Invariant NKT Cells Regulate Osteoclast Development and Function Under Homeostatic and during Conditions of Immune Activation

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 104-104
Author(s):  
Ming Hu ◽  
J.H. Duncan Basssett ◽  
Lynette Danks ◽  
Emmanouil Spanoudakis ◽  
Ke Xu ◽  
...  

Abstract Invariant NKT cells, a small subset of immunoregulatory T cells restricted by the glycolipid-presenting non-polymorphic CD1d molecule, are able to modulate a variety of innate and adaptive immune responses. Osteoclasts (OC) are bone resorbing polykaryons of hematopoietic lineage, that have the capacity to regulate myeloid cell egress from bone marrow (BM) thus making them an integral part of the innate immune response. We and others previously showed that NKT cells regulate hematopoiesis in mice as well as humans. In this work, we investigate the role of NKT cells in OC development and function in homeostasis and after their specific activation by the model glycolipid alpha-galactosylceramide (aGC). Using quantitative back scattered electron scanning microscopy, we found that TCR Ja18 −/− mice which selectively lack development of NKT cells, exhibit a moderate osteopetrotic phenotype affecting trabecular as well as cortical bone. Histologically, these mice had the same number of TRAP+ OC as WT mice suggesting a maturation rather developmental defect in the TCR Ja18 −/−-derived OC. In vitro differentiation in the presence of RANKL and M-CSF showed that while TCR Ja18 −/− BM cells are capable of forming multinucleated OC, these, as assessed by confocal microscopy, fail to form F-actin rings and sealing zone and thus are unable to resorb bone. Further underscoring the effect of NKT cells in this process, CD45.1+ BM cells highly purified from CD45.2+ WT/CD45.1+ TCRJa18 −/− mixed BM chimeras displayed restoration of their OC F-actin rings. Next we investigated whether in vivo activated NKT cells regulate OC function. We found that a single injection of aGC dramatically increased the number of CD3-B220-CD11b-c-fmshighc- kithigh BM OC progenitors and accelerated the in vitro development of OC in WT but not TCR Ja18 −/− mice. Furthermore, this resulted in high serum levels of IFN-g and IL-4 but not IL-1 or IL-17. An aGC-mediated increase of OC progenitors was observed in IFN-g −/− but not IL-4 −/−mice suggesting that NKT cell-derived IL-4 is the main cytokine promoting osteoclastogenesis in this context. Taken together, our data demonstrate a novel role of NKT cells in homeostatic bone mass regulation and in the orchestration of innate immune responses through regulation of OC development and function.

2020 ◽  
Vol 11 ◽  
Author(s):  
Imran Ahmad ◽  
Araceli Valverde ◽  
Raza Ali Naqvi ◽  
Afsar R. Naqvi

Macrophages (Mφ) are immune cells that exhibit remarkable functional plasticity. Identification of novel endogenous factors that can regulate plasticity and innate immune functions of Mφ will unravel new strategies to curb immune-related diseases. Long non-coding RNAs (lncRNAs) are a class of endogenous, non-protein coding, regulatory RNAs that are increasingly being associated with various cellular functions and diseases. Despite their ubiquity and abundance, lncRNA-mediated epigenetic regulation of Mφ polarization and innate immune functions is poorly studied. This study elucidates the regulatory role of lncRNAs in monocyte to Mφ differentiation, M1/M2 dichotomy and innate immune responses. Expression profiling of eighty-eight lncRNAs in monocytes and in vitro differentiated M2 Mφ identified seventeen differentially expressed lncRNAs. Based on fold-change and significance, we selected four differentially expressed lncRNAs viz., RN7SK, GAS5, IPW, and ZFAS1 to evaluate their functional impact. LncRNA knockdown was performed on day 3 M2 Mφ and the impact on polarization was assessed on day 7 by surface marker analysis. Knockdown of RN7SK and GAS5 showed downregulation of M2 surface markers (CD163, CD206, or Dectin) and concomitant increase in M1 markers (MHC II or CD23). RN7SK or GAS5 knockdown showed no significant impact on CD163, CD206, or CD23 transcripts. M1/M2 markers were not impacted by IPW or ZFAS1 knockdown. Functional regulation of antigen uptake/processing and phagocytosis, two central innate immune pathways, by candidate lncRNA was assessed in M1/M2 Mφ. Compared to scramble, enhanced antigen uptake and processing were observed in both M1/M2 Mφ transfected with siRNA targeting GAS5 and RN7SK but not IPW and ZFAS1. In addition, knockdown of RN7SK significantly augmented uptake of labelled E. coli in vitro by M1/M2 Mφ, while no significant difference was in GAS5 silencing cells. Together, our results highlight the instrumental role of lncRNA (RN7SK and GAS5)-mediated epigenetic regulation of macrophage differentiation, polarization, and innate immune functions.


