Gabp Transcription Factor Is Required for the Development of Mouse Megakaryocytes.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2604-2604
Author(s):  
Zhong-Fa Yang ◽  
Timothy M Chlon ◽  
John Crispino ◽  
Alan G. Rosmarin

Abstract Abstract 2604 GABP transcription factor has been implicated in the regulation of genes that are required for normal megakaryocytic differentiation. Megakaryocytes express several related ets factors, including Fli-1, ets2, and GABP, and it has been unclear if any single ets factor plays a non-redundant role in these cells. The tetrameric GABP transcription factor complex contains two molecules of GABPα, which binds DNA, and two molecules of GABPβ, which encodes the transcription activation domain. We created mice with loxP recombination sites which flank exons that encode Gabpa ets-related DNA-binding domains (floxed Gabpa, or Gabpa fl/fl), and bred them to mice that carry Mx1-Cre. In response to injection with the synthetic polynucleotide, pIC, these mice express Cre recombinase and efficiently delete Gabpa; these animals are referred to as knock-out (KO) mice. Control mice, which carry floxed Gabpa but lack Mx1-Cre, were treated identically with pIC. Platelet counts of KO mice declined to less than 50,000 within nine days, while platelet counts in control mice were unaffected. One half of KO mice died within two weeks of Gabpa deletion due to widespread visceral hemorrhage. Histologic examination of the bone marrow and spleen reveals a loss of megakaryocytes in KO mice, compared to control animals. Residual megakaryocytes in KO mice exhibit increased expression of platelet-specific antigens, CD41 and CD42, and a significant increase of DNA ploidy. Because Gabpa KO mice died with a striking loss of megakaryocytes and platelets, yet megakaryocytic differentiation appeared to be unimpaired, we sought to better define the nature of this defect. Bone marrow from Gabpa fl/fl mice was infected with a retrovirus that expresses Cre and green fluorescent protein (GFP), or control virus that expresses only GFP; grown for three days in liquid culture conditions that foster megakaryocytic differentiation; and analyzed for CD41 and CD42 expression, ploidy, and apoptosis. Gabpa was efficiently deleted by the Cre-bearing virus, and Gabpa deletion was associated with increased expression of CD41 and CD42, and increased DNA ploidy. However, Gabpa deletion was also associated with increased megakaryocytic-associated apoptosis, and in vitro megakaryocyte colony formation was dramatically reduced in Gabpα null cells. In summary, deletion of Gabpa in mice is associated with plummeting platelet counts, widespread visceral hemorrhage, and a loss of splenic and bone marrow megakaryocytes. In vitro analysis demonstrates intact megakaryocytic differentiation and a profound loss of megakaryocytic progenitor cells. The increased expression of megakaryocytic antigens and DNA ploidy may indicate that Gabpa deletion enhances megakaryocytic differentiation or, alternatively, it may represent selective loss of more immature megakaryocytic cells following Gabpa disruption. Data that directly test these alternative hypotheses will be presented. In summary, we demonstrate that GABP plays a non-redundant role in megakaryocyte development, that GABP is required for the proliferation of committed megakaryocytic progenitors, but that GABP is not required for the later stages of megakaryocytic maturation. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2531-2531
Author(s):  
Pani A. Apostolidis ◽  
Stephan Lindsey ◽  
William M. Miller ◽  
Eleftherios T. Papoutsakis

Abstract Abstract 2531 Poster Board II-508 BACKGROUND AND HYPOTHESIS. We have previously shown that tumor suppressor p53 is activated in differentiating megakaryocytic (Mk) cells and its knock-down (KD) leads to increased polyploidization and delayed apoptosis in CHRF, a human Mk cell line. Furthermore, bone marrow (BM)-derived Mks from p53−/− mice reach higher ploidy classes in culture. Accordingly, we hypothesized that the role of p53 during megakaryopoiesis is to delimit polyploidization and control the transition from endomitosis by inhibiting DNA synthesis and promoting apoptosis. Here, we test this hypothesis by examining the differential effect of mouse thrombopoietin (rmTpo) on the ploidy of p53−/− and p53+/+ mouse Mk cells. METHODS. 