Germline Mutations in CBL Cause a Predisposition to Juvenile Myelomonocytic Leukemia.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 310-310 ◽  
Author(s):  
Charlotte M Niemeyer ◽  
Michelle Kang ◽  
Ingrid Furlan ◽  
Danielle Shin ◽  
Debbie S Sakai ◽  
...  

Abstract Abstract 310 Juvenile myelomonocytic leukemia (JMML) is an aggressive myeloproliferative neoplasm (MPN) of early childhood. Up to 60% of patients harbor activating mutations in either NRAS, KRAS, or PTPN11, while another 15% of children have neurofibromatosis type 1 (NF-1) and demonstrate loss of the wildtype NF1 allele in their hematopoietic cells at diagnosis. We recently described that an additional 10–15% of children with JMML harbor missense homozygous mutations in exons 8 and 9 of CBL (Loh, Blood, 2009). Cbl is a complex protein that functions primarily as an E3 ubiquitin ligase but also serves numerous important adaptor functions. Mutations in CBL have recently been reported in adults with MPNs and the available evidence in adults indicates that these lesions are somatically acquired. We noted that a number of children with JMML and CBL mutations had neurological conditions including developmental delay and dysmorphic stigmata, although these features were not 100% penetrant. Based on these observations, we performed mutational studies in fibroblasts and buccal epithelial cells, which were available from 13 JMML patients with homozygous CBL mutations in their bone marrow at diagnosis. We now show that in all 13 patients the initial CBL mutation occurred as a heterozygous germline event (Table 1). Interestingly, a child with the 1222 T>C later developed a brain tumor with a homozygous CBL lesion. Mutational studies on parental DNA were informative in 11 cases and indicated autosomal inheritance in 6 families. Furthermore, two of these children had extensive family histories in which several young family members died of JMML. There were no known features of NF-1 in either pedigree. Subsequent analysis of these two pedigrees revealed a pattern of autosomal dominant inheritance that spanned 4 generations in 1 family and 3 generations in the other. To rule out normal genetic variation, a cohort of 240 healthy individuals were screened without detection of a CBL abnormality. One hallmark feature of JMML myeloid progenitor cells is their sensitivity to granulocyte-macrophage colony stimulating factor (GM-CSF) in colony-forming assays. Retroviral transduction of the 371 Tyr>His and 384 Cys>Arg mutations into wildtype murine fetal liver cells failed to induce a hypersensitive phenotype. However, recently published data suggest that a full oncogenic phenotype is conferred when the wildtype allele is deleted (Sanada, Nature, 2009), as occurs in the human diseases. Transduction of the most common human JMML mutations into BaF3-EpoR cells that have had murine Cbl knocked down is ongoing, as is further biochemical analysis. In summary, germline mutations in CBL cause a clinical syndrome with a predisposition to JMML, and importantly, can be inherited in an autosomal dominant fashion, thus establishing CBL as a new familial cancer predisposition gene. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2604-2604
Author(s):  
Y. Lucy Liu ◽  
Priyangi A Malaviarachchi ◽  
Shelly Y. Lensing ◽  
Robert P. Castleberry ◽  
Peter Dean Emanuel