2020 ◽  
Author(s):  
Srinivasu Mudalagiriyappa ◽  
Jaishree Sharma ◽  
Hazem F. M. Abdelaal ◽  
Thomas C. Kelly ◽  
Woosuk Choi ◽  
...  

AbstractNon-Tuberculous Mycobacteria (NTM) are ubiquitous in nature, present in soil and water, and cause primary leading to disseminated infections in immunocompromised individuals. NTM infections are surging in recent years due to an increase in an immune-suppressed population, medical interventions, and patients with underlying lung diseases. Host regulators of innate immune responses, frontiers for controlling infections and dissemination, are poorly defined during NTM infections. Here, we describe the role of CBLB, an E3-ubiquitin ligase, for innate immune responses and disease progression in a mouse model of NTM infection under compromised T-cell immunity. We found that CBLB thwarted NTM growth and dissemination in a time- and infection route- dependent manner. Mechanistically, we uncovered defects in many innate immune cells in the absence of Cblb, including poor responses of NK cells, inflammatory monocytes, and conventional dendritic cells. Strikingly, Cblb-deficient macrophages were competent to control NTM growth in vitro. Histopathology suggested the lack of early formation of granulomatous inflammation in the absence of CBLB. Collectively, CBLB is essential to mount productive innate immune responses and help prevent the dissemination during an NTM infection under T-cell deficiency.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Shuang Wang ◽  
Xueyang Zou ◽  
Yi Zhang ◽  
Xiaoya Wang ◽  
Wei Yang ◽  
...  

Regulatory T cells (Tregs), as an important subset of T cells, play an important role in maintaining body homeostasis by regulating immune responses and preventing autoimmune diseases. In-depth research finds that Tregs have strong instability and plasticity, and according to their developmental origin, Tregs can be classified into thymic-derived Tregs (tTregs), endogenous-induced Tregs (pTregs), which are produced by antigen-stimulated T cells in the periphery in vivo, and induced Tregs (iTregs), which differentiate from naïve T cells in vitro. In recent years, studies have found that Tregs are divided into lymphatic and tissue-resident Tregs according to their location. Research on the generation and function of lymphoid Tregs has been more comprehensive and thorough, but the role of tissue Tregs is still in the exploratory stage, and it has become a research hot spot. In this review, we discuss the instability and plasticity of Tregs and the latest developments of tissue-resident Tregs in the field of biology, including adipose tissue, colon, skeletal muscle, and other Tregs that have been recently discovered as well as their production, regulation, and function in specific tissues and their role in the pathogenesis of autoimmune diseases.


2011 ◽  
Vol 204 (7) ◽  
pp. 1104-1114 ◽  
Author(s):  
Juliene G. Co ◽  
Kenneth W. Witwer ◽  
Lucio Gama ◽  
M. Christine Zink ◽  
Janice E. Clements

Genes ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 133
Author(s):  
Simone Johansen ◽  
Sofie Traynor ◽  
Malene Laage Ebstrup ◽  
Mikkel Green Terp ◽  
Christina Bøg Pedersen ◽  
...  

The transcription factor ZBED1 is highly expressed in trophoblast cells, but its functions in the processes of trophoblast and placental biology remain elusive. Here, we characterized the role of ZBED1 in trophoblast cell differentiation using an in vitro BeWo cell model. We demonstrate that ZBED1 is enhanced in its expression early after forskolin-induced differentiation of BeWo cells and regulates many of the genes that are differentially expressed as an effect of forskolin treatment. Specifically, genes encoding markers for the differentiation of cytotrophoblast into syncytiotrophoblast and factors essential for trophoblast cell fusion and invasion were negatively regulated by ZBED1, indicating that ZBED1 might be important for maintaining a steady pool of cytotrophoblast cells. In addition, ZBED1 affected genes involved in the regulation of trophoblast cell survival and apoptosis, in agreement with the observed increase in apoptosis upon knockdown of ZBED1 in forskolin-treated BeWo cells. In addition, genes implicated in the differentiation, recruitment, and function of innate immune cells by the placenta were affected by ZBED1, further suggesting a role for this protein in the regulation of maternal immune tolerance. In conclusion, our study implicates ZBED1 in major biological processes of placental biology.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1274-1274
Author(s):  
Gernot Schabbauer ◽  
Nikolina Papac-Milicevic ◽  
Pavel Uhrin ◽  
Bernd Binder

