Effect of Prior Rituximab on Residence Time of I131 Tositumomab Consolidation Therapy in Patients (pts) with Non Hodgkin’s Lymphoma (NHL): Analysis of SWOG Clinical Trials.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2000-2000
Author(s):  
Julia Schaefer-Cutillo ◽  
Vaseem Chengazi ◽  
Derick R Peterson ◽  
David G. Maloney ◽  
Kevin Kibler ◽  
...  

Abstract Backround: Anti CD-20 radioimmunotherapy (RIT) is effective therapy for indolent B-cell NHL, and under investigation in more aggressive histologies. Most data on safety and efficacy of RIT is from the pre-rituximab era, and the effect of rituximab exposure on RIT in pts with NHL is unknown. Gopal et al recently demonstrated that exposure to rituximab correlated with inferior tumor response and alteration in tumor: organ dosimetry ratio both in vitro and in mouse models following therapy with iodine-131 tositumomab (Blood 112:830). Two ongoing SWOG trials evaluating RIT consolidation therapy provide a unique opportunity to evaluate the impact of prior rituximab on pharmacodynamics of iodine-131 tositumomab in humans. S0016 enrolls previously untreated pts with follicular NHL, and iodine-131 tositumomab consolidation is administered after 6 cycles of CHOP. S0433 enrolls previously untreated pts with DLBCL, and iodine-131 tositumomab is administered after 6 cycles of CHOP with rituximab, and 2 additional cycles of CHOP alone. As rituximab leads to B-cell depletion for 6 months or more, we hypothesized the residence time of iodine-131 tositumomab would differ in pts exposed recently to rituximab compared to no prior rituximab. Methods: Prospective pts at the University of Rochester enrolled in S0016 and S0433 were analyzed. Residence times of iodine-131 tositumomab were calculated using serial imaging on a Picker XP 2000 gamma camera. Rituximab levels were performed within one week prior to dosimetric iodine-131 tositumomab administration using ELISA. Medians were used to summarize the data, and the 2-tailed Mann-Whitney-Wilcoxon test was used for hypothesis testing. Results: 16 pts (6 female) on S0016 and 12 pts (6 female) on S0433, were identified, with median ages of 54.5 and 69.5 respectively. All pts had advanced stage disease, and median BMI and creatinine were similar for both groups. Pts on S0433 had a median time from rituximab to RIT of 78.6 days (range 58–98 days). Despite this, rituximab levels were present at time of iodine-131 tositumomab in all pts measured (N=9; median rituximab level 37.2 ug/ml, range 15.6–61.69). Median absolute lymphocyte count appeared lower in the S0433 group compared to the S0016 group (600 vs 1050 /ul), but this difference was not significant (p=0.12). Pts on S0433 (all had received rituximab prior to iodine-131 tositumomab consolidation) had significantly longer RIT residence times when compared to those on S0016, (not treated with prior rituximab): 115 hours vs. 107 hours; p=0.02. Therapeutic doses of iodine-131 tositumomab were not significantly different between the two studies (S0433: 72 mCi vs. S00016: 78 mCi p=0.59). Conclusions: Our results indicate that prior therapy with rituximab results in a longer residence time of iodine-131 tositumomab when used as consolidation after chemotherapy. Measurable rituximab levels at time of RIT suggest that rituximab-induced B-cell depletion decreases clearance of RIT, possibly allowing for longer exposure times. The significance of this longer residence time is unknown but it could be associated with greater toxicity to normal organs, and could be indicative of decreased tumor binding. If confirmed in larger studies, these findings could have profound implications on RIT administration in the context of rituximab. Rituximab-induced B-cell depletion could obligate the need for unlabeled antibody dosing prior to RIT, and may affect dosimetry of RIT. Prospective studies of RIT in the rituximab era should evaluate the impact of prior rituximab and RIT residence time on toxicities and outcomes in pts treated with RIT.

PLoS ONE ◽  
2011 ◽  
Vol 6 (9) ◽  
pp. e25789 ◽  
Author(s):  
Zania Stamataki ◽  
Samantha Tilakaratne ◽  
David H. Adams ◽  
Jane A. McKeating

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1765-1765 ◽  
Author(s):  
Sylvia Herter ◽  
Idit Sagiv-Barfi ◽  
Cariad Chester ◽  
Mohith Sadaram ◽  
Jonathan Hebb ◽  
...  