Abstract Abstract 2604 Poster Board II-580 Juvenile myelomonocytic leukemia (JMML) is a mixed myelodysplastic /myeloproliferative neoplasm (MDS/MPN) of infancy and early childhood. The pathogenesis of JMML has been linked to dysregulated signal transduction through the NF1/RAS signaling pathway and PTPN11. This dysregulation results in JMML cells demonstrating selective hypersensitivity to GM-CSF in in vitro dose-response assays. Since JMML hematopoietic progenitor cells are selectively hypersensitive to (rather than independent of) GM-CSF, it is rational to hypothesize that the function of the GM-CSF receptor in JMML patients is not constitutively over-active unless stimulated by the cytokine. We previously reported that PTEN is deficient in JMML patients. PTEN expression is up-regulated by Egr-1, which is one of the targets of the cAMP-response-element-binding protein (CREB). CREB, as a transcriptional factor, is expressed ubiquitously and bound to the cAMP-response-element (CRE) of the Egr-1 promoter. After phosphorylation at serine 133, CREB selectively activates the transcription of Egr-1 in response to GM-CSF stimulation in hematopoietic cells. We evaluated the CREB protein level in peripheral blood or bone marrow samples collected from 26 JMML patients. Mononuclear cells (MNCs) were isolated and lysed in lysis buffer at a density of 107/100μl. Protein levels of CREB were evaluated by ELISA and Western-blot. We found that 22/26 (85%) of subjects were substantially CREB deficient while they had constitutively high activity of MAP kinase (Erk-1/2). In comparison to normal controls (n=7), the median level of total CREB protein by ELISA was significantly lower in JMML subjects (0.62 vs 8.85 ng/mg BSA in normal controls; p=0.006). The mechanism that causes CREB deficiency in JMML is under further investigation and further results may be available to present at the meeting. This is the first evidence that CREB, a critical component downstream of the GM-CSF receptor, is highly deficient in the majority of JMML cases. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 45-45 ◽  
Author(s):  
Hui Huang ◽  
Daniel E. Bauer ◽  
Mignon L. Loh ◽  
Govind Bhagat ◽  
Alan B. Cantor ◽  
...  

Juvenile myelomonocytic leukemia (JMML) is an aggressive myeloproliferative neoplasm of young children. The only current curative treatment is bone marrow transplantation. Yet even with this aggressive therapy, ∼50% of children still die from their disease. Somatic mutations leading to constitutive activation of the tyrosine phosphatase Shp2 (also called PTPN11) or of RAS signaling occur in ∼90% cases of JMML. However, the transcription factors that act downstream of these aberrant signaling events have not been identified. We recently showed that RUNX1 is a direct interacting partner of Shp2 in megakaryocytic cells (Huang et al. 2012. Genes Dev 26: 1587-1601). Moreover, we showed that RUNX1 is normally negatively regulated by src-family kinase (SFK) mediated tyrosine phosphorylation in megakaryocytes and T-lymphocytes, and that Shp2 contributes to RUNX1 tyrosine dephosphorylation. We now show that overexpression of a mutant RUNX1 (RUNX1Y260F, Y375F, Y378F, Y379F, Y386F, “RUNX1-5F”), which is expected to mimic constitutive dephosphorylation by Shp2 in murine Lin- Sca-1+ c-kit+ (LSK) bone marrow cells is resistant to SFK-mediated tyrosine phosphorylation and leads to a dramatic expansion of CFU-M/CFU-GM and Gr1+Mac1+ cells in vitro and in vivo. In contrast, these effects are not seen when wild type RUNX1 or RUNX1Y260D, Y375D, Y378D, Y379D, Y386D (“RUNX1-5D”; mimicking constitutive RUNX1 tyrosine phosphorylation) are overexpressed. The RUNX1-5F expressing cells also have increased replating activity in serial colony forming assays, increased proliferation (BrdU incorporation), decreased apoptosis, and reduced cytokine dependence. This partially phenocopies conditional knock-in mice that express JMML associated activating Shp2 mutations. Flow sorted Gr1+Mac1+ cells from the RUNX1-5F transduced cultures expressed higher levels of the direct RUNX1 target gene PU.1, which plays a role in myelomonocytic growth, and Cyclin D1. To test whether RUNX1 is required for the myelomonocytic hyperproliferation in JMML, CD34+ peripheral blood cells from a patient with JMML and known activating Shp2 mutation (Shp2E76G) were lentivirally transduced with doxycycline-inducible RUNX1-5D or RUNX1-5F expression constructs and cultured under myeloid growth conditions. Upon doxycycline induction, the RUNX1-5D overexpressing cells (resistant to Shp2) exhibited at 32% reduction in BrdU incorporation. In contrast, the control RUNX1-5F expressing cells had no significant reduction in proliferation. These results are consistent with RUNX1 acting as an essential downstream target of activated Shp2 in JMML. As ERK mediated phosphorylation (downstream of RAS/MEK) is also known to increase RUNX1 activity, we propose that RUNX1 may be a common downstream transcriptional target of both activated Shp2 and RAS signaling in the pathogenesis of JMML. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 11 ◽  
Author(s):  
Andrea Kuendgen ◽  
Annika Kasprzak ◽  
Ulrich Germing

