scholarly journals Chorioamnionitis Induces a Specific Signature of Placental ABC Transporters Associated with an Increase of miR-331-5p in the Human Preterm Placenta

2018 ◽  
Vol 45 (2) ◽  
pp. 591-604 ◽  
Author(s):  
Guinever Eustaquio do Imperio ◽  
Enrrico Bloise ◽  
Mohsen Javam ◽  
Phetcharawan Lye ◽  
Andrea Constantinof ◽  
...  

Background/Aims: The ATP-binding cassette (ABC) transporters mediate drug biodisposition and immunological responses in the placental barrier. In vitro infective challenges alter expression of specific placental ABC transporters. We hypothesized that chorioamnionitis induces a distinct pattern of ABC transporter expression. Methods: Gene expression of 50 ABC transporters was assessed using TaqMan® Human ABC Transporter Array, in preterm human placentas without (PTD; n=6) or with histological chorioamnionitis (PTDC; n=6). Validation was performed using qPCR, immunohistochemistry and Western blot. MicroRNAs known to regulate P-glycoprotein (P-gp) were examined by qPCR. Results: Up-regulation of ABCB9, ABCC2 and ABCF2 mRNA was detected in chorioamnionitis (p<0.05), whereas placental ABCB1 (P-gp; p=0.051) and ABCG2 (breast cancer resistance protein-BCRP) mRNA levels (p=0.055) approached near significant up-regulation. In most cases, the magnitude of the effect significantly correlated to the severity of inflammation. Upon validation, increased placental ABCB1 and ABCG2 mRNA levels (p<0.05) were observed. At the level of immunohistochemistry, while BCRP was increased (p<0.05), P-gp staining intensity was significantly decreased (p<0.05) in PTDC. miR-331-5p, involved in P-gp suppression, was upregulated in PTDC (p<0.01) and correlated to the grade of chorioamnionitis (p<0.01). Conclusions: Alterations in the expression of ABC transporters will likely lead to modified transport of clinically relevant compounds at the inflamed placenta. A better understanding of the potential role of these transporters in the events surrounding PTD may also enable new strategies to be developed for prevention and treatment of PTD.

Molecules ◽  
2020 ◽  
Vol 25 (15) ◽  
pp. 3364 ◽  
Author(s):  
Bruno M. F. Gonçalves ◽  
David S. P. Cardoso ◽  
Maria-José U. Ferreira

Multidrug resistance (MDR) in cancer is one of the main limitations for chemotherapy success. Numerous mechanisms are behind the MDR phenomenon wherein the overexpression of the ATP-binding cassette (ABC) transporter proteins P-glycoprotein (P-gp), breast cancer resistance protein (BCRP) and multidrug resistance protein 1 (MRP1) is highlighted as a prime factor. Natural product-derived compounds are being addressed as promising ABC transporter modulators to tackle MDR. Flavonoids and terpenoids have been extensively explored in this field as mono or dual modulators of these efflux pumps. Nitrogen-bearing moieties on these scaffolds were proved to influence the modulation of ABC transporters efflux function. This review highlights the potential of semisynthetic nitrogen-containing flavonoid and terpenoid derivatives as candidates for the design of effective MDR reversers. A brief introduction concerning the major role of efflux pumps in multidrug resistance, the potential of natural product-derived compounds in MDR reversal, namely natural flavonoid and terpenoids, and the effect of the introduction of nitrogen-containing groups are provided. The main modifications that have been performed during last few years to generate flavonoid and terpenoid derivatives, bearing nitrogen moieties, such as aliphatic, aromatic and heterocycle amine, amide, and related functional groups, as well as their P-gp, MRP1 and BCRP inhibitory activities are reviewed and discussed.


2009 ◽  
Vol 29 (6) ◽  
pp. 1079-1083 ◽  
Author(s):  
Leon M Tai ◽  
A Jane Loughlin ◽  
David K Male ◽  
Ignacio A Romero

The clearance of amyloid beta (Aβ) from the brain represents a novel therapeutic target for Alzheimer's disease. Conflicting data exist regarding the contribution of adenosine triphosphatebinding cassette transporters to the clearance of Aβ through the blood-brain barrier. Therefore, we investigated whether Aβ could be a substrate for P-glycoprotein (P-gp) and/or for breast cancer resistance protein (BCRP) using a human brain endothelial cell line, hCMEC/D3. Inhibition of P-gp and BCRP increased apical-to-basolateral, but not basolateral-to-apical, permeability of hCMEC/D3 cells to 125l Aβ 1–40. Our in vitro data suggest that P-gp and BCRP might act to prevent the blood-borne Aβ 1–40 from entering the brain.