Abstract Introduction: Kohrt et al., Blood, 2014 demonstrated that ibrutinib antagonizes ADCC function of rituximab in vitro in ADCC assays and in vivo in the DHL-4 xenograft model through inhibition of FcgammaR signaling in immune effector cells, possibly mediated by inhibition of ITK. Obinutuzumab (GA101) is a glycoengineered type II CD20 antibody that mediates higher direct cell death induction than rituximab, and by being glycoengineered mediates enhanced induction of ADCC and ADCP. Here we aimed to investigate the impact of ibrutinib on the immune effector function of obinutuzumab as compared to rituximab. Experimental methods: The impact of ibrutinib (dose range 30, 100, 300 ng/ml to cover Cmax and Ctrough in patients) on NK cell mediated ADCC induction by obinutuzumab and rituximab was investigated using SU-DHL4 and Z138 cells as targets in LDH and chromium release assays or measuring CD16 downmodulation and the degranulation marker CD107a. IFNg release as a surrogate for NK cell activation was investigated using DHL-4 target cells or an autologous in vitro system using leukemic cells derived from CLL/NHL patients. Depletion of CD19 positive B-cells was determined in whole blood from healthy volunteers in flow cytometry-based whole blood assay. In vivo the combination of obinutuzumab or rituximab (10 mg/kg once weekly for 3 weeks) with ibrutinib (25mg/kg BID days 14-28) was investigated in the DHL-4 xenograft model. Results: In ADCC assays, ibrutinib (dose range 30, 100, 300 ng/ml) resulted in a reduction of the ADCC potency of obinutuzumab and rituximab. However, at saturating antibody concentrations of 10 ug/ml, ADCC mediated by obinutuzumab was retained while ADCC mediated by rituximab was strongly reduced as measured by chromium release (Figure 1A). Interestingly, in the whole blood B cell depletion assay only little impact of ibrutinib on obinutuzumab-mediated B cell depletion in terms of EC50 and maximal killing was observed at clinically meaningful concentrations of ibrutinib (30, 100, 300 ng/ml), while the activity of rituximab could be completely abolished with 300 ng/ml ibrutinib (Figure 1B). Notably, control experiments using an effector dead version of obinutuzmab that cannot any longer mediate ADCC or ADCP demonstrate that the retained B cell depletion by obinutuzumab in presence of ibrutinib is not due to direct cell death induction, but also due to immune effector cell mediated function (ADCC and ADCP). In the DHL-4 xenograft model where ibrutinib as a single agent has no anti-tumoral efficacy, the combination resulted in a reduced anti-tumoral efficacy of rituximab, whereas efficacy of obinutuzumab was not affected (Figure 1C). Conclusions: Surprisingly, we found that the inhibitory effect of ibrutinib on the immune effector mediated activity of obinutuzumab is not observed when compared to rituximab. Most notably, ADCC at saturating antibody doses, whole blood B cell depletion and in vivo efficacy of obinutuzumab were retained in presence of clinically relevant concentrations of ibrutinib covering Cmax and Ctrough levels, whereas the activity of rituximab was almost completely abolished under these conditions. We hypothesize that the differential behavior of obinutuzumab and rituximab may be related to the enhanced FcgRIII affinity and stronger FcgRIII signaling activation mediated by obinutuzumab as a consequence of glycoengineering that may subsequently overwrite inhibitory effects of ibrutinib. While the clinical relevance of the observed preclinical antagonism for the combination of rituximab with ibrutinib still needs further clinical investigation, these preclinical data strongly support the clinical investigation of ibrutinib in combination with the glycoengineered Type II CD20 antibody obinutuzumab for the treatment of chronic lymphocytic leukemia and other B-cell malignancies. Figure 1 Figure 1. Disclosures Herter: Roche: Employment. Bacac:Roche: Employment. Umana:Roche: Employment. Klein:Roche: Employment, Equity Ownership, Patents & Royalties.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3726-3726
Author(s):  
Jutta Deckert ◽  
Sharon Chicklas ◽  
Yong Yi ◽  
Min Li ◽  
Jan Pinkas ◽  
...  

