Microsatellite Instability (MSI) In High Risk Myelodysplastic Syndrome (MDS) and Acute Myeloid Leukaemia (AML) Cells Promotes Frameshift Mutations In DNA Repair Genes: Indications for PARP Inhibitor Therapy.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1194-1194
Author(s):  
Terry J Gaymes ◽  
Azim Mohamedali ◽  
Austin G Kulasekararaj ◽  
Sydney Shall ◽  
Ghulam J. Mufti

Abstract Abstract 1194 Despite major advances in the biology and pathogenesis of myelodysplastic syndrome (MDS) and acute myeloid leukaemia (AML) identification of the most effective and safest form of treatment continue to present a formidable challenge particularly in older patients. Older patients (>70 years) that constitute the majority of MDS/AML patients are often resistant to chemotherapy, achieve short lived remission and are not candidates for stem cell transplantation. Therefore the emphasis is to prolong survival or improve the quality of life. Currently, a number of therapeutic strategies are being evaluated and these include treatment with DNA methyltransferase or histone deacetylase inhibitors. Seminal work in breast cancer have shown that inhibitors of poly ADP ribose polymerase (PARP) activity can selectively target tumour cells through exploitation of inherent DNA repair defects. MDS/AML are characterized by genomic instability (GI) and single nucleotide polymorphism arrays (SNPA) karyotyping show that loss of heterozygosity (LOH) and uniparental disomy (UPD) are common in MDS/AML and it has been suggested that the underlying cause of this GI is a defect in double strand DNA repair. We have demonstrated that non homologous end joining, a major pathway for the repair of double strand DNA breaks is overactive and associated with extensive joining errors in primary AML cells. Hence, potentially MDS/AML patients are candidates for PI therapy. We have also shown more recently, that 15% of MDS/AML primary patient cells and cell lines are sensitive to PARP inhibitors (PI) through exploitation of homologous recombination DNA repair defects. To further elucidate the mechanisms that underlie PI sensitivity in MDS/AML we tested for microsatellite instability (MSI) in MDS/AML cell lines and high risk MDS patients and the presence of frameshift mutations in specific DNA repair genes that confer PI sensitivity. MSI is a change in length of a microsatellite allele caused by insertion or deletion of nucleotides that are misincorporated during DNA replication and not removed by the mismatch repair pathway. Using fluorescent PCR analysis, PI sensitive cell lines, P39, KG-1 and Molm-13 showed MSI-high (instability at ≥ 2 loci) at 5 mononucleotide microsatellites, in contrast to 12 PI insensitive cell lines that showed no MSI at these loci. We also show using fluorescent PCR and DNA sequencing that these MSI positive cell lines demonstrate MSI (monoallelic 1–2 base pair [bp] deletion) in the coding region microsatellites of DNA repair genes, Ataxia telancgiectasia mutated gene (ATM), CTiP, and MRE11. Monoallelic 1–2 bp base pair deletions at these loci produced frameshift mutations that induced aberrant gene splicing transcripts in ATM and MRE11 and a markedly truncated CTiP gene transcript. No MSI was detected in DNA repair genes CHK1, RAD50, PTEN, BLM and ATR in these cell lines and no mutations were observed at any DNA repair gene microsatellite in the 13 PI insensitive cell lines. We then determined MSI in high risk MDS patients with or without monosomy 7 (-7/del7q). 13 of 63 (21%) high risk MDS patients showed MSI (9 MSI-low and 4 MSI-high). Of the 13 MSI positive patients, 7 (4 MSI-high, 3 MSI-low) had monosomy 7 and other complex chromosomal abnormalities (Group 1, 54%), 2 (MSI-low) patients had isolated monosomy 7 (Group 2, 15%) whilst 4 patients (MSI-low) had normal cytogenetics (Group 3, 30%). Constitutional DNA from these patients did not show MSI at these loci. Significantly, however, Group 3 with MSI and normal cytogenetics all had widespread UPD and cryptic chromosome changes determined by SNPA. Strikingly, thus all 13 patients with MSI possessed chromosomal abnormalities, both gross and cryptic. Furthermore, 12 patients (19%) found to be cytogenetically normal and lacking UPD and genomic aberrations by SNPA did not show MSI. We have also identified that 3 patients with MSI-high (Group 1) and 1 patient with MSI-low (Group 3) had a monoallelic 1 bp deletion in the CTiP exon coding microsatellite. 1 bp deletion within the coding exon of CTiP resulted in an abbreviated CTiP gene transcript. In conclusion, we have made the important correlation between MSI and subsequent frameshift mutations in specific DNA repair genes with the gross and cryptic chromosomal changes observed in MDS/AML. Identification of a cohort of MDS/AML patients with MSI would herald a significant advancement for the selection of candidates for PI therapy. Disclosures: No relevant conflicts of interest to declare.