The WHO-category Myelodysplastic/Myeloproliferative neoplasms (MDS/MPNs) recognizes a unique group of clonal myeloid malignancies exhibiting overlapping features of myelodysplastic as well as myeloproliferative neoplasms. The group consists of chronic myelomonocytic leukemia (CMML), atypical chronic myeloid leukemia, BCR-ABL1-negative (aCML), juvenile myelomonocytic leukemia (JMML), myelodysplastic/myeloproliferative neoplasm with ringed sideroblasts and thrombocytosis (MDS/MPN-RS-T), and myelodysplastic/myeloproliferative neoplasms, unclassifiable (MDS/MPN-U). The most frequent entity in this category is CMML, while all other diseases are extremely rare. Thus, only very limited data on the epidemiology of these subgroups exists. An appropriate diagnosis and classification can be challenging since the diagnosis is still largely based on morphologic criteria and myelodysplastic as well as myeloproliferative features can be found in various occurrences. The diseases in this category share several features that are common in this specific WHO-category, but also exhibit specific traits for each disease. This review summarizes published data on epidemiological features and offers a brief overview of the main diagnostic criteria and clinical characteristics of the five MDS/MPN subgroups.


Author(s):  
Hironobu Kitazawa ◽  
Yusuke Okuno ◽  
Hideki Muramatsu ◽  
Kosuke Aoki ◽  
Norihiro Murakami ◽  
...  

Juvenile myelomonocytic leukemia (JMML) is a rare myelodysplastic/myeloproliferative neoplasm that develops during infancy and early childhood. The array-based international consensus definition of DNA methylation has recently classified patients with JMML into the following three groups: high methylation (HM), intermediate methylation (IM), and low methylation (LM). To develop a simple and robust methylation clinical test, 137 patients with JMML have been analyzed using the Digital Restriction Enzyme Analysis of Methylation (DREAM), which is a next-generation sequencing based methylation analysis. Unsupervised consensus clustering of the discovery cohort (n=99) using the DREAM data has identified HM and LM subgroups (HM_DREAM, n=35; LM_DREAM; n=64). Of the 98 cases that could be compared with the international consensus classification, 90 cases of HM (n=30) and LM (n=60) had 100% concordance with the DREAM clustering results. For the remaining eight cases classified as the IM group, four cases were classified into the HM_DREAM group and four cases into the LM_DREAM group. A machine-learning classifier has been successfully constructed using a Support Vector Machine (SVM), which divided the validation cohort (n=38) into HM (HM_SVM; n=18) and LM (LM_SVM; n=20) groups. Patients with the HM_SVM profile had a significantly poorer 5-year overall survival rate than those with the LM_SVM profile. In conclusion, a robust methylation test has been developed using the DREAM analysis for patients with JMML. This simple and straightforward test can be easily incorporated in diagnosis to generate a methylation classification for patients so that they can receive risk-adapted treatment in the context of future clinical trials.


Leukemia ◽  
2019 ◽  
Vol 34 (6) ◽  
pp. 1658-1668
Author(s):  
Aurélie Caye ◽  
Kevin Rouault-Pierre ◽  
Marion Strullu ◽  
Elodie Lainey ◽  
Ander Abarrategi ◽  
...  

AbstractJuvenile myelomonocytic leukemia (JMML) is a rare aggressive myelodysplastic/myeloproliferative neoplasm of early childhood, initiated by RAS-activating mutations. Genomic analyses have recently described JMML mutational landscape; however, the nature of JMML-propagating cells (JMML-PCs) and the clonal architecture of the disease remained until now elusive. Combining genomic (exome, RNA-seq), Colony forming assay and xenograft studies, we detect the presence of JMML-PCs that faithfully reproduce JMML features including the complex/nonlinear organization of dominant/minor clones, both at diagnosis and relapse. Further integrated analysis also reveals that although the mutations are acquired in hematopoietic stem cells, JMML-PCs are not always restricted to this compartment, highlighting the heterogeneity of the disease during the initiation steps. We show that the hematopoietic stem/progenitor cell phenotype is globally maintained in JMML despite overexpression of CD90/THY-1 in a subset of patients. This study shed new lights into the ontogeny of JMML, and the identity of JMML-PCs, and provides robust models to monitor the disease and test novel therapeutic approaches.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2797-2797
Author(s):  
Shinsuke Hirabayashi ◽  
Jessica Moetter ◽  
Kenichi Yoshida ◽  
Michael Heuser ◽  
Henrik Hasle ◽  
...  

