Inhibition of Hexokinase II Inactivates ABC Transporters and Restores Drug Sensitivity in Myeloma Cells

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 135-135
Author(s):  
Ayako Nakano ◽  
Masahiro Abe ◽  
Daisuke Tsuji ◽  
Hirokazu Miki ◽  
Akishige Ikegame ◽  
...  

Abstract Abstract 135 Malignant cells aberrantly up-regulate ATP-binding cassette (ABC) transporters and ATP-dependent drug efflux pumps, which causes drug resistance. Because the activity of TCA cycle in mitochondria is suppressed through oncogenic alterations including the mutation of p53, ATP is largely produced by aerobic glycolytic metabolism enhanced in malignant cells (the Warburg effect). Hexokinase II (HKII), a key enzyme of glycolysis, is widely over-expressed in cancer cells. However, HKII levels and its roles in ATP production and ATP-dependent cellular process have not been elucidated in hematopoietic malignant cells including myeloma (MM) cells. In the present study, we therefore explored the expression levels of HKII and the effect of HKII inhibition on ABC transporter activity as well as the susceptibility to chemotherapeutic agents in MM cells. HKII protein was constitutively expressed at higher level in MM cells than in normal peripheral blood mononuclear cells (PBMCs). The expression level of HKII in MM cells was further up-regulated when cocultured with osteoclasts. 3-bromopyruvate (3BrPA), an inhibitor of HKII promptly inhibited glycolysis and substantially suppressed ATP production in MM cells but not in normal PBMCs. 3BrPA preferentially induced cell death in MM cells but not in normal hematopoietic cells in bone marrow samples from patients with MM, suggesting that HKII is a potential target for treatment of MM cells. We next examined the effects of 3BrPA on ABC transporter activity in RPMI 8226 (MM) and KG-1 (acute myeloid leukemia) cells which are aberrantly over-expressed breast cancer resistance protein (ABCG2) and P-glycoprotein (ABCB1), respectively. After passive incorporation of auto-fluorescence emitting daunorubicin, these cells were washed and incubated for 2 hours without daunorubicin in the absence or presence of 3BrPA, and then the intracellular daunorubicin levels were measured by flow cytometry. Treatment with 3BrPA markedly enhanced the accumulation and retention of daunorubicin in both cells. Therefore, inhibition of HKII by 3BrPA appears to be able to effectively deplete intracellular ATP production and suppress ABC transporter activity. Importantly, 3BrPA restored cytotoxic effects of doxorubicin and daunorubicin on RPMI 8226 and KG-1 cells. We next focused on “Side population (SP)” which is regarded as a highly drug-resistant fraction with enhanced ABC transporter activity, and contains clonogenic or tumor-initiating cells. SP cells isolated from RPMI 8226 cells exhibited higher levels of glycolysis with an increased expression of genes involved in the glycolytic pathway. Treatment with 3BrPA abolished Hoechst 33342 exclusion in the SP cells, and clonogenic capacity in RPMI 8226 and KG-1 cells. Furthermore, 3BrPA cooperatively suppressed subcutaneous tumor growth in combination with doxorubicin in RPMI 8226-implanted mice. These results demonstrate that HKII is a tumor specific target for treatment of MM and that inhibition of HKII effectively depletes ATP and inactivate ABC transporters to overcome drug resistance. ABC transporter-expressing SP cells with enhanced glycolysis and clonogenic cells with high proliferative potential are suggested to be a good target of the inhibition of glycolysis. These findings highlight a novel role of enhanced glycolysis in malignant cells in tumor growth and drug resistance, and relevance to anti-cancer strategies attempting to target unique metabolic pathway of cancer cells. Disclosures: No relevant conflicts of interest to declare.

2021 ◽  
Vol 12 ◽  
Author(s):  
Huan Xiao ◽  
Yongcheng Zheng ◽  
Lingling Ma ◽  
Lili Tian ◽  
Qiu Sun

Multiple drug resistance (MDR), referring to the resistance of cancer cells to a broad spectrum of structurally and mechanistically unrelated drugs across membranes, severely impairs the response to chemotherapy and leads to chemotherapy failure. Overexpression of ATP binding cassette (ABC) transporters is a major contributing factor resulting in MDR, which can recognize and mediate the efflux of diverse drugs from cancer cells, thereby decreasing intracellular drug concentration. Therefore, modulators of ABC transporter could be used in combination with standard chemotherapeutic anticancer drugs to augment the therapeutic efficacy. This review summarizes the recent advances of important cancer-related ABC transporters, focusing on their physiological functions, structures, and the development of new compounds as ABC transporter inhibitors.


Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 613 ◽  
Author(s):  
Sophie E. B. Ambjørner ◽  
Michael Wiese ◽  
Sebastian Christoph Köhler ◽  
Joen Svindt ◽  
Xamuel Loft Lund ◽  
...  