8–10 week-old, male p53−/− mice and p53+/+ littermates were injected once with 1.2 μg rmTpo or saline. On days 2 and 5 after Tpo/saline treatment, tail-bleeding assays were performed to measure bleeding times/volumes, mice were bled for platelet counts and sacrificed to harvest BM. We employed flow cytometry to examine baseline ploidy in BM-resident Mks in p53−/− and p53+/+ mice as well as Mk cells generated from BM progenitors after 4 and 6 days of culture with rmTpo. RESULTS. At steady state, ploidy in BM-resident CD41+ Mk cells was similar in p53−/− and p53+/+ mice: 11.8±2.3% and 10.7±1.3% of p53−/− and p53+/+ Mks, respectively, reaching a ploidy of ≥32N (n=3-4). Platelet counts were 1.3×106±1×105/μl (12.5±1.0% reticulated) and 1.1×106±5×104/μl (12.4±1.3% reticulated) in p53−/− and p53+/+ mice, respectively (n=8). Two days following Tpo treatment of the mice, we did not observe significantly increased platelet levels, while ploidy was marginally affected. However, 5 days following Tpo treatment, we found greater ploidy in the BM in the absence of p53: 22±1.6% 16N and 10.1±0.8% ≥32N Mks in the p53−/− versus 18.6±3.3% 16N and 7.1±1.4% ≥32N Mks in the p53+/+ (n=2). This was accompanied by increased platelet formation: 23.6±8.3% reticulated platelets in the p53−/− versus 17.8±2.6% in the p53+/+ (n=2). Culture of BM cells from non-Tpo treated mice with 50ng/ml rmTpo resulted in a 50% increase in total Mks and increased polyploidy by day 6 of culture: 38.6±4.6% of p53−/− versus 19.2±2.3% of p53+/+ Mks reached ploidy classes of ≥32N (n=3-4, p < 0.01). Lack of p53 led to hyperploid Mk cells; by day 6 of culture 10.3±2.2% of p53−/− Mks were in ploidy classes of 128N and higher, while only 0.6±0.1% p53+/+ Mks achieved such high ploidy (n=3-4). In addition, a 6 day culture with Tpo of BM cells derived from p53−/− and p53+/+ mice pre-treated with Tpo 5 days prior to sacrifice led to more profound polyploidization compared to Mks generated from the non-Tpo treated mice but only in the p53−/− Mks: 48.8±1.1% of p53−/− versus only 17.6±0.2% of p53+/+ Mks reached ploidy ≥32N (n=2). Microarray analysis comparing p53KD to control CHRF cells undergoing Mk differentiation revealed down-regulation of genes coding for platelet surface complex CD41/CD61 and CD62P in the p53KD cells. To examine the possibility of altered functionality of platelets in p53−/− mice, we performed tail-bleeding assays on the mice that did not receive Tpo. Bleeding times and volumes were generally prolonged in the absence of p53 (all p53−/− mice exceeded the 10 min duration of the assay; mean p53−/− and p53+/+ blood loss was 17μl and 10μl, respectively, n=3-4). CONCLUSIONS. Our data indicate that in vivo polyploidization and platelet formation from Mks is increased in the p53−/− relative to p53+/+ mice after Tpo administration. These data are in line with our hypothesis that p53 activation decreases the ability of Mks to respond to Tpo and undergo polyploidization. Additionally, our preliminary data on platelet functionality suggest that p53 may have a role in hemostasis. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2428-2428
Author(s):  
Satoshi Nishimura ◽  
Koji Eto ◽  
Ryozo Nagai

Abstract Blood platelets are generated in the bone marrow (BM) from their precursors, megakaryocytes (MK). Although we know that MKs produce platelets throughout life, precisely how platelets are produced in vivo remains uncertain, largely because of the rarity of MKs in the BM and the lack an adequate visualization technique. In the present study, we were able to visualize MK dynamics leading to platelet release in living animals at high resolution. To clearly understand the nature of thrombopoiesis in BM MKs, we optimized an in vivo imaging technique based on two-photon microscopy that enabled us to visualize living BM in CAG- enhanced green fluorescent protein (eGFP) mice. By visualizing living bone marrow in vivo, we observed that two modes (fragmentation and proplatelet formation) can be ongoing simultaneously in the same mouse. We observed that these two modes detectable by different morphological behavior can be ongoing simultaneously in the same BM of mouse, and are regulated by specific cytokines. Short