Abstract Abstract 2797 Somatic point mutations occur frequently in adult patients with myelodysplastic syndromes (MDS) and are associated with distinct clinical features such as overall survival, genomic aberrations and clonal transformation. Recently a number of new genes had been identified which are involved in methylation and chromatin regulation (TET2, DNMT3A, ASXL1). Although mutations of these genes are present at high frequency in adult cohorts, they are very rare events in children with myeloid disease. Based on the results from a large-scale whole exome sequencing study of adult patients with myeloid neoplasia, a new group of genes involved in the formation of spliceosome complex was discovered to be recurrently somatically mutated in approximately 40% of patients with MDS and 55% of chronic myelomonocytic leukemia (CMML) cases (Yoshida, et al., unpublished data). Spliceosomes are macromolecular RNA-protein complexes that remove noncoding introns from precursor mRNA. We hypothesized that the disruption of the spliceosome complex might play a driving role in the leukemogenesis in pediatric MDS. Using targeted re-sequencing we investigated the 3 exclusive hotspots of 2 spliceosome genes that were found to be mutated in adult MDS: U2AF1 (S34), U2AF1 (Q157) and SFRS2 (P95). We analyzed a total of 339 WHO-defined pediatric cases: juvenile myelomonocytic leukemia (JMML), n=112; secondary CMML, n=12; Down syndrome-associated MDS, n=6; de novo acute myeloid leukemia (AML), n=12, MDS-related AML, n=50; refractory anemia with excess blasts (RAEB), n=52; RAEB in transformation (RAEB-T), n=11; and refractory cytopenia (RC), n=84. We found two heterozygous missense mutations: SFRS2 c.284C>T/P95L in a patient with JMML, and U2AF1 c.101C>A/S34Y in a patient with refractory cytopenia. The first patient presented with non-syndromic JMML with somatic mutation of PTPN11 c.226G>C/E76Q, normal cytogenetics, increased HbF(80%), splenomegaly, monocytosis, and was 4.5 years old at diagnosis. The patient underwent successful SCT. The analysis of buccal-swab DNA confirmed the somatic status of the SFRS2 mutation. The second patient was diagnosed at age of 17 years with systemic mastocytosis positive for c-kit D816V mutation, and with associated clonal hematological non-mast cell lineage disease: refractory cytopenia with normal cytogenetics. SCT was also performed with success on this patient. To ensure that the low rate of mutations found in our pediatric cohort was not due to technical issues, we also sequenced major mutation sites of U2AF1 and SFRS2 genes in 19 adult patients with MDS: refractory anemia (RA), n=8; RC with multilineage dysplasia (RCMD), n=3; RAEBI/II, n=5; CMML, n=3. We found 4 heterozygous changes: SFRS2 missense mutation c.284C>T/P95L in two patients with RA and RAEBII; SFRS2 deletion c.284_307/P95RfsX120 in one RA patient, and U2AF1 c.470A>C/Q157P in one RA patient. Interestingly, 3 out of 4 patients with a mutated spliceosome gene harbored a mutation of the ASXL1 gene, but none was mutated for DNMT3A. In summary, re-sequencing of 3 spliceosome gene hotspots revealed the presence of heterozygous mutations in 2/339 children and 4/19 adults with myeloid disease. The analysis of another gene-hotspot implicated in the MDS whole exome study, SF3B1 K700 is ongoing, but all pediatric cases analyzed to date were negative. The drastically reduced frequency of spliceosome mutations in pediatric compared to adult myeloid malignancies suggests a different pathogenetic mechanism in childhood disease, and fits well with previous reports that somatic mutations of non-Ras-pathway genes, such as DNMT3A, are less prevalent in pediatric cohorts. The functional impact of spliceosome mutations on leukemogenesis warrants further study. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4353-4353
Author(s):  
Yuming Zhao ◽  
Yao Guo ◽  
Chunxiao He ◽  
Dengyang Zhang ◽  
Han Zhong Pei ◽  
...  