2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 15144-15144 ◽  
Author(s):  
H. Yoon ◽  
K. M. Murphy ◽  
M. K. Gibson

15144 Background: Germ-line SNPs in DNA repair enzymes are studied as predictive factors in various cancers. More rarely studied, however, is the presence of SNPs in tumor cells and how they relate to both germ-line SNPs as well as outcome. We explored the presence of and relationship between germ-line and tumor SNPs in esophageal adenocarcinoma using two systems: (1) Cell lines, to determine whether loss of heterozygosity (LOH) occurs near DNA repair genes, and for genotyping; (2) Patient samples, to determine whether SNPs differ between normal and tumor mucosa. Methods: (1) For LOH analysis, we examined three short tandem repeat (STR) loci on 19q13.2- 13.3 (near DNA-repair genes XPD, ERCC1, and XRCC1) in four esophageal adenocarcinoma cell lines. (The STR markers have a false positive rate of <10-3 for LOH when all three demonstrate homozygosity.) Then, using a real-time PCR allelic discrimination TaqMan assay (AB), we analyzed two SNPs of interest in these cell lines. (2) We performed SNP analysis on tumor and adjacent normal mucosa from paraffin-embedded esophageal specimens taken at resection in patients with T3N0–1 esophageal adenocarcinoma who received preoperative cisplatin, paclitaxel, gefitinib and radiotherapy followed by transhiatal resection. Results: (1) Cell lines: SEG1 and BiC1 were consistent with LOH, showing a single-allele pattern at XPD 751 (C allele) and XPD 312 (G allele). TE7 and SKGT4 did not have LOH. (2) Tumor and normal tissue: We obtained data on two patients for XPD 751. Genotypes in normal mucosa were heterozygous for one patient and homozygous at the minor allele (Q/Q) for the second patient. Genotypes in tumor were identical to those in normal tissue. Conclusions: Our cell line data shows that LOH occurs in esophageal tumor cells at DNA-repair genes of interest. Our data in two patients with esophageal adenocarcinoma did not demonstrate a difference at XPD 751 between tumor and normal tissue. Given the technical success and encouraging data from this work, we plan to evaluate tissue from ∼90 patients who underwent preoperative cisplatin-based chemoradiotherapy followed by surgery (as part of completed ECOG trial E1201). [Table: see text]


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 276-276
Author(s):  
Terry J Gaymes ◽  
Rajani Chelliah ◽  
Austin G Kulasekararaj ◽  
Azim M Mohamedali ◽  
Sydney Shall ◽  
...  