proplatelets from megakaryocytes predominated at steady state, and more elongated proplatelets were accelerated by thrombopoietin (TPO) with responding to chronic platelet needs including recovery form BM transplantations. In contrast, acute platelet needs by blood loss, 5-FU administration or pritoneal acute inflammation increased cytoplasmic fragmentation following rapid ‘rupture’. Observed two modes are both dependent on tubulin reorganization on platelet biogenesis. In addition, platelet increase at acute phase is independent of proliferation by MK progenitors and this factor might exert apoptosis machinery on already reserved mature type of MKs. This humoral factor was identified by combination of in vitro screening systems and in vivo MK visualization analysis. Factor serum levels were reduced independently of the thrombopoietin level in human subjects with low platelet counts. It thus appears the cytokine balance dynamically regulates the mode of thrombopoiesis and the cellular programming of MKs. Thus, these novel factor may be a novel therapeutic target in thrombocytopenic situations, especially when associated with acute loss of platelets or when platelet transfusion is limited or unsuccessful. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 277-277
Author(s):  
Andrew J. Woo ◽  
Hui Huang ◽  
Taylor Piers ◽  
Alan B Cantor

Abstract Abstract 277 We previously identified the Krüppel-type zinc finger transcription factor ZBP-89 (also called zfp148) as a novel GATA1 associated protein in erythroid and megakaryocytic cells. ZBP-89 also associates with other GATA family members such as GATA2 and GATA3, Friend of GATA (FOG) cofactors, and RUNX1. It is ubiquitously expressed, but has high-level expression in a subset of tissues including thymus, spleen, bone marrow, lung and brain. Our prior studies using morpholino knockdown in zebrafish, in vitro differentiation and chimeric mouse analysis of ZBP-89 genetrap embryonic stem cells, and lentiviral shRNA knock down in primary human CD34+ cells demonstrated a functional role for ZBP-89 in erythroid and megakaryocyte maturation. In this study, we generated conditional knock out mice to further examine the requirements for ZBP-89 in vivo. On a mixed strain background, full ZBP-89 knock out mice were born at close to Mendelian ratios. However, the ZBP-89−/− mice were severely runted and had increased mortality over the first 30 days of life. Surviving pups had significant growth failure, but eventually matched their wild type and heterozygous littermates by about 6 weeks of age. Analysis of erythroid maturation in bone marrow and spleen using flow cytometry for CD71 and Ter119 demonstrated impaired erythroid maturation in a ZBP-89 allele-dose dependent manner. On a pure C57BL/6 genetic background, nearly 100% of the ZBP-89−/− mice died within the first 10 days of life from unclear causes. ZBP-89fl/fl, Mx1-Cre mice developed lymphopenia and platelet abnormalities following activation of Cre by polyI-polyC injection. The lymphopenia was due to reduction in both B and T cells. Further delineation of the T-cell defect using ZBP-89fl/fl, Lck-Cre mice demonstrated impaired maturation of double negative (CD4−CD8−) T cells at the DN3 (CD25+ CD44−) to DN4 (CD25−CD44−) stages in thymi from 5–6 week old mice. These findings indicate that ZBP-89 plays functional roles in multiple hematopoietic lineages. Moreover, they identify ZBP-89 as a novel transcriptional regulator of lymphocyte development. We speculate that this latter role involves its known interactions with GATA3, FOG-1, and/or RUNX1, which are all similarly involved in lymphopoiesis. We also show that the ZBP-89 family member ZBP-99 is highly expressed in thymus and other hematopoietic tissues, and may therefore play partially overlapping roles with ZBP-89. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2306-2306
Author(s):  
Lisa M Niswander ◽  
Jennifer L McLaughlin ◽  
Anne D Koniski ◽  
Kathleen E McGrath ◽  
James Palis