Abstract Protein tyrosine phosphatase SHP2 encoded by PTPN11 is a key regulator in growth factor and cytokine signaling. Overwhelming evidence suggests its vital role in hematopoietic stem cell function and hematopoiesis. As a bona fide proto-oncogene product, gain-of-function mutations of SHP2 cause hematological malignancies, most notably juvenile myelomonocytic leukemia (JMML) which bear somatic SHP2 mutations in 35% of cases. Numerous studies have utilized murine models to investigate the role of mutant SHP2 in hematopoiesis and leukemogenesis and successfully produced resembling myeloproliferative neoplasm (MPN) and even full-blown leukemia in recipient animals. However, mutant SHP2-transformed cell lines have not been generated. In the present study, we established oncogenic mutant SHP2-transformed cell lines from erythropoietin (EPO)-dependent HCD-57 erythroid leukemia cells. First, we generated recombinant retroviruses expressing SHP2-D61Y and SHP2-E76K, the two most common SHP2 mutants found in individuals with JMML, by using the pMSCV-IRES-GFP vector. We then infected HCD-57 cells with the recombinant retroviruses. Unlike the parent HCD-57 cells, the infected cells were able to grow in the absence of EPO as demonstrated by viable GFP-positive cells. We further performed semi-solid methylcellulose colony cultures and isolated single clones of EPO-independent HCD57 cells. The isolated clonal cells overexpressed mutant SHP2 and proliferate rapidly in the absence of EPO. In contrast, HCD57 cells infected with retroviruses expressing wild type SHP2 failed to survive in the absence of EPO, indicating only gain-of-function mutant forms of SHP2 have the cell-transformation capability. We also carried out parallel experiments with the pro-B Ba/F3 cell line that require interleukin 3 (IL3) for survival. Interestingly, over-expression of SHP2-D61Y and SHP2-E76K was not sufficient to give rise to IL3-indepdent Ba/F3 cells, suggesting that HCD57 cells have some unique properties making them susceptible for transformation by oncogenic SHP2 mutants. We further performed in vitro and in vivo characterization of transformed HCD57 cells. Cell signaling analyses revealed that both HCD57-SHP2-D61Y and HCD57-SHP2-E76Kcells exhibited aberrantly elevated levels of pERK and pAKT in the absence of cytokine stimulation, which was consistent with the notion that gain-of-function SHP2 mutants perturb growth control through deregulation of the Ras signaling pathway. Upon intravenous injection into immunodeficient mice, the SHP2 mutant-transformed HCD57 cells caused acute leukemia with markedly increased spleen. Finally, we screened a small molecule inhibitor library to identify compounds that may specifically target the SHP2 mutants. We found several tyrosine kinase inhibitors including dasatinib and trametinib potently inhibited HCD57-SHP2-D61Y and HCD57-SHP2-E76Kcells but not the parent HCD57 cells. At sub-micromolar concentrations, dasatinib and trametinib abolished elevated ERK and Akt activation caused by the SHP2 mutants. This study not only proves that gain-of function mutations of SHP2 are capable of fully transforming cells but also provides a unique cell system to study pathogenesis of SHP2 mutants and to identify specific inhibitors for drug development. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3699-3699
Author(s):  
Yuli Cai ◽  
Jingliao Zhang ◽  
Meihui Yi ◽  
Xiaoming Liu ◽  
Xiaoyan Zhang ◽  
...  

