Corporation: Employment, Equity Ownership. Copeland:Celgene Corporation: Employment, Equity Ownership. Whalen:Celgene Corporation: Employment, Equity Ownership. Schmitz:Celgene Corporation: Employment, Equity Ownership. Thompson:Celgene Corporation: Employment, Equity Ownership. Agarwal:Celgene Corporation: Employment, Equity Ownership. Foy:Celgene Corporation: Employment, Equity Ownership. Buchholz:Celgene Corporation: Employment. Komashko:Celgene Corporation: Employment. Dell'Aringa:Celgene Corporation: Employment, Equity Ownership. Fox:Celgene Corporation: Employment, Equity Ownership. Newhall:Celgene Corporation: Employment.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2668-2668 ◽  
Author(s):  
Alice Bertaina ◽  
Perla Filippini ◽  
Valentina Bertaina ◽  
Barbarella Lucarelli ◽  
Aurelie Bauquet ◽  
...  

Abstract Background Blinatumomab is a bi-specific monoclonal antibody designed to engage and tether cytotoxic T-cells (CTL) to CD19-expressing target B cells. An ongoing phase I multicenter study in pediatric patients with relapsed/refractory B-cell precursor acute lymphoblastic leukemia (BCP-ALL) has shown that blinatumomab induces morphological and molecular remissions, defined as minimal residual disease (MRD) levels <10-4, in 47% of patients [Gore L, et al. J Clin Oncol 31, 2013 (suppl; abstr 10007)]. It is presently unknown whether and to what extent blinatumomab affects T-cell phenotype and function in pediatric patients with BCP-ALL. Patients and Methods Eight children diagnosed with relapsed/refractory BCP-ALL at the Bambino Gesù Children’s Hospital in Rome (median age at diagnosis 5.8 years, range 0.5-14.6) received blinatumomab as continuous intravenous infusion for 28 consecutive days, followed by a 2-week drug-free period. Four out of 8 patients were given repeated treatment courses. Peripheral blood samples were collected before treatment (day 0) and weekly thereafter, for 4 consecutive weeks. Bone marrow (BM) aspirates were available on days 0 and +29 of each drug course. Peripheral blood mononuclear cells (PBMC) were labeled with appropriate combinations of fluorochrome-conjugated monoclonal antibodies to quantitate naïve/memory T cells, αβ/γδ-expressing T cells and other immune effectors with potential anti-leukemia activity, such as CD3+CD56+ natural killer (NK) T cells and CD3-CD56+ NK cells. T-cell production of interferon (IFN)-γ, interleukin (IL)-4 and IL-17 was measured at the single-cell level, after short-term (4-hour) stimulation with phorbol myristate acetate (PMA) and ionomycin. The TCR-Vβ Repertoire Kit® (Beckman Coulter, Milan, Italy) allowed the flow cytometry analysis of 24 different Vβ specificities on T cells, thus covering approximately 70% of the normal human TCR-Vβ repertoire. Results Peripheral blood lymphocytes reached their nadir on day +1 (median 300/µL of blood [inter-quartile range 40-380] compared with 1,080/µL of blood at baseline [inter-quartile range 360-2,310]; p=0.0037 by Mann-Whitney U test for paired data), expanded within 7 days up to 3.5-fold above baseline, and included both CD4+ and CD8+ T cells. By contrast, the frequency of both CD3+CD56+ NK T cells and CD3-CD56+ NK cells remained unchanged compared to baseline. IFN-γ production by patient-derived CD4+ T cells exceeded that observed in CD4+ T cells from healthy controls by 2-fold, indicating robust T helper type 1 (Th1) polarization. The frequency of Th2/Th17 cells, defined as CD4+IL-4+ and CD4+IL-17+ cells, respectively, was not different after treatment compared to baseline. CD31 expression on recovering CD45RA+ naïve T cells, a surrogate phenotypic feature for recent thymic emigrants (RTEs), suggested that thymic output may contribute to T-cell expansion after blinatumomab administration. Non-significant changes in the relative proportion of TCR-αβ and TCR-γδ-expressing CD3+ T cells were detected after treatment (median 79.5% TCR-αβ+ T cells and 19.3% TCR-γδ+ T cells among total CD3+ cells) compared with baseline (median 87.4% TCR-αβ+ T cells and 12.2% TCR-γδ+ T cells among total CD3+ cells). Importantly, both CD3+CD8bright T cells and NK cells expressed lytic granule proteins, such as perforin and granzyme-B, at levels that increased during treatment. The analysis of Vβ TCR repertoire revealed a restricted usage of single Vβ domains by BM-resident CD8+ T cells, but not by CD4+ T cells. Specifically, the sum of Vβ within CD8+ T cells in the BM averaged 56.7±6.2% after blinatumomab, compared with 78±5.1% in healthy controls (p=0.04; Mann-Whitney U test for unpaired data). Conclusions Blinatumomab expands both CD31+CD45RA+ thymic-naïve and memory T cells with heightened IFN-γ production and is highly effective at clearing MRD in children with BCP-ALL. Skewing of the Vβ repertoire within BM-resident CD8+ T cells may be consistent with clonal expansions. Disclosures: Zugmaier: Amgen: Employment.