Abstract Abstract 2306 Thrombocytopenia complicates many diseases and can be a life-threatening consequence of genotoxic treatments including chemotherapy and radiation therapy. It is well established that thrombopoiesis occurs in the bone marrow where mature megakaryocyte (MK) precursor cells associate with sinusoidal endothelial cells and extrude pro-platelets into the vasculature. There has been much interest in elucidating mechanisms that control megakaryopoiesis and in utilizing these pathways to increase platelet output. The leading paradigm of megakaryopoiesis centers on the ability of cytokines, chiefly thrombopoietin (TPO), to promote MK progenitor proliferation and MK precursor maturation. More recently, attention has been focused on the ability of the bone marrow microenvironment to promote MK maturation and platelet formation. The chemokine stromal-derived factor-1 (SDF-1, also known as CXCL12), signaling through its receptor CXCR4, is implicated in the chemotaxis of MKs toward sinusoidal vessels, and in vivo evidence demonstrates that sustained plasma elevation of SDF-1 can increase platelet counts (Avecilla et al. Nature Medicine, 2004). To more specifically determine the short-term effects of SDF-1, we injected mice with a single 400ng intravenous dose of SDF-1 and enumerated the progenitor, precursor, and platelet compartments of the MK lineage. At 24 hours, SDF-1 induced a 30% increase in platelets compared to vehicle control (p<0.05). However, MK progenitors, defined functionally by the formation of acetylcholinesterase-positive colonies in vitro, and MK precursors, enumerated by imaging flow cytometry, were both unchanged (p>0.7 and p>0.5). To quantitatively determine if SDF-1 regulates the physical interactions of MK precursors with sinusoidal endothelium, we developed a double immunohistochemistry assay using Gp1Bβ to distinguish MK precursors and MECA32 to identify vascular endothelial cells. In vehicle-treated mice, 39% of MKs in the marrow localized to the sinusoidal endothelium, and this increased to 53% 24 hours following SDF-1 treatment (p<0.01). Thus, a single dose of SDF-1 acutely increases the number of MKs in the vascular niche as well as peripheral platelet counts. Given these results, we tested whether a single dose of SDF-1 could improve thrombocytopenia in the setting of radiation-induced marrow injury. Mice were treated with SDF-1 4 days after sublethal 4Gy total body irradiation (TBI), when radiosensitive MK progenitors are drastically reduced and radioresistant MK precursors and platelets are just beginning to decline. At 5 days post-TBI (24 hours post-SDF-1), SDF-1 treatment increased the number of circulating platelets by 15% (p<0.01) as well as the percentage of MK precursors in the vascular niche by over 15% (p<0.02) without changing the total number of MK progenitors or precursors in the marrow compared to irradiated vehicle controls (p>0.4 and p>0.7). As the platelet response following SDF-1 was less robust in the setting of TBI injury, we hypothesized that SDF-1-induced thrombopoiesis may improve if the number of MK precursors available to move to the vascular niche is increased. To test this, we administered TPO and SDF-1 at 2 hours and at 4 days, respectively, following TBI. TPO treatment alone resulted in 15% more MK precursors than irradiated vehicle controls at 5 days post-TBI (p<0.02), but did not significantly change the platelet count (p>0.2). In contrast, mice receiving both TPO and SDF-1 had over 20% more platelets than irradiated vehicle controls (p<0.01) and over 12% more platelets than mice receiving TPO alone (p<0.05) with the same increase in MK precursors (p>0.9). Correcting for differences in MK precursor numbers, mice receiving TPO and SDF-1 post-TBI had 1.8-fold more MKs in the vascular niche than irradiated vehicle controls (p<0.03) and 1.4-fold more than mice treated with TPO only (p<0.02). Taken together, we provide quantitative data in support of the concept that SDF-1 acutely promotes increases in the number of MK precursors in the vascular niche as well as peripheral platelet counts, and this effect correlates with the number of MK precursors in the marrow. Therapeutic approaches combining agents that first increase MK number and secondly increase MKs poised for thrombopoiesis by localization within the vascular niche may be a novel strategy to maximally increase peripheral platelet counts. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1197-1197
Author(s):  
Daisuke Kurotaki ◽  
Haruka Sasaki ◽  
Naoki Osato ◽  
Izumi Sasaki ◽  
Chika Kaneda ◽  
...  