Abstract Abstract 3726 CD37 is a B-cell surface antigen which is widely expressed on malignant B cells in non-Hodgkin's lymphoma (NHL) and chronic lymphocytic leukemia (CLL). In normal tissues CD37 expression is limited to blood cells and lymphoid tissues. This restricted expression profile makes CD37 an attractive therapeutic target for antibodies and antibody-drug conjugates. We developed a novel anti-CD37 antibody, K7153A, which provides a unique combination of functional properties: it demonstrated strong pro-apoptotic and direct cell killing activity against NHL cell lines and could mediate effector activity such as CDC and ADCC. The antibody-maytansinoid conjugate, IMGN529, was produced by conjugation of K7153A with the potent maytansinoid, DM1, via the non-cleavable linker, SMCC. The direct cytotoxic potency of the K7153A antibody was superior to that of the CD20-directed rituximab and was further enhanced with maytansinoid conjugation in IMGN529. In vivo, IMGN529 demonstrated better anti-tumor activity than the K7153A antibody in established subcutaneous follicular lymphoma (FL), diffuse large B-cell lymphoma (DLBCL), and CLL xenograft models in SCID mice. A single administration of IMGN529 showed similar or improved efficacy compared to anti-CD20 antibodies or standard chemotherapy where tested. Immunohistochemical (IHC) staining of formalin fixed paraffin-embedded (FFPE) NHL tissue sections was performed to evaluate CD37 expression. CD37 exhibited a similar prevalence to CD20 in subtypes of NHL such as FL, DLBCL, Burkitt's lymphoma (BL) and mantle cell lymphoma (MCL). B-cell depletion is an important measure of efficacy for targeted therapies, such as CD20-directed antibodies, in B-cell malignancies. CD37 expression in blood cells from healthy human donors was measured by quantitative flow cytometry in comparison to CD20. The greatest CD37 expression was found in B cells at approximately 77,000 antibodies bound per cell (ABC), which was similar to CD20 expression in B cells at 95,000 ABC. In other blood cell types CD37 staining was seen at low levels, about 2,000 – 5,000 ABC, in monocytes, NK cells and T cells. In vitro depletion experiments were performed with purified peripheral blood mononuclear cells (PBMCs) and with whole blood, both derived from several healthy donors. Cells were incubated for 1 hr with 10 μg/mL of either K7153A, IMGN529, CD37-targeting TRU-016, rituximab or the anti-CD52 antibody alemtuzumab, with cell depletion determined relative to counting beads by flow cytometry. The K7153A antibody and the IMGN529 conjugate efficiently and specifically depleted B-cells in a dose-dependent manner in the context of purified PBMCs and whole blood. With purified PBMCs, both K7153A and IMGN529 caused 50–60% depletion of B cells, with little to no depletion of T cells or monocytes. IMGN529 was more potent than rituximab, which led to 30–40% B-cell depletion, or TRU-016, which caused 20–30% B-cell depletion. IMGN529 also was more specific than alemtuzumab, which depleted T-cells and monocytes as well as B cells. With whole blood samples, both K7153A and IMGN529 resulted in 30–40% B-cell depletion with no effect on T cells, NK cells or monocytes. IMGN529 was again more potent than rituximab or TRU-016, which caused approximately 10% B-cell depletion, and was more specific than alemtuzumab, which depleted the majority of T cells in addition to 40% of B cells. IMGN529 embodies a unique B-cell targeted agent as it combines the intrinsic pro-apoptotic, CDC and ADCC activities of its anti-CD37 antibody component with the potent cytotoxic mechanism provided by the targeted delivery of its maytansinoid payload. It is highly active in vitro and in vivo against B-cell lymphoma and CLL cell lines. In addition, it mediates specific B-cell depletion in vitro that is greater than B-cell depletion by CD20-directed rituximab. Together, these findings indicate that IMGN529 is a promising therapeutic candidate for the treatment of B-cell malignancies. Disclosures: Deckert: ImmunoGen, Inc.: Employment. Chicklas:ImmunoGen, Inc.: Employment. Yi:ImmunoGen, Inc.: Employment. Li:ImmunoGen, Inc.: Employment. Pinkas:ImmunoGen, Inc.: Employment. Chittenden:ImmunoGen, Inc.: Employment. Lutz:ImmunoGen, Inc.: Employment. Park:ImmunoGen, Inc.: Employment.