ATP-binding cassette (ABC) transporters, such as breast cancer resistance protein (BCRP), are key players in resistance to multiple anti-cancer drugs, leading to cancer treatment failure and cancer-related death. Currently, there are no clinically approved drugs for reversal of cancer drug resistance caused by ABC transporters. This study investigated if a novel drug candidate, SCO-201, could inhibit BCRP and reverse BCRP-mediated drug resistance. We applied in vitro cell viability assays in SN-38 (7-Ethyl-10-hydroxycamptothecin)-resistant colon cancer cells and in non-cancer cells with ectopic expression of BCRP. SCO-201 reversed resistance to SN-38 (active metabolite of irinotecan) in both model systems. Dye efflux assays, bidirectional transport assays, and ATPase assays demonstrated that SCO-201 inhibits BCRP. In silico interaction analyses supported the ATPase assay data and suggest that SCO-201 competes with SN-38 for the BCRP drug-binding site. To analyze for inhibition of other transporters or cytochrome P450 (CYP) enzymes, we performed enzyme and transporter assays by in vitro drug metabolism and pharmacokinetics studies, which demonstrated that SCO-201 selectively inhibited BCRP and neither inhibited nor induced CYPs. We conclude that SCO-201 is a specific, potent, and potentially non-toxic drug candidate for the reversal of BCRP-mediated resistance in cancer cells.


2020 ◽  
Vol 19 ◽  
pp. 153303382094580
Author(s):  
Ting Zhan ◽  
Xiaoli Chen ◽  
Xia Tian ◽  
Zheng Han ◽  
Meng Liu ◽  
...  

Background: Pancreatic cancer is an aggressive type of cancer with poor prognosis, short survival rate, and high mortality. Drug resistance is a major cause of treatment failure in the disease. MiR-331-3p has been reported to play an important role in several cancers. We previously showed that miR-331-3p is upregulated in pancreatic cancer and promotes pancreatic cancer cell proliferation and epithelial-to-mesenchymal transition–mediated metastasis by targeting ST7L. However, it is uncertain whether miR-331-3p is involved in drug resistance. Methods: We investigated the relationship between miR-331-3p and pancreatic cancer drug resistance. As part of this, microRNA mimics or inhibitors were transfected into pancreatic cancer cells. Quantitative polymerase chain reaction was used to detect miR-331-3p expression, and flow cytometry was used to detect cell apoptosis. The Cell Counting Kit-8 assay was used to measure the IC50 values of gemcitabine in pancreatic cancer cells. The expression of multidrug resistance protein 1, multidrug resistance-related protein 1, breast cancer resistance protein, β-Catenin, c-Myc, Cyclin D1, Bcl-2, and Caspase-3 was evaluated by Western blotting. Results: We confirmed that miR-331-3p is upregulated in gemcitabine-treated pancreatic cancer cells and plasma from chemotherapy patients. We also confirmed that miR-331-3p inhibition decreased drug resistance by regulating cell apoptosis and multidrug resistance protein 1, multidrug resistance-related protein 1, and breast cancer resistance protein expression in pancreatic cancer cells, whereas miR-331-3p overexpression had the opposite effect. We further demonstrated that miR-331-3p effects in drug resistance were partially reversed by ST7L overexpression. In addition, overexpression of miR-331-3p activated Wnt/β-catenin signaling in pancreatic cancer cells, and ST7L overexpression restored activation of Wnt/β-catenin signaling. Conclusions: Taken together, our data demonstrate that miR-331-3p contributes to drug resistance by activating Wnt/β-catenin signaling via ST7L in pancreatic cancer cells. These data provide a theoretical basis for new targeted therapies in the future.


Biodiscovery ◽  
2017 ◽  
Vol 20 ◽  
pp. e11211 ◽  
Author(s):  
Petr Mlejnek ◽  
Petr Dolezel ◽  
Eliska Ruzickova

2018 ◽  
Vol 45 (2) ◽  
pp. 591-604 ◽  
Author(s):  
Guinever Eustaquio do Imperio ◽  
Enrrico Bloise ◽  
Mohsen Javam ◽  
Phetcharawan Lye ◽  
Andrea Constantinof ◽  
...  