Abstract Basophils are the rarest granulocytes circulating in the peripheral blood. They play critical roles in anti-parasite Th2-type immune responses and chronic allergic disorders. The developmental pathway for basophils has been recently demonstrated; myeloid progenitors pass through common myeloid progenitors, granulocyte-monocyte progenitors, granulocyte-committed progenitors (GPs), and basophil-committed progenitors (BaPs) in the bone marrow. BaPs then give rise to mature basophils. However, our understanding of how this pathway is regulated remains still elusive. Interferon Regulatory Factor-8 (IRF8), a hematopoietic cell-specific IRF transcription factor, is essential for the development of monocytes, dendritic cells, and eosinophils, while it inhibits neutrophil differentiation. Its role in the development of basophils has yet to be analyzed. In this study, we investigated whether IRF8 has any role in the development of the basophil lineage. We found that Irf8–/– mice displayed a severe reduction of basophil counts in the bone marrow, peripheral blood and spleen compared to wild-type (WT) mice. Irf8–/– mice retained GPs but lacked BaPs. Cell transfer experiments revealed that the defect of basophil development in Irf8–/– mice resides in bone marrow cells. We utilized IRF8-GFP chimera knock-in mice to examine IRF8 protein expression in the basophil lineage at a single cell level. We found that GPs, but not BaPs and mature basophils, expressed IRF8. Furthermore, purified Irf8–/– GPs failed to efficiently give rise to basophils in vitro. These results indicate that IRF8 acts at the stage of GPs in a cell-intrinsic manner. To understand the mechanism by which IRF8 promotes basophil development, we performed transcriptome analysis of purified GPs from WT and Irf8–/– mice by microarray. Because IRF8 is no more expressed in BaPs, we envisaged that IRF8 acts by inducing downstream transcription factors in GPs. The expression of several transcription factor genes such as Gata2 and Spib was reduced in Irf8–/– GPs compared to WT GPs. Analysis of DNA motifs in the promoter regions of genes downregulated in Irf8–/– GPs predicted that GATA transcription factor(s) may act downstream of IRF8. Indeed, retroviral transduction of GATA2, known to be essential for basophil development, into Irf8–/– hematopoietic progenitor cells rescued basophil differentiation in vitro. On the other hand, Spib–/– mice showed no obvious defects in basophil development. Taken together, these results suggest that the IRF8-GATA2 axis in GPs critically regulates basophil development. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2336-2336
Author(s):  
Elenoe C Smith ◽  
Jonathan Noah Thon ◽  
Stephanie Ann Massaro ◽  
Joseph E. Italiano ◽  
Diane Krause

Abstract Abstract 2336 Background: The transcriptional cofactors, MKL1 and MKL2, are members of the myocardin related factor family, which bind and activate the transcription factor Serum Response Factor (SRF) (Cen et al J Cell Biochem, 2004). Megakaryocytes, large, highly polyploid myeloid cells give rise to platelets, which promote blood clotting in response to tissue damage. The Krause lab has reported a significant decrease in Mk ploidy with a 50% decrease in mature platelets in Mkl1 knockout (KO) mice, indicating that MKL1 may contribute to megakaryocyte maturation (Cheng et al Blood, 2009). The phenotype of the Mk specific (PF4-Cre) Srf conditional KO (SRF PF4-cKO) further supports the importance for the MKL1/SRF pathway in Mk differentiation (Halene et al Blood, 2010); although similar to the Mkl1 KO mouse, the Srf PF4-cKO mouse has a more severe phenotype with a 90% decrease in platelet counts suggesting the presence of compensatory proteins or redundant pathways in Mkl1 KO mice. Objective: This study addresses the hypothesis that MKL2 is critical for normal megakaryocytopoiesis particularly in the absence of MKL1. Methods and Results: Using bone marrow (BM) transplantation, we determined that the Mkl1 KO phenotype (decreased megakaryocyte