Blood ◽  
2010 ◽  
Vol 116 (24) ◽  
pp. 5181-5190 ◽  
Author(s):  
Henrik E. Mei ◽  
Daniela Frölich ◽  
Claudia Giesecke ◽  
Christoph Loddenkemper ◽  
Karin Reiter ◽  
...  

AbstractThe anti-CD20 antibody rituximab depletes human B cells from peripheral blood, but it remains controversial to what extent tissue-resident B cells are affected. In representative patients with rheumatoid arthritis, we here demonstrate that recently activated presumably short-lived plasmablasts expressing HLA-DRhigh and Ki-67 continuously circulate in peripheral blood after B-cell depletion by rituximab at 26%-119% of their initial numbers. They circulate independent of splenectomy, express immunoglobulin A (IgA), β7 integrin, and C-C motif receptor 10 (CCR10) and migrate along CCL28 gradients in vitro, suggesting their mucosal origin. These plasmablasts express somatically hypermutated VH gene rearrangements and spontaneously secrete IgA, exhibiting binding to microbial antigens. Notably, IgA+ plasmablasts and plasma cells were identified in the lamina propria of patients treated with rituximab during peripheral B-cell depletion. Although a relation of these “steady state”–like plasmablasts with rheumatoid arthritis activity could not be found, their persistence during B-cell depletion indicates that their precursors, that is, B cells resident in the mucosa are not deleted by this treatment. These data suggest that a population of mucosal B cells is self-sufficient in adult humans and not replenished by CD20+ B cells immigrating from blood, lymphoid tissue, or bone marrow, that is, B cells depleted by rituximab.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2769-2769
Author(s):  
Justine Cunningham ◽  
Sundeep Chandra ◽  
Akinola Emmanuel ◽  
Allyse Mazzarelli ◽  
Carmela Passaro ◽  
...  