2021 ◽  
Vol 22 (3) ◽  
pp. 1478
Author(s):  
Jiayin Lu ◽  
Yaoxing Chen ◽  
Zixu Wang ◽  
Jing Cao ◽  
Yulan Dong

Restraint stress causes various maternal diseases during pregnancy. β2-Adrenergic receptor (β2-AR) and Forkhead transcription factor class O 1 (FOXO1) are critical factors not only in stress, but also in reproduction. However, the role of FOXO1 in restraint stress, causing changes in the β2-AR pathway in pregnant mice, has been unclear. The aim of this research was to investigate the β2-AR pathway of restraint stress and its impact on the oxidative stress of the maternal uterus. In the study, maternal mice were treated with restraint stress by being restrained in a transparent and ventilated device before sacrifice on Pregnancy Day 5 (P5), Pregnancy Day 10 (P10), Pregnancy Day 15 (P15), and Pregnancy Day 20 (P20) as well as on Non-Pregnancy Day 5 (NP5). Restraint stress augmented blood corticosterone (CORT), norepinephrine (NE), and blood glucose levels, while oestradiol (E2) levels decreased. Moreover, restraint stress increased the mRNA levels of the FOXO family, β2-AR, and even the protein levels of FOXO1 and β2-AR in the uterus and ovaries. Furthermore, restraint stress increased uterine oxidative stress level. In vitro, the protein levels of FOXO1 were also obviously increased when β2-AR was activated in endometrial stromal cells (ESCs). In addition, phosphorylated-nuclear factor kappa-B p65 (p-NF-κB p65) and its target genes decreased significantly when FOXO1 was inhibited. Overall, it can be said that the β2-AR/FOXO1/p-NF-κB p65 pathway was activated when pregnant mice were under restraint stress. This study provides a scientific basis for the origin of psychological stress in pregnant women.


Author(s):  
Antonella Minutolo ◽  
Vita Petrone ◽  
Marialaura Fanelli ◽  
Marco Iannetta ◽  
Martina Giudice ◽  
...  

Background: CD169 has been found overexpressed in the blood of COVID-19 patients and identified as a biomarker in the early disease. We have analysed CD169 in blood cells of COVID-19 patients to assess its role as predictive marker of the disease. Methods : The ratio of the CD169 Median median Fluorescence fluorescence Intensity intensity of CD169 between monocytes and lymphocytes (CD169 RMFI ) was analysed by flow cytometry in blood samples of COVID-19 patients (COV) and healthy donors (HD ) and correlated with immunophenotyping, inflammatory markers, cytokines mRNA expression, pulmonary involvement and disease progression. Results: CD169 RMFI increased in COV but not in HD. CD169 RMFI correlated with T-cell differentiation and exhaustion markers as well as with B cells maturation and differentiation. In vitro stimulation of PBMCs of HD with SARS-CoV-2 Spike spike protein induced CD169 RMFI together with IL-6 and IL-10 gene expression. Likewise, CD169 RMFI correlated with blood cytokine mRNA levels, inflammatory markers, and pneumonia severity in patients which that had not received any treatment at sampling. Notably, in untreated patients, CD169 RMFI reflected the respiratory outcome during hospitalization. Conclusion : Considering the immunological role of CD169 and its involvement during the infection and the progression of COVID-19, it could be considered as an early biomarker to evaluate disease progression and clinical outcome.