ploidy and decreased platelets) is cell autonomous. Lethally irradiated WT recipients of Mkl1 KO BM cells had a 50% decrease in platelet count, as well as significantly decreased ploidy indicated by the percentage of Mk with 2N (60% and 40% in the recipients of Mkl1 KO vs WT BM, respectively, p<0.0001). Transduction of Mkl1 KO donor BM cells with retrovirus encoding MKL1 cDNA rescued the ploidy phenotype. Although the Mkl1 KO mice are thrombocytopenic, their bleeding times are not significantly increased. In vitro studies show that MKL2 and MKL1 activate the same promoters in luciferase assays and have similar subcellular localization patterns, suggesting redundancy. To assess MKL2's compensatory function in Mkl1 KO mice, we crossed Mkl2F/F mice with PF4-Cre mice to induce Mkl2 deletion in the Mk compartment (Mkl2 PF4-cKO). The Mkl2 PF4-cKO mice were mated onto the Mkl1 KO background to create double KO (DKO) megakaryocytes. The megakaryocyte ploidy and platelet counts (decreased by 90%) of DKO mice are more severe than the Mkl1 KO and comparable to the Srf PF4-Cre cKO mice In addition, bleeding times were significantly increased compared to WT and Mkl1 KO mice (p<0.0001). Electron microscopy and immunofluorescence of DKO megakaryocytes and platelets indicate abnormal cytoskeletal and membrane organization with decreased granule complexity. These morphological changes are consistent with abnormal in vitro platelet activation in response to ADP or thrombin. Conclusions: Our investigation reveals that both MKL1 and MKL2 are important for megakaryocyte differentiation, and that MKL2 mitigates the phenotype of MKL1 deficient megakaryocytes. The Mkl1 KO/Mkl2 PF4-cKO (DKO) mice phenocopy the Srf PF4-cKO mice suggesting that SRF activity in megakaryocyte differentiation is dependent on the myocardin related transcription factor family of proteins. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 507-507
Author(s):  
Tomer Itkin ◽  
Shiri Gur-Cohen ◽  
Aya Ludin ◽  
Alexander Kalinkovich ◽  
Karin Golan ◽  
...  

Abstract Abstract 507 Bone marrow (BM) endothelial cells (BMECs) serve as ‘niche’ cells for both hematopoietic and mesenchymal stem and progenitor cells (HSPC/MSPC). Yet BMECs control of HSPC bi-directional trafficking between the BM and peripheral blood (PB) through the blood-bone marrow-barrier (BBMB) is poorly understood. In vivo treatment with the pro-angiogenic cytokine FGF-2 reduced BM CXCL12 levels, and functionally upregulated CXCR4 expression on primitive Lineage−/Sca-1+/c-Kit+ (LSK) HSPCs accompanied by their increased in vitro CXCL12-induced migration. However, instead of expected HSPC mobilization effect, FGF-2 treatment resulted in reduced numbers of HSPCs in the PB while increasing BM HSPC levels. Based on this, we hypothesized that FGF-2 modifies the BM vascular endothelium, which may be responsible for the observed increase in HSPC retention. Accordingly, we examined BBMB permeability by injecting fluorescently labeled Low Density Lipoprotein (LDL). FGF-2 treatment resulted in reduced BM penetration and incorporation of LDL. Moreover, BM homing of HSPCs was significantly reduced in FGF-2 treated recipients. To further examine endothelial involvement, applying the murine CRE-Lox system for conditional gene knock-out, we used VE-Cadherin-CREERT2 transgenic mice crossed with FGFR1flox/flox/FGFR2flox/flox mice to generate endothelial specific tamoxifen-inducible knock-out of the two endothelial predominantly expressed FGF receptors (eFGFR1/2 KO). FGF-2 treatment of eFGFR1/2 KO mice did not exhibit increased BM retention and reduced homing capabilities of HSPCs as in WT treated mice, suggesting that endothelial specific activation of FGF signaling regulates the BBMB functional control of HSPC bi-directional trafficking. Importantly, eFGFR1/2 KO mice exhibited reduced levels of CD45−/CD11b−/Ter-119−/Sca-1low/-/PDGFβR+ MSPCs together with reduced levels of CD34−LSK and SLAM HSPCs. FGF-2 treatment increased both HSPC and MSPC levels in WT, but not in eFGFR1/2 KO