Abstract Abstract 276 In both myelodysplatic syndrome (MDS) and acute myeloid leukaemia (AML), relapse from standard chemotherapeutic intervention is common with only 20–30% enjoying long-term disease-free survival. Allogeneic stem cell transplantation still remains the only curative treatment in MDS/AML, but only in 15–20% of patients. Older patients (>70 years) that constitute the majority of MDS/AML patients are often resistant to chemotherapy, achieve short lived remission and are not candidates for stem cell transplantation. Given the high number of patients refractory to conventional therapy and the relatively high rate of therapy relapse, efforts have been made in the search for alternative treatment strategies. Inhibition of Poly ADP ribose polymerase (PARP) activity can selectively target cancer cells through exploitation of inherent DNA repair defects. Significant single agent anti-tumour responses coupled with a wide therapeutic index have been influential in moving PARP inhibitors (PARPi) to the clinical arena. MDS/AML is characterized by chromosomal instability (CI) manifesting as deletions, translocations and chromosome losses. Single nucleotide polymorphism arrays (SNPA) karyotyping show that loss of heterozygosity (LOH) and uniparental disomy (UPD) are common in MDS/AML and thus it has been suggested that the underlying cause of this CI is a defect in double strand DNA repair. We have previously shown that 15% of AML and MDS primary patient cells and cell lines are sensitive to PARPi through exploitation of homologous recombination DNA repair defects. To explicate still further the mechanisms that support PARPi sensitivity in MDS/AML we tested for microsatellite instability (MSI) in primary high risk MDS and primary AML for the presence of frameshift mutations in specific DNA repair genes. 13 of 63 (21%) high risk MDS patients possessed MSI (9 MSI-low and 4 MSI-high). Significantly, all 13 MSI positive patients possessed chromosomal abnormalities, both gross and cryptic UPD determined by SNPA, whilst 12 patients (19%) found to be have normal cytogenetics and lacking UPD failed to demonstrate MSI. Moreover, 3 patients with MSI-high and 1 patient with MSI-low possessed a mono-allelic 1bp deletion in the CTiP exon coding microsatellite. 1bp deletion within the coding exon of CTiP would result in an abbreviated gene CTiP transcript in these patients. From a panel of 18 primary AML samples, 5 primary AML demonstrated sensitivity to the PARPi, BMN673 (100nM). Immunocytochemical staining also showed that PARPi sensitive AML cells demonstrated severely reduced rad51 and increased phospho-γH2AX foci formation compared to PARPi insensitive AML cells. This confirmed that BMN673 targeted HR deficiencies in AML PARPi sensitive cells. Strikingly, 2 of the 5 PARPi responders exhibited MSI, with 1 patient displaying a bi-allelic 1bp deletion in MRe11 and 1 patient exhibiting a mono-allelic 1bp deletion in CTiP. MSI was not observed in the 13 PARPi insensitive AML patients. Western blotting analysis identified the loss of mismatch repair proteins MLH-1 and MSH-2 respectively, in the 2 MSI positive primary AML underlying the MSI observed in the AML patients cells. Moreover, Western blotting analysis also revealed aberrant expression of Mre11 and CTiP in these patients. Finally, to confirm the relative contribution of mutant MRe11 and CTiP to PARPi sensitivity, an expression construct of MRe11 missing exons 5 to 7 (δ5–7MRe11) was transfected into the MSI negative and PARPi insensitive cell line, U937. Cytotoxicity assays and immunocytochemical staining revealed that U937 + δ5–7MRe11 demonstrated significant sensitivity to PARPi with concomitant HR DNA repair defects compared to U937 + vector control. Similarly, Si-RNA knockdown of CTiP in U937 also conferred hypersensitivity to PARPi as a result of an abrogation of functional HR DNA repair. In conclusion, we make the unique observation that MSI dependent mutations in genes that are essential for DNA repair signalling confer PARPi sensitivity in myeloid malignancy. Identification of a cohort of MDS/AML patients with MSI would signify a major development in the identification of candidates for PARPi therapy. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
Philipp N. Spahn ◽  
Xiaolin Zhang ◽  
Qing Hu ◽  
Nathaniel K. Hamaker ◽  
Hooman Hefzi ◽  
...  

AbstractChinese Hamster Ovary (CHO) cells are the primary host used for manufacturing of therapeutic proteins. However, production instability of high-titer cell lines is a major problem and is associated with genome instability, as chromosomal aberrations reduce transgene copy number and decrease protein titer. We analyzed whole-genome sequencing data from 11 CHO cell lines and found deleterious single-nucleotide polymorphisms (SNPs) in DNA repair genes. Comparison with other mammalian cells confirmed DNA repair is compromised in CHO. Restoration of key DNA repair genes by SNP reversal or expression of intact cDNAs improved DNA repair and genome stability. Moreover, the restoration of LIG4 and XRCC6 in a CHO cell line expressing secreted alkaline phosphatase mitigated transgene copy loss and improved protein titer retention. These results show for the first time that correction of key DNA repair genes yields considerable improvements in stability and protein expression in CHO, and provide new opportunities for cell line development and a more efficient and sustainable production of therapeutic proteins.