Background/Aims: The ATP-binding cassette (ABC) transporters mediate drug biodisposition and immunological responses in the placental barrier. In vitro infective challenges alter expression of specific placental ABC transporters. We hypothesized that chorioamnionitis induces a distinct pattern of ABC transporter expression. Methods: Gene expression of 50 ABC transporters was assessed using TaqMan® Human ABC Transporter Array, in preterm human placentas without (PTD; n=6) or with histological chorioamnionitis (PTDC; n=6). Validation was performed using qPCR, immunohistochemistry and Western blot. MicroRNAs known to regulate P-glycoprotein (P-gp) were examined by qPCR. Results: Up-regulation of ABCB9, ABCC2 and ABCF2 mRNA was detected in chorioamnionitis (p<0.05), whereas placental ABCB1 (P-gp; p=0.051) and ABCG2 (breast cancer resistance protein-BCRP) mRNA levels (p=0.055) approached near significant up-regulation. In most cases, the magnitude of the effect significantly correlated to the severity of inflammation. Upon validation, increased placental ABCB1 and ABCG2 mRNA levels (p<0.05) were observed. At the level of immunohistochemistry, while BCRP was increased (p<0.05), P-gp staining intensity was significantly decreased (p<0.05) in PTDC. miR-331-5p, involved in P-gp suppression, was upregulated in PTDC (p<0.01) and correlated to the grade of chorioamnionitis (p<0.01). Conclusions: Alterations in the expression of ABC transporters will likely lead to modified transport of clinically relevant compounds at the inflamed placenta. A better understanding of the potential role of these transporters in the events surrounding PTD may also enable new strategies to be developed for prevention and treatment of PTD.


2020 ◽  
Vol 41 (10) ◽  
pp. 1329-1340 ◽  
Author(s):  
Ga-Bin Park ◽  
Jee-Yeong Jeong ◽  
Daejin Kim

Abstract In cancer, resistance to chemotherapy is one of the main reasons for therapeutic failure. Cells that survive after treatment with anticancer drugs undergo various changes, including in cell metabolism. In this study, we investigated the effects of AKT-mediated miR-125b-5p alteration on metabolic changes and examined how these molecules enhance migration and induce drug resistance in colon cancer cells. AKT1 and AKT3 activation in drug-resistant colon cancer cells caused aberrant downregulation of miR-125b-5p, leading to GLUT5 expression. Targeted inhibition of AKT1 and AKT3 restored miR-125b-5p expression and prevented glycolysis- and lipogenesis-related enzyme activation. In addition, restoring the level of miR-125b-5p by transfection with the mimic sequence not only significantly blocked the production of lactate and intracellular fatty acids but also suppressed the migration and invasion of chemoresistant colon cancer cells. GLUT5 silencing with small interfering RNA attenuated mesenchymal marker expression and migratory activity in drug-resistant colon cancer cells. Additionally, treatment with 2,5-anhydro-d-mannitol resensitized chemoresistant cancer cells to oxaliplatin and 5-fluorouracil. In conclusion, our findings suggest that changes in miR-125b-5p and GLUT5 expression after chemotherapy can serve as a new marker to indicate metabolic change-induced migration and drug resistance development.


2015 ◽  
Vol 43 (5) ◽  
pp. 889-893 ◽  
Author(s):  
Konstantinos Beis

The ATP-binding cassette (ABC) transporters are primary transporters that couple the energy stored in adenosine triphosphate (ATP) to the movement of molecules across the membrane. ABC transporters can be divided into exporters and importers; importers mediate the uptake of essential nutrients into cells and are found predominantly in prokaryotes whereas exporters transport molecules out of cells or into organelles and are found in all organisms. ABC exporters have been linked with multi-drug resistance in both bacterial and eukaryotic cells. ABC transporters are powered by the hydrolysis of ATP and transport their substrate via the alternating access mechanism, whereby the protein alternates between a conformation in which the substrate-binding site is accessible from the outside of the membrane, outward-facing and one in which it is inward-facing. In this mini-review, the structures of different ABC transporter types in different conformations are presented within the context of the alternating access mechanism and how they have shaped our current understanding of the mechanism of ABC transporters.


2013 ◽  
Vol 12 (12) ◽  
pp. 1619-1628 ◽  
Author(s):  
Sanjoy Paul ◽  
Daniel Diekema ◽  
W. Scott Moye-Rowley

ABSTRACTIn yeast cells such as those ofSaccharomyces cerevisiae, expression of ATP-binding cassette (ABC) transporter proteins has been found to be increased and correlates with a concomitant elevation in azole drug resistance. In this study, we investigated the roles of twoAspergillus fumigatusproteins that share high sequence similarity withS. cerevisiaePdr5, an ABC transporter protein that is commonly overproduced in azole-resistant isolates in this yeast. The twoA. fumigatusgenes encoding the ABC transporters sharing the highest sequence similarity toS. cerevisiaePdr5 are calledabcAandabcBhere. We constructed deletion alleles of these two different ABC transporter-encoding genes in three different strains ofA. fumigatus. Loss ofabcBinvariably elicited increased azole susceptibility, whileabcAdisruption alleles had variable phenotypes. Specific antibodies were raised to both AbcA and AbcB proteins. These antisera allowed detection of AbcB in wild-type cells, while AbcA could be visualized only when overproduced from thehspApromoter inA. fumigatus. Overproduction of AbcA also yielded increased azole resistance. Green fluorescent protein fusions were used to provide evidence that both AbcA and AbcB are localized to the plasma membrane inA. fumigatus. Promoter fusions to firefly luciferase suggested that expression of both ABC transporter-encoding genes is inducible by azole challenge. Virulence assays implicated AbcB as a possible factor required for normal pathogenesis. This work provides important new insights into the physiological roles of ABC transporters in this major fungal pathogen.