2017 ◽  
Vol 3 (2) ◽  
pp. 28
Author(s):  
Desie Dwi Wisudanti

Kefir is a functional foodstuff of probiotics, made from fermented milk with kefir grains containing various types of beneficial bacteria and yeast. There have been many studies on the effects of oral kefir on the immune system, but few studies have shown the effect of bioactive components from kefir (peptides and exopolysaccharides/ kefiran), on immune responses. The purpose of this study was to prove the effect of kefir supernatant from milk goat on healthy immune volunteer response in vitro. The study was conducted on 15 healthy volunteers, then isolated PBMC from whole blood, then divided into 5 groups (K-, P1, P2, P3 and P4) before culture was done for 4 days. The harvested cells from culture were examined for the percentage of CD4+ T cells, CD8+ T cells, IFN-γ, IL-4 using flowsitometry and IL-2 levels, IL-10 using the ELISA method. The results obtained that kefir do not affect the percentage of CD4+ T cells and CD8+ T cells. The higher the concentration of kefir given, the higher levels of secreted IFN- γ and IL-4, but a decrease in IL-2 levels. Significant enhancement occurred at levels of IL-10 culture PBMC given kefir with various concentrations (p <0.01), especially at concentrations of 1%. These results also show the important effects of kefir bioactive components on immune responses. The conclusion of this study is that kefir can improve the immune response, through stimulation of IL-10 secretion in vitro.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 36-36
Author(s):  
Weihong Chen ◽  
Xin Du ◽  
Wenyujing Zhou ◽  
Changru Luo ◽  
Xiaoqing LI