2021 ◽  
Vol 22 (23) ◽  
pp. 13030
Author(s):  
Laura Keren Urbina-Jara ◽  
Emmanuel Martinez-Ledesma ◽  
Augusto Rojas-Martinez ◽  
Francisco Ricardo Rodriguez-Recio ◽  
Rocio Ortiz-Lopez

The prevalence of breast cancer in young women (YWBC) has increased alarmingly. Significant efforts are being made to elucidate the biological mechanisms concerning the development, prognosis, and pathological response in early-onset breast cancer (BC) patients. Dysfunctional DNA repair proteins are implied in BC predisposition, progression, and therapy response, underscoring the need for further analyses on DNA repair genes. Public databases of large patient datasets such as METABRIC, TCGA, COSMIC, and cancer cell lines allow the identification of variants in DNA repair genes and possible precision drug candidates. This study aimed at identifying variants and drug candidates that may benefit Latin American (LA) YWBC. We analyzed pathogenic variants in 90 genes involved in DNA repair in public BC datasets from METABRIC, TCGA, COSMIC, CCLE, and COSMIC Cell Lines Project. Results showed that reported DNA repair germline variants in the LA dataset are underrepresented in large databases, in contrast to other populations. Additionally, only six gene repair variants in women under 50 years old from the study population were reported in BC cell lines. Therefore, there is a need for new approaches to study DNA repair variants reported in young women from LA.


DNA Repair ◽  
2015 ◽  
Vol 28 ◽  
pp. 107-115 ◽  
Author(s):  
Fabricio G. Sousa ◽  
Renata Matuo ◽  
Sai-Wen Tang ◽  
Vinodh N. Rajapakse ◽  
Augustin Luna ◽  
...  

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10418
Author(s):  
Xiongtao Yang ◽  
Guohui Wang ◽  
Runchuan Gu ◽  
Xiaohong Xu ◽  
Guangying Zhu

Background Lung cancer has the highest morbidity and mortality of cancers worldwide. Lung adenocarcinoma (LUAD) is the most common pathological subtype of lung cancer and surgery is its most common treatment. The dysregulated expression of DNA repair genes is found in a variety of cancers and has been shown to affect the origin and progression of these diseases. However, the function of DNA repair genes in surgically-treated LUAD is unclear. Methods We sought to determine the association between the signature of DNA repair genes for patients with surgical LUAD and their overall prognosis. We obtained gene expression data and corresponding clinical information of LUAD from The Cancer Genome Atlas (TCGA) database. The differently expressed DNA repair genes of surgically-treated LUAD and normal tissues were identified using the Wilcoxon rank-sum test. We used uni- and multivariate Cox regression analyses to shrink the aberrantly expressed genes, which were then used to construct the prognostic signature and the risk score formula associated with the independent prognosis of surgically-treated LUAD. We used Kaplan–Meier and Cox hazard ratio analyses to confirm the diagnostic and prognostic roles. Two validation sets (GSE31210 and GSE37745) were downloaded from the Gene Expression Omnibus (GEO) and were used to externally verify the prognostic value of the signature. OSluca online database verifies the hazard ratio for the DNA repair genes by which the signature was constructed. We investigated the correlation between the signature of the DNA repair genes and the clinical parameters. The potential molecular mechanisms and pathways of the prognostic signature were explored using Gene Set Enrichment Analysis (GSEA). Results We determined the prognostic signature based on six DNA repair genes (PLK1, FOXM1, PTTG1, CCNO, HIST3H2A, and BLM) and calculated the risk score based on this formula. Patients with surgically-treated LUAD were divided into high-risk and low-risk groups according to the median risk score. The high-risk group showed poorer overall survival than the low-risk group; the signature was used as an independent prognostic indicator and had a greater prognostic value in surgically-treated LUAD. The prognostic value was replicated in GSE31210 and GSE37745. OSluca online database analysis shows that six DNA repair genes were associated with poor prognosis in most lung cancer datasets. The prognostic signature risk score correlated with the pathological stage and smoking status in surgically-treated LUAD. The GSEA of the risk signature in high-risk patients showed pathways associated with the cell cycle, oocyte meiosis, mismatch repair, homologous recombination, and nucleotide excision repair. Conclusions A six-DNA repair gene signature was determined using TCGA data mining and GEO data verification. The gene signature may serve as a novel prognostic biomarker and therapeutic target for surgically-treated LUAD.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2763-2763
Author(s):  
Rosaria De Filippi ◽  
Stefania Crisci ◽  
Ferdinando Frigeri ◽  
Donatella Aldinucci ◽  
Domenico Galati ◽  
...  