Abstract Introduction: Ex vivo manufactured chimeric antigen receptor (CAR) T cell therapies are highly effective for treating B cell malignancies. However, the complexity, cost and time required to manufacture CAR T cells limits access. To overcome conventional ex vivo CAR T limitations, a novel gene therapy platform has been developed that can deliver CAR transgenes directly to T cells through systemic administration of a fusosome, an engineered, target-directed novel paramyxovirus-based integrating vector that binds specific cell surface receptors for gene delivery through membrane fusion. Here, we demonstrate that systemic administration of a CD8a-targeted, integrating vector envelope (i.e., fusogen) encoding an anti-CD20 CAR into Southern pig-tail macaques (M. nemestrina), which is a species permissive to the integrating vector-mediated transduction, results in T cell transduction and B cell depletion with no treatment-related toxicities. Methods: CD8a-specific single chain variable fragments (scFvs) were generated and measured for target specificity versus non-CD8-expressing cells in vitro. Cross-reactivity of the CD8a-specific fusogen for human and nemestrina T cells was confirmed in vitro. Targeted fusogens were then used to pseudotype integrating vector expressing an anti-CD20 CAR containing the 4-1BB and CD3zeta signaling domains (CD8a-anti-CD20CAR). Transduction and B cell killing was confirmed on human and nemestrina PBMCs. To evaluate in vivo activity, normal, healthy nemestrina macaques were treated with a single dose of CD8a-targeted anti-CD20 CAR fusosome (n=6) or saline (n=2) via intravenous infusion at 10mL/kg/hr for 1-hour and evaluated for up to 52 days for evidence of adverse effects, B cell depletion, CAR-mediated cytokine production, CAR T cell persistence and vector biodistribution using ddPCR and anti-CD20CAR transgene by RT-ddPCR to detect transgene levels. Histopathology of several organs and immunohistochemistry for CD3 and CD20 on lymph nodes, spleen, and bone marrow were performed at termination (days 35 and 52). Tolerability of the treatment was assessed by body weight, body temperature, neurological exams, serum chemistry panel, and complete blood counts pre-dose and post-dose up to 52 days. Results: The CD8a-targeted fusogen demonstrated CD8a-specificity versus human CD8 negative cell lines, and cross-reactivity and transduction efficiency in nemestrina PBMCs in vitro. Compared to a control vector (GFP), anti-CD20CAR-modified T cells showed a dose-dependent depletion of B cells using in vitro assays. Following infusion of CD8a-anti-CD20CAR fusosomes into macaques, pharmacological activity in peripheral blood was detected by a reduction of B cells in 4 of 6 animals after 7 to 10 days. Two animals showed persistent B cell depletion until study termination, with two others showing a temporary response. The presence of vector copy could be detected in the peripheral blood of all treated animals between days 3 and 10, and in isolated spleen cells in 5 of 6 animals. All control animals (saline) were negative for vector. RT-ddPCR mRNA expression similarly revealed the presence of anti-CD20CAR transcripts in isolated spleen cells from treated animals; no expression was detected in tissues from control animals. Elevations in inflammatory cytokines could be detected in the serum of treated animals between days 3 and 14. Fusosome treatment was well-tolerated in all animals with no evidence of adverse effects. Moreover, T cell transduction and B cell depletion was not associated with cytokine-related toxicities, and blood chemistry and histopathology were within normal limits. Conclusion: These data obtained in an immunologically competent animal demonstrate the proof-of-concept that systemic administration of a CD8a-anti-CD20CAR fusosome can specifically transduce T cells in vivo without pre-conditioning or T cell activation, resulting in B cell depletion in the absence of vector- or CAR T-related toxicities. Therefore, fusosome technology represents a novel therapeutic opportunity to treat patients with B cell malignancies and potentially overcome some of the treatment barriers that exist with conventional CAR T therapies. Disclosures Cunningham: Sana Biotechnology: Current Employment. Chandra: Sana Biotechnology: Current Employment. Emmanuel: Sana Biotechnology: Current Employment. Mazzarelli: Sana Biotechnology: Current Employment. Passaro: Sana Biotechnology: Current Employment. Baldwin: Sana Biotechnology: Current Employment. Nguyen-McCarty: Sana Biotechnology: Current Employment. Rocca: Sana Biotechnology: Current Employment. Joyce: Sana Biotechnology: Current Employment. Kim: Sana Biotechnology: Current Employment. Vagin: Sana Biotechnology: Current Employment. Kaczmarek: Sana Biotechnology: Current Employment. Chavan: Sana Biotechnology: Current Employment. Jewell: Sana Biotechnology: Current Employment. Lipsitz: Sana Biotechnology: Current Employment. Shamashkin: Sana Biotechnology: Current Employment. Hlavaty: Sana Biotechnology: Current Employment. Rodriguez: Sana Biotechnology: Current Employment. Co: Sana Biotechnology: Current Employment. Cruite: Sana Biotechnology: Current Employment. Ennajdaoui: Sana Biotechnology: Current Employment. Duback: Sana Biotechnology: Current Employment. Elman: Sana Biotechnology: Current Employment. Amatya: Sana Biotechnology: Current Employment. Harding: Sana Biotechnology: Current Employment. Lyubinetsky: Sana Biotechnology: Current Employment. Patel: Sana Biotechnology: Current Employment. Pepper: Sana Biotechnology: Current Employment. Ruzo: Sana Biotechnology: Current Employment. Iovino: Sana Biotechnology: Current Employment. Varghese: Sana Biotechnology: Current Employment. Foster: Sana Biotechnology: Current Employment. Gorovits: Sana Biotechnology: Current Employment. Elpek: Sana Biotechnology: Current Employment. Laska: Sana Biotechnology: Current Employment. McGill: Sana Biotechnology: Current Employment. Shah: Sana Biotechnology: Current Employment. Fry: Sana Biotechnology: Current Employment, Current equity holder in publicly-traded company. Dambach: Sana Biotechnology: Current Employment.


2021 ◽  
pp. annrheumdis-2021-220626
Author(s):  
Maria Prendecki ◽  
Candice Clarke ◽  
Helena Edwards ◽  
Stacey McIntyre ◽  
Paige Mortimer ◽  
...  