Abstract Objective: As a rare, aggressive pediatric myeloproliferative disease, juvenile myelomonocytic leukemia (JMML) encompassed both biological features of myelodysplastic syndrome and myeloproliferative neoplasm. Studies have shown that the methylation level in JMML patients is closely related to prognosis, and patients with high methylation level have poor prognosis. This study aimed to find clinical indicators that were associated with different methylation levels and prognosis. Methods: The clinical information of 24 JMML patients with DNA samples admitted to our center from December 2013 to May 2020 was retrospectively analyzed, and the DNA methylation level of their whole genome was detected. Results: The median age of onset was 14.5 months (0.1-153 months) among the 24 cases, including 17 males and 7 females. At diagnosis, the median WBC count was 27.1×10 9/L (6.2-98.1×10 9/L), and the median platelet count was 38×10 9/L (10-277×10 9/L). Chromosome karyotype abnormalities were found in 12.5% (3/24) of patients. Next-generation sequencing results showed that 79.2% (19/24) patients had at least one Ras pathway-related classical gene mutation, and 41.7% (10/24) patients had two or more somatic mutations. Genomic DNA methylation levels were divided into three groups: 10 cases in the hypomethylation group, 4 cases in the moderate methylation group, and 10 cases in the hypermethylation group. There were significant differences in age, platelets, PTPN11 gene mutation and the number of somatic mutations ≥2 in different methylation groups (P<0.05). The age of hypomethylated group was significantly lower than that of hypermethylated group (P<0.05), and the platelets of hypomethylated group was significantly higher than that of hypermethylated group (P<0.05). Patients ≤12m and platelets>32×10 9/L had lower DNA methylation level (P<0.0001). The number of patients with PTPN11 gene mutation in the hypomethylated group was significantly lower than that in the hypermethylated group (P<0.05), and the number of patients with ≥2 mutations in the low and medium methylated groups was significantly lower than that in the hypermethylated group (P<0.05). Correlation analysis showed that hypermethylation level was significantly correlated with PTPN11 gene mutation and ≥2 somatic mutations (P<0.001). Conclusions: JMML patients with high methylation level in the DNA genome at diagnosis were older and with lower platelet levels, and hypermethylation were significantly correlated with high-risk prognostic factors such as PTPN11 gene mutation and ≥2 somatic mutations. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare. OffLabel Disclosure: Decitabine for treatment of children with JMML


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2173-2173
Author(s):  
Hideki Makishima ◽  
Anna M. Jankowska ◽  
Heather Cazzolli ◽  
Bartlomiej P Przychodzen ◽  
Courtney Prince ◽  
...  

Abstract Abstract 2173 Poster Board II-150 Loss of heterozygosity (LOH) due to acquired uniparental disomy (UPD) is a commonly observed chromosomal lesion in myeloproliferative neoplasms (MPN) and myelodysplastic/myeloproliferative neoplasms (MDS/MPN) including chronic myelomonocytic leukemia (CMML). Most recurrent areas of LOH point towards genes harboring mutations. For example, UPD11q23.3 and UPD4q24 were found to be associated with c-Cbl and TET2 mutations, respectively. Cbl family mutations (c-Cbl and Cbl-b) have been associated with atypical MDS/MPN including CMML and juvenile myelomonocytic leukemia (JMML) as well as more advanced forms of MDS and secondary AML (sAML). Ring finger mutants of Cbl abrogate ubiquitination and thereby tumor suppressor function related to inactivation of phosphorylated receptor tyrosine kinases, Src and other phosphoproteins. TET2 mutations are present in a similar disease spectrum. The TET family of proteins is involved in conversion of methylcytosine to methylhydroxycytosine which cannot be recognized by DNMT1. Thereby, the proteins seem to counteract maintenance hypermethylation. In our screen of MDS/MPN, we found c-Cbl and Cbl-b ring finger mutations in 5/58 (9%) of CMML and AML derived from CMML, 2/39 (5%) MDS/MPNu, 4/21 (19%) JMML and 14/148 (9%) RAEB/sAML. In the same cohort, TET2 mutations were present in 37% and 14% of patients with MDS/MPN and MDS, respectively. Of note we did not find any TET2 mutations in JMML. We and others have also noted that TET2 and c-Cbl mutations were also detected in atypical chronic myeloid leukemia. While translocations resulting in BCR/ABL fusion characterize CML, we stipulated that in analogy to other chronic myeloproliferative diseases, TET2 and c-Cbl mutations may be also present in CML and contribute to phenotypic heterogeneity within BCR/ABL associated disorders. In particular, progression of CML to accelerated phase (AP) or blast crisis (BC) could be associated with acquisition of additional lesions. When 22 patients with CML chronic phase (CP) were screened, no TET2 and c-Cbl mutations were found. However, we identified 1 c-Cbl, 2 Cbl-b (6%) and 6 TET2 (12%) mutations in 51 patients with CML-AP (N=18) and CML-BC (N=33) with myeloid and lymphoid/mix 24 and 9 phenotype, respectively. These mutations were mutually exclusive. We also noted that TET2 mutations were present in 1/9 CML in BC with lymphoid phenotype. We subsequently screened Ph+ ALL cases (N=9) and found a TET2 mutation in 1 case but no Cbl family mutations. In contrast when 9 Ph- ALL cases were screened as controls, neither TET2 or Cbl mutations were found. SNP-A analysis revealed 2 cases of LOH involving chromosome 4 (UPD4q24 and del4) in a patient with lymphoid blast crisis and Ph+ ALL, respectively. However, UPD was not found in Cbl family gene regions (11q23.3 or 3q13.11). A homozygous deletion of Cbl-b region was seen in a CP patient. Cbl family mutations were associated with a more complex karyotype than TET2 mutations (67% vs. 17% cases with abnormal phenotype). Patients with Cbl family mutations were resistant to imatinib which was effective in only 2 out of 6 patients with TET2mutations. Dasatinib was effective in 2 patients with TET2 mutation. Median over all survival of progressed CML was 47, 49 and 48 months in patients with Cbl, TET2 or no mutations, respectively. In conclusion, our results indicate that Cbl family mutations can occur as secondary lesions in myeloid type aggressive CML (AP and myeloid BC), but not in lymphoid types. TET2 mutations were identified in both lymphoid BC and Ph1+ALL, as well as myeloid BC and AP. In contrast to CMML or JMML in which a vast majority of mutations are homozygous, all Cbl family mutations were heterozygous (no LOH). Similarly, all but two TET2 mutations were heterozygous (1 hemizygous in del4 and 1 homozygous case in UPD4q), suggesting that additional cooperating lesions affecting corresponding pathways may be present. These mutations likely represent secondary lesions which contribute to more either progression (CML) or more aggressive features (Ph+ ALL) and characterize disease refractory to therapy with imatinib. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2558-2558
Author(s):  
Y. Lucy Liu ◽  
Yan Yan ◽  
Shelly Y. Lensing ◽  
Todd Cooper ◽  
Peter D. Emanuel