Abstract Abstract 2763 Patients with HL recurring after stem cell transplantation (SCT) are mostly incurable. Therefore development of new agents and strategies is an impellent medical need in this setting. BDM is a hybrid purine analogue/bi-functional alkylator active in B-cell tumors. Despite preliminary evidences of efficacy in refractory HL, the molecular mechanisms underlying the potential activity of BDM towards malignant H-RS cells were never explored. We investigated patterns of BDM cytotoxicity (12.5 to 100 mmol/L) in a panel of HL-derived cell lines (L1236, L428, KMH2, HDLM2, L540) and its time-dependent (8, 24, 48, 72 hrs) effects on genes involved in DNA-damage stress and repair response, apoptosis and cell cycle checkpoints by Q-RT-PCR. BDM induced a significant time- and dose-dependent inhibition of growth and survival in all cell types. L1236 cells displayed the highest sensitivity to the agent with an IC50, at 48 hrs, of 10.7 mmol/L, as opposed to KMH2, L428, L540 and HDLM2 cells with IC50 of 11.1, 12.4, 14.8 and 16.2 mmol/L, respectively. BDM elicited a dose-dependent increase of apoptosis (30% to 50% at 72 hrs) in all cell lines, as shown by Annexin-V/propidium iodide staining. The exquisite sensitivity to BDM of L1236 cells was confirmed by clonogenic assays, since these cells, after a 24 hr exposure, showed the lowest IC50 for secondary colony formation (0.7± 0.06 mmol/L) as compared to all other cell lines (IC50 range: 3.1 ± 0.28 to 15.0 ± 1.27 mmol/L). Most notably, however, BDM, within the same concentration range, activated different cell death subroutines among the various cell lines. Q-RT-PCR disclosed that BDM-induced cell death in L1236 was mainly dependent on triggering of apoptosis, as shown by the early (8–24 hrs) up regulation of the proapoptotic genes NOXA and p21, but not p27, without appreciable changes in expression levels of genes related to activation of the mitotic catastrophe process, i.e. PLK1, Aurora A kinase (AAK), and cyclin B1. In contrast, induction of mitotic catastrophe was a main determinant of BDM action on KMH2, L428 and L540 cells, as shown by early (8 hrs) and sustained (48 hrs) down-regulation of PLK1, AAK and cyclin B1 genes, without early changes in NOXA and p21 expression levels. This was confirmed by highly aberrant mitosis and further multinucleation. Interestingly, BDM induced the sequential activation of both these cell death pathways in HDLM2 cells only. In this cells, the early (8–24 hrs) down regulation of PLK1, AAK and cyclin B1 genes, was later (48–72 hrs) followed by a significant induction of NOXA, p21 and p27 genes. The highest sensitivity of L1236 cells to BDM correlated with the delayed (72 hrs) induction of the DNA-repair genes EXO-1 and ATR, but not ATM, as opposed to the earlier (24 hrs) and sustained up regulation of these DNA-repair genes, and of ATM, in all other cell types. Accordingly, only after 72 hrs from exposure to BDM, the proliferation-related genes C-MYC, E2F2 and cyclins (D1, D2) were up regulated in surviving L1236 cells, along with a >70% reduction in G0/G1 cells, a significant (48%) increase of cells in the G2 phase of the cell cycle and a 20% increment of those in S phase. Conversely, in the other cell lines, S phase accumulation (35% to 60.5% increase) and up regulation of proliferation-related genes in surviving cells occurred, as early as 24 hrs after exposure to BDM. Overall, these results indicate that BDM affects different cell death pathways among HL-derived cell lines. Specifically, in L1236 cells the agent induces the early up regulation of proapototic genes and G2 arrest, accompanied by a delayed activation of DNA repair genes. This changes may lead to cell death through apoptosis rather than mitotic catastrophe which, conversely, appeared the predominant cell death pathway activated by BDM in the other cell lines. Notably, while determinants of BDM toxicity in ‘bona fide’ HL cell lines consistently overlap with those described for tumor B-cells of non-Hodgkin lymphomas (mitotic catastrophe), L1236 cells display a different response pattern to the agent, more reminiscent of BDM action on myeloma tumor cells. Since only L1236 cells are clonotypically related to primary H-RS cells from which were derived, our results suggest that optimal BDM dosing and scheduling in HL may be different from those adopted for other B-cell tumors. In this sense, a lower BDM dosing through a weekly schedule is currently being tested at our institution in refractory HL. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4119-4119
Author(s):  
Jan Valka ◽  
Monika Belickova ◽  
Jitka Vesela ◽  
Eliska Stara ◽  
Barbora Pejsova ◽  
...  