ObjectiveThere is an urgent need to assess the impact of immunosuppressive therapies on the immunogenicity and efficacy of SARS-CoV-2 vaccination.MethodsSerological and T-cell ELISpot assays were used to assess the response to first-dose and second-dose SARS-CoV-2 vaccine (with either BNT162b2 mRNA or ChAdOx1 nCoV-19 vaccines) in 140 participants receiving immunosuppression for autoimmune rheumatic and glomerular diseases.ResultsFollowing first-dose vaccine, 28.6% (34/119) of infection-naïve participants seroconverted and 26.0% (13/50) had detectable T-cell responses to SARS-CoV-2. Immune responses were augmented by second-dose vaccine, increasing seroconversion and T-cell response rates to 59.3% (54/91) and 82.6% (38/46), respectively. B-cell depletion at the time of vaccination was associated with failure to seroconvert, and tacrolimus therapy was associated with diminished T-cell responses. Reassuringly, only 8.7% of infection-naïve patients had neither antibody nor T-cell responses detected following second-dose vaccine. In patients with evidence of prior SARS-CoV-2 infection (19/140), all mounted high-titre antibody responses after first-dose vaccine, regardless of immunosuppressive therapy.ConclusionSARS-CoV-2 vaccines are immunogenic in patients receiving immunosuppression, when assessed by a combination of serology and cell-based assays, although the response is impaired compared with healthy individuals. B-cell depletion following rituximab impairs serological responses, but T-cell responses are preserved in this group. We suggest that repeat vaccine doses for serological non-responders should be investigated as means to induce more robust immunological response.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Y K O Teng ◽  
L Van Dam ◽  
Jelle Oskam ◽  
S W A Kamerling ◽  
E J Arends ◽  
...  

Abstract Background and Aims B-cell depletion with rituximab (RTX) is an effective treatment for anti-neutrophil cytoplasmic antibodies (ANCA)-associated vasculitis (AAV) patients. Nevertheless, relapses are frequent after RTX, often preceded by B-cell repopulation suggesting that residual autoreactive B-cells persist despite therapy. Therefore, this study aimed to identify minimal residual autoimmunity (MRA) in the B-cell compartment of AAV patients treated with RTX. Method EuroFlow-based highly-sensitive flow cytometry (HSFC) was employed to study B-cell and plasma cell (PC) subsets in-depth in AAV patients before and after RTX treatment. Additionally, peripheral blood mononuclear cells (PBMCs) of these RTX-treated AAV patients were cultured and in vitro stimulated with CpG, IL-2, and IL-21 to induce antibody-secreting cells (ASC). (ANCA)-IgG was measured in these supernatants by ELISA. Results By employing EuroFlow-based HSFC, we detected circulating CD19+ B-cells at all timepoints after RTX treatment, in contrast to conventional low-sensitive flow cytometry. Pre-germinal center (Pre-GC) B-cells, memory B-cells and CD20+CD138− plasmablasts (PBs) were rapidly and strongly reduced, while CD20−CD138− PrePC and CD20-CD138+ mature (m)PCs were reduced slower and remained detectable. Both memory B-cells and CD20− PCs remained detectable after RTX. Serum ANCA-IgG decreased significantly upon RTX. Changes in ANCA levels strongly correlated with changes in naive, switched CD27+ and CD27− (double-negative) memory B-cells, but not with plasma cells. Lastly, we demonstrated in vitro ANCA production by AAV PBMCs, 24 and 48 weeks after RTX treatment reflecting MRA in the memory compartment of AAV patients. Conclusion We demonstrated that RTX induced strong reductions in circulating B-cells, but never resulted in complete B-cell depletion. Despite strongly reduced B-cell numbers after RTX, ANCA-specific memory B-cells were still detectable in AAV patients. Thus, MRA is identifiable in AAV and can provide a potential novel approach in personalizing RTX treatment in AAV patients.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4977-4977
Author(s):  
John R Gasdaska ◽  
Jeff Regan ◽  
Steve Sherwood ◽  
Klaus-Peter Radtke ◽  
Bipin Dalmia ◽  
...  