Abstract Abstract 2558 Juvenile myelomonocytic leukemia (JMML) is a rare disease of early childhood with a predilection for the monocyte/macrophage lineage. The pathogenesis of JMML is linked to dysregulated signal transduction through the NF1/RAS signaling pathway that is partially caused by genetic mutation of Ras, PTPN11, and c-CBL, or loss-of heterozygosity of Nf1. The hallmark of JMML is that JMML cells are selectively hypersensitive to GM-CSF in vitro. We previously reported that protein deficiencies of PTEN, CREB, and Egr-1 were frequently observed in JMML (67–87%). Recent research indicated that CREB was regulated by miR-34b, and Egr-1 was targeted by miR-183. We hypothesized that microRNAs may play an important role in contributing to the deficiency of these proteins. Using relative-quantitative real-time PCR, we evaluated the expression levels of miR-34b and miR-183 in mononuclear cells from 47 JMML patients. We found that the median level of miR-183 was significantly higher in JMML in comparison to normal controls (median=13.8 vs 4.2, p<0.001); but the median level of miR-34b was only slightly higher in JMML subjects, and not significantly so, compared to normal individuals (median=1.4 vs 1.0, p>0.05). This suggests that miR-34b does not play a significant role in JMML. Since extreme monocyte accumulation is one of the critical characteristics of JMML, we analyzed the correlation between the expression level of miR-183 and the monocyte percentage in the peripheral blood. Strikingly, there was a significant correlation between the expression level of miR-183 and the monocyte percentage in the peripheral blood from 34 patients who had available data (p<0.05). Based on a robust regression analysis, for every unit increase in the square root of RQ miR-183, the monocyte percentage significantly increased by 0.73% (SE=0.32%, p=0.023). This is the first evidence suggesting that microRNAs may contribute to the pathogenesis of JMML. miR-183 may also serve as an important biomarker that can be directly and quantitatively linked to significant clinical parameters in JMML. It also may ultimately provide a target for JMML therapy. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document