Abstract Background and Aims Recent studies have demonstrated that in most cases of myelodysplastic syndrome (MDS) at least one mutation has been detected, suggesting that abnormal DNA repair may represent both cause and consequence of malignant transformation. In this study we investigated a possible role of different alterations in DNA repair genes in pathogenesis of MDS. Methods Gene expression of CD34+ cells was measured by RT² Profiler PCR Arrays (Qiagen). Polymorphisms and mutations were studied by targeting next generation sequencing (SeqCap EZ System, NimbleGen). Expression analysis of 84 DNA repair genes was performed in 18 MDS patients and subsequent analysis of selected genes was performed on a cohort of 80 patients. The enrichment resequencing of 84 genes was done in 16 patients. Results Five differentially expressed genes between CD34+ cells of patient and control samples were identified (p<0.05). The increased expression was detected in MPG and XPC genes and decreased expression in RAD51, RPA3 and XRCC2 genes. RAD51 gene showed significantly higher expression in the patients with low-risk MDS forms (RA, RARS, del5q) compared to control group (p=0.0005) and to contrast down-regulated expression was detected (p=0.0002) in high-risk MDS patients (RAEB-1 and -2, AML with myelodysplasia). The group of patients with RCMD showed the average expression at the level of the control group. The expression profile shown a gravity-related decreasing trend after dividing the patients according to IPSS-R, IPSS-R cytogenetic groups and blasts count. Expression profile of XRCC2 gene has similar characteristics as RAD51 (p<0.0001). The expression of RPA3 gene was generally decreased (p<0.0001) with a decreasing trend depending on the disease severity according to MDS forms, IPSS-R and cytogenetics. The RAD51, XRCC2 and RPA-3 genes are related to homologous recombination mechanism, with XRCC2 and RPA3 as a supporting factors for RAD51. The survival curves for all the three genes shown significant differences between groups with over-, intermediate- and down-expressed gene (p=0.0001 for RAD51; 0.0022 for XRCC-2 and 0.0054 for RPA3). MPG gene expression was up-regulated by all MDS types with no significant difference between each other (p=0.0015). Deeper testing of XPC gene expression demonstrated the up-regulation only in low-risk MDS group (p=0.0084). Gene-based analysis showed seven candidate SNPs significantly associated with the disease susceptibility using the HapMAP-CEU population from NCBI PubMed database as control group. With the presence of MDS, these polymorphisms are significantly connected: rs4135113 (p=0.03), rs12917 (p=0.003), rs2230641 (p=0.01), rs2228529 and rs2228526 (p=0.04, respectively p=0.03) and rs1799977 (p=0.04). Within the distribution of tested patient groups according to cytogenetics, we observed significant increase of dependency of these polymorphisms (OR 4.1-9.7, p<0.0001) and the presence of MDS in the group of patients with very-high risk cytogenetics. Conclusions DNA repair mechanisms are responsible for correcting DNA damage and preserving genomic integrity. Our study demonstrates, that altered expression of the repair genes in CD34+ cells may be responsible for the formation and accumulation of mutations in hematological malignancies. Furthermore, we have identified genetic variants that might contribute to the pathogenesis of MDS by modifying individual risk for the disease. Supported by grant (NT/13899, NT/14377, and NT/14539) and the project for conceptual development of research organization (00023736) from the Ministry of Health of the Czech Republic. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document