Abstract Monoclonal antibodies represent one of the largest classes of drugs in preclinical and clinical development. For many antibodies, the structure and extent of the N-glycans on the Fc region of the heavy chain plays a significant role in their therapeutic function. A glyco-optimized version of the anti-CD20 antibody (rituximab) was expressed in the clonal aquatic plant Lemna. The optimized glycosylation was accomplished by co-expressing an interfering RNA (RNAi) construct targeting the endogenous alpha-1,3-fucosyltransferase and beta-1,2-xylosyltransferase genes (Cox et al., 2006). The resulting glyco-optimized rituximab contained a single major G0 N-glycan (lacking terminal galactose) without any detectable xylose or fucose. Previous in vitro cell-based studies have shown that the glyco-optimized rituximab had similar CD20 binding affinity and apoptotic effects as Rituxan® produced in mammalian cells but with significantly enhanced (up to 100- fold) antibody-dependent cellular cytotoxicity (ADCC). Enhanced ADCC activity was found for all FcgRIIIa-158 genotypes. Reported here are the results of expanded studies comparing Rituxan® with the Lemna–derived glyco-optimized rituximab. B-cell depletion was measured in genotyped human whole blood after ex vivo treatment with both anti-CD20 antibodies. Consistent with prior in vitro ADCC studies, glyco-optimized rituximab showed a significant increase in B-cell depletion for all FcgRIIIa-158 genotypes when compared to Rituxan®. To extend these findings to an in vivo setting, a comparative monkey study was conducted to evaluate: pharmacokinetic impact of the optimized glycans, B-cell depletion, and complement activation. The study design included two male Cynomologus monkeys per group in a dose-escalation scheme where each group received a single administration of two dose levels of either Rituxan® or glycooptimized rituximab. Results showed no difference between the two antibodies in clinical observations and pharmacokinetic profile. Overall the rate of depletion and recovery of the monkey B-cells between Rituxan® and glyco-optimized rituximab was similar with evidence of an increase in the initial rate of depletion with the glyco-optimized rituximab. The latter finding is not unexpected due to sequence differences between FcgRIIIa in humans and monkeys. Interestingly, 50% higher complement activation (as measured by serum levels of C3a,) was observed with Rituxan®. This is consistent with our previous observation that glyco-optimized rituximab had up to a ten-fold decrease in complement dependent cytotoxicity (CDC) in Raji cells compared to Rituxan®. These studies suggest that an optimized anti-CD20 antibody therapeutic can have a similar pharmacokinetic profile with enhanced ADCC activity and decreased CDC activity compared to Rituxan®. Confirmation that these differences will translate into improved efficacy with decreased side effects associated with CDC activity (Clark and Ledbetter, 2005) will require clinical research. Cox et al (2006). Nat. Biotech. 24: 1591–15197. Clark et al (2005). Ann. Rheum Dis. 64: 77–80.


2016 ◽  
Vol 84 (5) ◽  
pp. 1301-1311 ◽  
Author(s):  
Jiayao Phuah ◽  
Eileen A. Wong ◽  
Hannah P. Gideon ◽  
Pauline Maiello ◽  
M. Teresa Coleman ◽  
...  

Although recent studies in mice have shown that components of B cell and humoral immunity can modulate the immune responses againstMycobacterium tuberculosis, the roles of these components in human and nonhuman primate infections are unknown. The cynomolgus macaque (Macaca fascicularis) model ofM. tuberculosisinfection closely mirrors the infection outcomes and pathology in human tuberculosis (TB). The present study used rituximab, an anti-CD20 antibody, to deplete B cells inM. tuberculosis-infected macaques to examine the contribution of B cells and humoral immunity to the control of TB in nonhuman primates during the acute phase of infection. While there was no difference in the overall pathology, disease profession, and clinical outcome between the rituximab-treated and untreated macaques in acute infection, analyzing individual granulomas revealed that B cell depletion resulted in altered local T cell and cytokine responses, increased bacterial burden, and lower levels of inflammation. There were elevated frequencies of T cells producing interleukin-2 (IL-2), IL-10, and IL-17 and decreased IL-6 and IL-10 levels within granulomas from B cell-depleted animals. The effects of B cell depletion varied among granulomas in an individual animal, as well as among animals, underscoring the previously reported heterogeneity of local immunologic characteristics of tuberculous granulomas in nonhuman primates. Taken together, our data clearly showed that B cells can modulate the local granulomatous response inM. tuberculosis-infected macaques during acute infection. The impact of these alterations on disease progression and outcome in the chronic phase remains to be determined.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3342-3342 ◽  
Author(s):  
Sylvia Herter ◽  
Adam Palazzo ◽  
Marina Bacac ◽  
Laura Grosmaire ◽  
Christian Frey ◽  
...  