Abstract Sepsis is still a major burden for the society with a high incidence of morbidity and mortality each year. Molecular mechanisms underlying the systemic inflammatory response syndrome (SIRS) associated with sepsis are still ill defined and most therapies developed to target the acute inflammatory component of the disease are insufficent. Recently the role of nuclear receptors (NRs) in transcriptional regulation of inflammatory processes became a major topic of interest. Nuclear receptors, such as the peroxisome proliferators-activated receptors (PPARs), have been found to exert anti-inflammatory properties by interfering with the NFkB pathway. We are interested in the nuclear envelope protein, interferon stimulated gene 12 (ISG12), which directly interacts with NRs. ISG12 is a co-factor stimulating nuclear export of NRs, thereby reducing the anti-inflammatory potential of NRs such as PPARg or NR4A1. To examine the role of ISG12 in acute inflammation we generated ISG12 deficient mice. We can demonstrate by reverse genetics in ISG12 deficient mice that lack of ISG12 is beneficial in experimental sepsis and endotoxemia. Furthermore we can show that several acute inflammatory parameters, such as systemic IL6 cytokine levels, are downregulated in septic ISG12-/- animals. Consistently, similar results could be obtained in in vitro experiments in peritoneal macrophages derived from ISG12 deficient mice. In contrast, mice deficient for the nuclear receptor NR4A1 exhibited an exacerbated innate immune response and showed a significantly higher mortality after lethal septic challenge. This dramatic phenotype could be restored in ISG12/NR4A1 double deficient mice. We conclude from our data in vitro and in vivo that ISG12 is a novel modulator of innate immune responses regulating anti-inflammatory nuclear receptors such as NR4A1.


1999 ◽  
Vol 81 (06) ◽  
pp. 951-956 ◽  
Author(s):  
J. Corral ◽  
R. González-Conejero ◽  
J. Rivera ◽  
F. Ortuño ◽  
P. Aparicio ◽  
...  

SummaryThe variability of the platelet GP Ia/IIa density has been associated with the 807 C/T polymorphism (Phe 224) of the GP Ia gene in American Caucasian population. We have investigated the genotype and allelic frequencies of this polymorphism in Spanish Caucasians. The T allele was found in 35% of the 284 blood donors analyzed. We confirmed in 159 healthy subjects a significant association between the 807 C/T polymorphism and the platelet GP Ia density. The T allele correlated with high number of GP Ia molecules on platelet surface. In addition, we observed a similar association of this polymorphism with the expression of this protein in other blood cell types. The platelet responsiveness to collagen was determined by “in vitro” analysis of the platelet activation and aggregation response. We found no significant differences in these functional platelet parameters according to the 807 C/T genotype. Finally, results from 3 case/control studies involving 302 consecutive patients (101 with coronary heart disease, 104 with cerebrovascular disease and 97 with deep venous thrombosis) determined that the 807 C/T polymorphism of the GP Ia gene does not represent a risk factor for arterial or venous thrombosis.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 931
Author(s):  
Mayra M. Ferrari Ferrari Barbosa ◽  
Alex Issamu Kanno ◽  
Leonardo Paiva Farias ◽  
Mariusz Madej ◽  
Gergö Sipos ◽  
...  

Innate immune cells such as monocytes and macrophages are activated in response to microbial and other challenges and mount an inflammatory defensive response. Exposed cells develop the so-called innate memory, which allows them to react differently to a subsequent challenge, aiming at better protection. In this study, using human primary monocytes in vitro, we have assessed the memory-inducing capacity of two antigenic molecules of Schistosoma mansoni in soluble form compared to the same molecules coupled to outer membrane vesicles of Neisseria lactamica. The results show that particulate challenges are much more efficient than soluble molecules in inducing innate memory, which is measured as the production of inflammatory and anti-inflammatory cytokines (TNFα, IL-6, IL-10). Controls run with LPS from Klebsiella pneumoniae compared to the whole bacteria show that while LPS alone has strong memory-inducing capacity, the entire bacteria are more efficient. These data suggest that microbial antigens that are unable to induce innate immune activation can nevertheless participate in innate activation and memory when in a particulate form, which is a notion that supports the use of nanoparticulate antigens in vaccination strategies for achieving adjuvant-like effects of innate activation as well as priming for improved reactivity to future challenges.


2021 ◽  
Author(s):  
Fabrice Cognasse ◽  
Kathryn Hally ◽  
Sebastien Fauteux-Daniel ◽  
Marie-Ange Eyraud ◽  
Charles-Antoine Arthaud ◽  
...  

AbstractAside from their canonical role in hemostasis, it is increasingly recognized that platelets have inflammatory functions and can regulate both adaptive and innate immune responses. The main topic this review aims to cover is the proinflammatory effects and side effects of platelet transfusion. Platelets prepared for transfusion are subject to stress injury upon collection, preparation, and storage. With these types of stress, they undergo morphologic, metabolic, and functional modulations which are likely to induce platelet activation and the release of biological response modifiers (BRMs). As a consequence, platelet concentrates (PCs) accumulate BRMs during processing and storage, and these BRMs are ultimately transfused alongside platelets. It has been shown that BRMs present in PCs can induce immune responses and posttransfusion reactions in the transfusion recipient. Several recent reports within the transfusion literature have investigated the concept of platelets as immune cells. Nevertheless, current and future investigations will face the challenge of encompassing the immunological role of platelets in the scope of transfusion.


Sign in / Sign up

Export Citation Format

Share Document