2020 ◽  
Author(s):  
Liu Han ◽  
Qilai Long ◽  
Shenjun Li ◽  
Qixia Xu ◽  
Boyi Zhang ◽  
...  

ABSTRACTCellular senescence is a potent tumor-suppressive program that prevents neoplastic events. Paradoxically, senescent cells develop an inflammatory secretome, termed the senescence-associated secretory phenotype (SASP) and implicated in age-related pathologies including cancer. Here we report that senescent cells actively synthesize and release small extracellular vesicles (sEVs) with a distinctive size distribution. Mechanistically, SIRT1 loss supports accelerated sEV production despite enhanced proteome-wide ubiquitination, a process correlated with ATP6V1A downregulation and defective lysosomal acidification. Once released, senescent stromal sEVs significantly alter the expression profile of recipient cancer cells and enhance their aggressiveness, specifically drug resistance mediated by expression of ATP binding cassette subfamily B member 4 (ABCB4). Targeting SIRT1 with an agonist SRT2104 prevents development of cancer resistance through restraining sEV production by senescent stromal cells. In clinical oncology, sEVs in peripheral blood of posttreatment cancer patients are readily detectable by routine biotechniques, presenting a novel biomarker to monitor therapeutic efficacy and to predict long term outcome. Together, our study identifies a distinct mechanism supporting pathological activities of senescent cells, and provides a novel avenue to circumvent advanced human malignancies by co-targeting cancer cells and their surrounding microenvironment, which contributes to drug resistance via secretion of sEVs from senescent stromal cells.


Author(s):  
Masato Kobayashi ◽  
Takafumi Tsujiuchi ◽  
Yuya Okui ◽  
Asuka Mizutani ◽  
Kodai Nishi ◽  
...  

Objectives: Little is known about the affinity of 99mTc-labeled 2-methoxyisobutylisonitrile (99mTc-MIBI) and tetrofosmin (99mTc-TF) for multiple drug resistance in cancer cells. Additionally, if 99mTc-labeled compounds are metabolized immediately after injection, imaging with these compounds may not allow monitoring of multiple drug resistance in cancer cells. We examined the affinity of 99mTc-labeled compounds for these transporters and their stability in vivo. Methods: 99mTc-MIBI or 99mTc-TF was incubated in vesicles expressing P-glycoprotein (MDR1), multidrug resistance-associated protein (MRP)1-4, or breast cancer resistance protein with and without verapamil (MDR1 inhibitor) or MK-571 (MRP inhibitor). Time activity curves of 99mTc-labeled compounds were established using SK-N-SH neuroblastoma, SK-MEL-28 melanoma, and PC-3 prostate adenocarcinoma cell lines, and transporter expression of multiple drug resistance was measured in these cells. The stability of 99mTc-labeled compounds was evaluated in mice and human liver S9 fractions. Results: In vesicles, 99mTc-labeled compounds had affinity for MDR1 and MRP1. 99mTc-TF had additional affinity for MRP2 and MRP3. In SK-N-SH cells expressing MDR1 and MRP1, MK-571 produced the highest uptake of both 99mTc-labeled compounds. 99mTc-MIBI uptake with inhibitors was higher than 99mTc-TF uptake with inhibitors. 99mTc-TF was taken up more in SK-MEL-28 cells expressing MRP1 and MRP2 than PC-3 cells expressing MRP1 and MRP3. 99mTc-MIBI was metabolized after a 30-min incubation in SK-N-SH cells, mouse liver, human liver S9 fractions, and plasma. 99mTc-TF had high stability. Conclusion: 99mTc-MIBI is exported via MDR1 and MRP1 (MRP1 &gt; MDR1) at greater levels and more quickly compared to 99mTc-TF, which is exported via MDR1 and MRP1-3 (MRP1 &gt; MDR1; MRP1, 2 &gt; MRP3). Although 99mTc-MIBI is metabolized, clinical imaging for monitoring MDR and shorter examination times may be possible with an earlier scanning time on late phase imaging. 99mTc-TF has high stability and accurately reflects the function of MDR1 and MRP1-3.


Sign in / Sign up

Export Citation Format

Share Document