CASE PRESENTATION: A 68-year-old male was diagnosed with CLL/SLL in November 2007. Bone marrow asp/bx: 36.5% lymphocytes, 78% CD19, 65% ATM (11q22 deleted) positive cells, 13.5% D13S25 (13q14.3 deleted). On December 10, 2009, the patient took FCR scheme for five cycles, followed by FR scheme for one cycle, and then a month of Chlorambucil. On September 5, 2013, the patient took BR scheme for four cycles with no effect. From March 2015 to Feb 2016, 420 mg of Ibrutinib was administered daily. On January 15, 2016, the patient developed swollen lymph nodes in his right neck with intermittent lumps, fever and nausea. He was admitted into the hospital at Feb 2, 2016. Test results: multiple swollen superficial lymph nodes over the body, with the biggest measuring 60×30mm on the right neck, with no tenderness. Supplementary tests: peripheral white blood cells (WBC) 11.94×10E9/L, lymphocyte 7.5×10E9/L, CD19 cells 6.73×10E9/L, bone marrow lymphocyte 62%, peripheral blood lymphocyte 52%. Immunophenotype: CD5, CD19, CD20dim, CD23, CD11b dim, HLA-DR expression, visible CD5+CD19+ cell clusters, and visible immunoglobulin cKappa with restricted expression. On March 10, 2016, peripheral blood platelet 60 × 10E9/L, CD19 cells 1.94×10E9/L, lactate dehydrogenase 460U/L, FER 115.6ng/ml, hepatitis B virus carrier. Diagnosis: CLL/SLL IV stage, ATM (11q22) deletion, D13S25 (13q14. 3) positive, CD19 positive. Relapse of CLL/SLL occurred again after four months and at this stage the patient was considered for therapy in a clinical trial of CD19-specific chimeric antigen receptor (CAR-) T cell therapy. Ethical approval and informed consent were obtained for anti-CD19 CAR T Cell treatment of ibrutinib resistance in relapsed/refractory CLL/SLL. We infused autologous T cells transduced with a CAR T 19 retroviral vector with CLL/SLL at doses of 3.3 × 10E8 CART19 cells on Mar. 16 2016. Patients were monitored for responses, toxic effects, and the expansion and persistence of circulating CART19 cells. After CART19 cells were infused, the patient experienced chills, fever, headache, weak, anorexia, nausea, shortness of breath, chest tightness, heart palpitation, hypotension and shock for 9 days. The serum levels of IFN-Υ were at their highest at day 7 after CAR T cells infusion. Serum interleukin 6 (IL-6) was at 680pg/ml and CD3+ cells were 97.5%, CD8+ cells 72.8% (18.7-32.8%), FER was 1529.5ng/ml (Normal No. 22-322ng/ml) 14 days after CAR-T cell infusion. The serum levels of IL-6 were at their highest at day14. The patient was diagnosed as having cytokine release syndrome. After the patient took the anti-IL-6R antibody and anti-TNF antibody, he began to recover gradually. Enlarge lymph nodes shrunk after being infused with CART19 cells for 7 days. The peripheral blood CD19 B lymphocytes were 0 on day 14 after infused with CAR T19 cells. Q-PCR was used to detect the amount of the peripheral blood CART19 cells, which stood at 5485 copies/μl, 924 copies/μl, 191 copies/μl respectively 2 weeks, 6 weeks and 3 months after infusing with CART19 cells. The peripheral blood CART 19 cells were not detectable 4 months after infusing with CART19 cells until present. The lymphadenopathy was decreased gradually after 14 days of infusion. The MRI test showed that lymphadenopathy reduced markedly or disappeared after 6 months of infusion. ATM (11q22 deleted) negative, D13S25 (13q14.3 deleted) negative. After treatment with CAR T 19 cell therapy for 53 months, the patient remained disease-free, the patient's lymph nodes, lymphocytes and I mmunoglobulins were normal. CONCLUSIONS : Cancer immunotherapy as a method of cancer treatment is the most effective after conventional treatments such as radiotherapy, chemotherapy, and surgery. For BTK Inhibitor resistance in relapsed and refractory CD19+ CLL/SLL, CD19 is a favorable target, because the expression of CD19 is limited to B cells and not present in other tissues or cells. Currently, the efficacy of this treatment in treating CLL/SLL remains to be seen. The effects of chemotherapy on the patient's B cell lymphoma are negligible, due to the fact that his CLL/SLL have become relapsed and refractory. As a result we chose the CAR T19 cell therapy genetic engineering technique as a method of treatment, to which the patient has responded well. Therefor, CAR T cell technology overcome the limitations of existing cancer therapies and has great potential for development and application. Disclosures No relevant conflicts of interest to declare.


Author(s):  
Maud Wilhelm ◽  
Amandeep Kaur ◽  
Marion Wernli ◽  
Hans H Hirsch

Abstract Background BK polyomavirus (BKPyV) remains a significant cause of premature kidney transplant failure. In the absence of effective antivirals, current treatments rely on reducing immunosuppression to regain immune control over BKPyV replication. Increasing BKPyV-specific CD8 T cells correlate with clearance of BKPyV DNAemia in kidney transplant patients. We characterized a novel approach for expanding BKPyV-specific CD8 T cells in vitro using 27mer-long synthetic BKPyV peptides, different types of antigen-presenting cells, and CD4 T cells. Methods Langerhans cells and immature or mature monocyte-derived dendritic cells (Mo-DCs) were generated from peripheral blood mononuclear cells of healthy blood donors, pulsed with synthetic peptide pools consisting of 36 overlapping 27mers (27mP) or 180 15mers (15mP). BKPyV-specific CD8 T-cell responses were assessed by cytokine release assays using 15mP or immunodominant 9mers. Results BKPyV-specific CD8 T cells expanded using 27mP and required mature Mo-DCs (P = .0312) and CD4 T cells (P = .0156) for highest responses. The resulting BKPyV-specific CD8 T cells proliferated, secreted multiple cytokines including interferon γ and tumor necrosis factor α, and were functional (CD107a+/PD1–) and cytotoxic. Conclusions Synthetic 27mP permit expanding BKPyV-specific CD8 T-cell responses when pulsing mature Mo-DCs in presence of CD4 T cells, suggesting novel and safe approaches to vaccination and adoptive T-cell therapies for patients before and after kidney transplantation.