mice. These results imply that hampering endothelial FGF signaling interferes with HSPC/MSPC maintenance, while increasing BBMB permeability. Mechanistically, FGF-2 treatment resulted in decreased MMP-9 protease activity levels in BM supernatants combined with upregulated Timp-1 (an endogenous MMP-9 inhibitor) mRNA levels in total BM cells. Furthermore, FGF-2 treatment reduced eNOS phosphorylation and NO content in total BM cells and in BMECs. As both NO and MMP-9 can promote VE-Cadherin shedding, and subsequently increase endothelial barrier permeability, we observed increased VE-Cadherin expression levels on BMECs following FGF-2 treatment. Supporting this notion, in vivo administration of neutralizing VE-Cadherin antibodies efficiently increased HSPC egress by increasing BBMB permeability. Additionally, VE-Cadherin neutralization increased HSPC BM homing and LDL incorporation. These results reveal that interfering with endothelial adhesion interactions increases HSPC egress and homing. Examination of eNOS KO, Timp-1 KO and WT mice revealed that during steady state, mature WBC counts in the PB were similar. However, PB HSPC numbers were decreased in eNOS KO mice and increased in Timp-1 KO mice as measured by CFU-C and LSK. Similarly, HSPC BM homing capacity and LDL incorporation were decreased in eNOS KO mice and increased in Timp-1 KO mice. These results suggest that NO and MMP-9 mediated shedding of VE-Cadherin promotes BBMB permeability, which regulates egress and homing of immature HSPCs. In conclusion, our findings reveal that FGF-2-induced expansion of both HSPCs and MSPCs involves BMEC activation. Yet, FGF-stimulated HSPCs fail to egress into the PB and are retained in the BM due to decreased endothelial BBMB permeability. Thus, FGF signaling in BMECs may serve as a “gate-keeper” for HSPC trafficking synchronized with HSPC/MSPC maintenance. We suggest that BMECs are dynamically balanced between their dual role as a ‘niche’, regulating HSPC and MSPC maintenance and as a selective, anatomical barrier regulating HSPC bi-directional trafficking. When the BBMB restricts HSPC trafficking via reduced permeability, it provides better HSPC/MSPC support and maintenance. On the other hand, upon functioning as a trafficking site with increased BBMB permeability, BMEC-provided support and maintenance is reduced. Disclosures: No relevant conflicts of interest to declare.


2010 ◽  
Vol 119 (11) ◽  
pp. 805-810 ◽  
Author(s):  
Satoshi Ohno ◽  
Shigeru Hirano ◽  
Ichiro Tateya ◽  
Shin-Ichi Kanemaru ◽  
Hiroo Umeda ◽  
...  

Objectives: Treatment of vocal fold scarring remains a therapeutic challenge. Our group previously reported the efficacy of treating injured vocal folds by implantation of bone marrow—derived stromal cells containing mesenchymal stem cells. Appropriate scaffolding is necessary for the stem cell implant to achieve optimal results. Terudermis is an atelocollagen sponge derived from calf dermis. It has large pores that permit cellular entry and is degraded in vivo. These characteristics suggest that this material may be a good candidate for use as scaffolding for implantation of cells. The present in vitro study investigated the feasibility of using Terudermis as such a scaffold. Methods: Bone marrow—derived stromal cells were obtained from GFP (green fluorescent protein) mouse femurs. The cells were seeded into Terudermis and incubated for 5 days. Their survival, proliferation, and expression of extracellular matrix were examined. Results: Bone marrow—derived stromal cells adhered to Terudermis and underwent significant proliferation. Immunohistochemical examination demonstrated that adherent cells were positive for expression of vimentin, desmin, fibronectin, and fsp1 and negative for beta III tubulin. These findings indicate that these cells were mesodermal cells and attached to the atelocollagen fibers biologically. Conclusions: The data suggest that Terudermis may have potential as stem cell implantation scaffolding for the treatment of scarred vocal folds.