Abstract Introduction: Idelalisib is a highly selective oral inhibitor of the phosphoinositide 3-kinase delta (PI3Kδ) that is hyperactive in many B-cell malignancies and is critical for the activation, proliferation, survival and trafficking of B lymphocytes. Idelalisib is approved in the US for the treatment of chronic lymphocytic leukemia (CLL) in combination with rituximab and as monotherapy for patients with relapsed follicular B-cell non-Hodgkin lymphoma and small lymphocytic lymphoma who have received at least two prior systemic therapies. Obinutuzumab (GA101) is a glycoengineered type II, CD20 antibody that induces a high level of direct cell death. As a result of glycoengineering, obinutuzumab has increased affinity for FcγRIII on innate immune effector cells resulting in enhanced induction of ADCC and ADCP. Obinutuzumab has been approved for first line treatment of CLL patients in combination with chlorambucil in the US and Europe and is currently in pivotal clinical trials in indolent NHL and DLBCL. Previous work has shown the covalent BTK inhibitor ibrutinib can interfere with the immune effector function and ultimately in vivo efficacy of rituximab in preclinical models (Kohrt et al., Blood, 2014). As PI3K isoforms also play a role in immune effector cells and FcγR signaling we investigated the impact of PI3Kδ inhibition by the PI3Kδ selective inhibitor idelalisib on the immune effector function of obinutuzumab and rituximab. Experimental methods: The impact of idelalisib on NK cell mediated ADCC induction by obinutuzumab and rituximab was investigated in LDH release assays using WIL2-S, SU-DHL4 and Z138 target cells at plasma protein-binding adjusted clinically relevant concentrations mimicking exposure in patients. As a surrogate for NK cell activation CD16 levels and up-regulation of the degranulation marker CD107a were assessed by FACS. The impact on monocyte-derived macrophage mediated ADCP of WIL2-S cells was measured in a flow cytometry-based phagocytosis assay. Finally, depletion of CD19 positive B cells was determined in whole blood from healthy volunteers in flow cytometry-based whole blood assay. Results: In ADCC assays, no impact of idelalisib on ADCC at saturating concentration of obinutuzumab or rituximab (>1ug/ml) can be detected in LDH release assays with tumor cells targets (N=9 donors for WIL2-S, N>3 donors for SU-DHL-4 and Z138). Idelalisib did not alter obinutuzumab or rituximab ability to kill tumor cells by ADCC at low E:T ratio. Little to no increase of obinutuzumab or rituximab EC50 for LDH release, CD16 down regulation, or degranulation of NK cells could be detected depending on donor effector cells. ADCP assays were conducted with M2c polarized macrophages using WIL2-S as targets. Less than 30% inhibition of ADCP was observed in this assay at idelalisib concentration at protein binding-adjusted clinical Cmax. At idelalisib Cmax (4200 nM) the EC50 of obinutuzumab-mediated B cell depletion in healthy human whole blood was increased 3 to 5 times, whereas at Cmin (760 nM) idelalisib did not significantly influence obinutuzumab EC50 or maximal B cell depletion. Conclusions: PI3Kδ inhibition by idelalisib has minimal impact on the immune effector function of obinutuzumab (GA101) and rituximab as measured in NK cell-mediated ADCC, macrophage-mediated ADCP and whole blood B-cell depletion. Disclosures Herter: Roche: Employment. Palazzo:Gilead Sciences: Employment. Bacac:Roche: Employment. Grosmaire:Gilead Sciences: Employment. Frey:Gilead Sciences: Employment. Pflanz:Gilead Sciences: Employment. Liu:Gilead Sciences: Employment. Tannheimer:Gilead Sciences: Employment. Umana:Roche: Employment. Klein:Roche: Employment, Equity Ownership, Patents & Royalties. Queva:Gilead Sciences: Employment.


Sign in / Sign up

Export Citation Format

Share Document