1990 ◽  
Vol 172 (4) ◽  
pp. 1065-1070 ◽  
Author(s):  
Y Kawabe ◽  
A Ochi

The cellular basis of the in vitro and in vivo T cell responses to Staphylococcus enterotoxin B (SEB) has been investigated. The proliferation and cytotoxicity of V beta 8.1,2+,CD4+ and CD8+ T cells were observed in in vitro response to SEB. In primary cytotoxicity assays, CD4+ T cells from control spleens were more active than their CD8+ counterparts, however, in cells derived from SEB-primed mice, CD8+ T cells were dominant in SEB-specific cytotoxicity. In vivo priming with SEB abrogated the response of V beta 8.1,2+,CD4+ T cells despite the fact that these cells exist in significant number. This SEB-specific anergy occurred only in V beta 8.1,2+,CD4+ T cells but not in CD8+ T cells. These findings indicate that the requirement for the induction of antigen-specific anergy is different between CD4+ and CD8+ T cells in post-thymic tolerance, and the existence of coanergic signals for the induction of T cell anergy is suggested.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 455-455 ◽  
Author(s):  
Federico Mingozzi ◽  
Marcela V. Maus ◽  
Denise E. Sabatino ◽  
Daniel J. Hui ◽  
John E.J. Rasko ◽  
...  

Abstract Efforts to establish an adeno-associated viral (AAV) vector-mediated gene therapy for the treatment of hemophilia B have been hindered by an immune response to the viral capsid antigen. Preclinical studies in small and large animal models of the disease showed long-term factor IX (F.IX) transgene expression and correction of the phenotype. However, in a recent phase I/II clinical trial in humans (Manno et al., Nat. Med. 2006), after hepatic gene transfer with an AAV-2 vector expressing human F.IX transgene, expression lasted for only a few weeks, declining to baseline concurrently with a peak in liver enzymes. We hypothesized that T cells directed towards AAV capsid antigens displayed by transduced hepatocytes were activated and these mediated destruction of the transduced hepatocytes, thereby causing loss of transgene expression and a transient transaminitis. Peripheral blood mononuclear cells isolated from AAV-infused subjects were stained with an AAV capsid-specific MHC class I pentamer either directly or after in vitro expansion. Two weeks after vector infusion 0.14% of circulating CD8+ T cells were capsid-specific on direct staining, and five weeks after infusion the capsid-specific population had expanded to 0.5% of the circulating CD8+ T cells, indicating proliferation of this T cell subset. By 20 weeks after vector infusion, the capsid-specific CD8+ T cell population had contracted to the level seen at 2 weeks. The expansion and contraction of this capsid-specific CD8+ T cell population paralleled the rise and fall of serum transaminases in the subject observed. Subsequent ex vivo studies of PBMC showed the presence of a readily expandable pool of capsid-specific CD8+ T cells up to 2.5 years post vector-infusion. Similarly, we were able to expand AAV-specific CD8+ T cells from peripheral blood of normal donors, suggesting the existence of a T cell memory pool. Expanded CD8+ T cells were functional as evidenced by specific lysis of HLA-matched target cells and by IFN-γsecretion in response to AAV epitopes. It has been argued that potentially harmful immune responses could be avoided by switching AAV serotypes, however, capsid protein sequences are highly conserved among different serotypes, as are some immunodominant epitopes that we identified. Indeed, we demonstrated that capsid-specific CD8+ T cells from AAV-infused hemophilic subjects functionally cross-react with AAV-8. Moreover, cells expanded from normal donors with AAV-2 vector capsids proliferated upon culture with AAV-8 capsids, demonstrating that both vectors could be processed appropriately in vitro to present the epitopic peptide to capsid-specific T cells. This suggests that AAV-2-specific memory CD8+ T cells normally present in humans likely would expand upon exposure to AAV-8 capsid epitopes. We conclude that the use of immunomodulatory therapy may be a better approach to achieving durable transgene expression in the setting of AAV-mediated gene therapy.


Sign in / Sign up

Export Citation Format

Share Document