1995 ◽  
Vol 15 (6) ◽  
pp. 3147-3153 ◽  
Author(s):  
G A Blobel ◽  
C A Sieff ◽  
S H Orkin

High-dose estrogen administration induces anemia in mammals. In chickens, estrogens stimulate outgrowth of bone marrow-derived erythroid progenitor cells and delay their maturation. This delay is associated with down-regulation of many erythroid cell-specific genes, including alpha- and beta-globin, band 3, band 4.1, and the erythroid cell-specific histone H5. We show here that estrogens also reduce the number of erythroid progenitor cells in primary human bone marrow cultures. To address potential mechanisms by which estrogens suppress erythropoiesis, we have examined their effects on GATA-1, an erythroid transcription factor that participates in the regulation of the majority of erythroid cell-specific genes and is necessary for full maturation of erythrocytes. We demonstrate that the transcriptional activity of GATA-1 is strongly repressed by the estrogen receptor (ER) in a ligand-dependent manner and that this repression is reversible in the presence of 4-hydroxytamoxifen. ER-mediated repression of GATA-1 activity occurs on an artificial promoter containing a single GATA-binding site, as well as in the context of an intact promoter which is normally regulated by GATA-1. GATA-1 and ER bind to each other in vitro in the absence of DNA. In coimmunoprecipitation experiments using transfected COS cells, GATA-1 and ER associate in a ligand-dependent manner. Mapping experiments indicate that GATA-1 and the ER form at least two contacts, which involve the finger region and the N-terminal activation domain of GATA-1. We speculate that estrogens exert effects on erythropoiesis by modulating GATA-1 activity through protein-protein interaction with the ER. Interference with GATA-binding proteins may be one mechanism by which steroid hormones modulate cellular differentiation.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 42-42
Author(s):  
Xiaoli Liu ◽  
Dongyue Zhang ◽  
Hao Wang ◽  
Qian Ren ◽  
Lina Wang ◽  
...  

Macrophages are important member in tissue microenvironments and play diverse physiologic and pathologic roles. Leukemia associated macrophages (LAM) are a kind of specifically activated macrophages in leukemia microenvironment, which are different from M1, M2 and TAMs. We have reported the heterogeneities in gene expression profiles of LAMs. However, MicroRNA expression profiles of LAMs and regulatory mechanism are still unknown. Here, a MLL-AF9 induced mouse acute myeloid leukemia (AML) model was used, and LAMs in the spleen and bone marrow were sorted for microRNA sequencing. The microRNA expression profiles of LAMs in bone marrow and spleen in AML mice were different from macrophages from control mice. Based on the volcano plot, more than 100 microRNAs were differentially expressed in LAMs compared with macrophages in control mice. Next, five differentially expressed microRNAs were selected and verified by qRT-PCR in LAMs from spleen. The results showed that miR-451a and miR-155-5p in spleen LAMs were significantly upregulated in LAMs from spleen. Overexpression of miR-451a altered the morphology of macrophages, enhanced the phagocytic ability of macrophages, and promotes the expression of macrophage differentiation marker CD11b. Furthermore, overexpression of miR-451a had little effect on M0 macrophages, but increased the proliferation capacity of macrophages upon stimulation toward M1 or M2 phenotype. MiR-451a overexpressed-macrophages had higher level of iNOS when stimulated with LPS or IL-4 whereas there was no difference in the expression of IL-1β, IL-6, CD206 and Arg-1 between MiR-451a overexpressed-macrophages and control macrophage. Therefore, our data revealed the characteristics of the microRNA expression profile of LAMs for the first time, and verified the effect of miR-451a on macrophage in vitro. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document