2009 ◽  
Vol 83 (11) ◽  
pp. 5943-5946 ◽  
Author(s):  
Yongqi Yan ◽  
Subrat N. Rout ◽  
Shin-Hee Kim ◽  
Siba K. Samal

ABSTRACT To determine the role of untranslated regions (UTRs) in replication and pathogenesis of Newcastle disease virus (NDV), we generated recombinant viruses with deletions in 5′ and 3′ UTRs of the HN mRNA. Deletion of any HN UTR did not noticeably affect in vitro replication of these viruses. However, complete deletion of the 5′ UTR of the HN gene decreased the HN mRNA levels and HN protein contents in virus particles, resulting in attenuation of the virus in chickens. This indicates that the 5′ UTR of HN mRNA plays an important role in replication and pathogenicity of NDV in vivo.


Cells ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 265 ◽  
Author(s):  
Sathish Murali ◽  
Takwa Aroankins ◽  
Hanne Moeller ◽  
Robert Fenton

Aquaporin 2 (AQP2) mediates the osmotic water permeability of the kidney collecting duct in response to arginine vasopressin (VP) and is essential for body water homeostasis. VP effects on AQP2 occur via long-term alterations in AQP2 abundance and short-term changes in AQP2 localization. Several of the effects of VP on AQP2 are dependent on AQP2 phosphorylation and ubiquitylation; post-translational modifications (PTM) that modulate AQP2 subcellular distribution and function. Although several protein kinases, phosphatases, and ubiquitin E3 ligases have been implicated in AQP2 PTM, how AQP2 is deubiquitylated or the role of deubiquitylases (DUBS) in AQP2 function is unknown. Here, we report a novel role of the ubiquitin-specific protease USP4 in modulating AQP2 function. USP4 co-localized with AQP2 in the mouse kidney, and in mpkCCD14 cells USP4 and AQP2 abundance are increased by VP. AQP2 and USP4 co-immunoprecipitated from mpkCCD14 cells and mouse kidney, and in vitro, USP4 can deubiquitylate AQP2. In mpkCCD14 cells, shRNA mediated knockdown of USP4 decreased AQP2 protein abundance, whereas no changes in AQP2 mRNA levels or VP-induced cAMP production were detected. VP-induced AQP2 membrane accumulation in knockdown cells was significantly reduced, which was associated with higher levels of ubiquitylated AQP2. AQP2 protein half-life was also significantly reduced in USP4 knockdown cells. Taken together, the data suggest that USP4 is a key regulator of AQP2 deubiquitylation and that loss of USP4 leads to increased AQP2 ubiquitylation, decreased AQP2 levels, and decreased cell surface AQP2 accumulation upon VP treatment. These studies have implications for understanding body water homeostasis.


1995 ◽  
Vol 269 (4) ◽  
pp. C917-C922 ◽  
Author(s):  
K. Yoshioka ◽  
J. W. Fisher

We have previously reported that nitric oxide (NO) and guanosine 3',5'-cyclic monophosphate (cGMP) may be involved in the regulation of erythropoietin (Epo) production in response to hypoxia both in vivo and in vitro (20). In the present studies, we have used the isolated perfused rat kidney to assess the role of NO in oxygen sensing and Epo production. When arterial PO2 was reduced from 100 mmHg (normoxemic) to 30 mmHg (hypoxemic) in the perfusate of this system, perfusate levels of Epo were significantly increased. This hypoxia-induced increase in Epo production was significantly decreased by the addition of NG-nitro-L-arginine methyl ester (L-NAME; 1 mM) to the perfusates. Hypoxemic perfusion also produced a significant increase, and L-NAME significantly inhibited this increase, in intracellular cGMP levels in the kidney when compared with normoxemic perfused kidneys. Quantitative reverse transcription-polymerase chain reaction also revealed that hypoxemic perfusion produced significant increases in Epo mRNA levels in the kidney, which was blocked by L-NAME. Our findings further support an important role for the NO/cGMP system in hypoxic regulation of Epo production.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 135-135
Author(s):  
Ayako Nakano ◽  
Masahiro Abe ◽  
Daisuke Tsuji ◽  
Hirokazu Miki ◽  
Akishige Ikegame ◽  
...  

Abstract Abstract 135 Malignant cells aberrantly up-regulate ATP-binding cassette (ABC) transporters and ATP-dependent drug efflux pumps, which causes drug resistance. Because the activity of TCA cycle in mitochondria is suppressed through oncogenic alterations including the mutation of p53, ATP is largely produced by aerobic glycolytic metabolism enhanced in malignant cells (the Warburg effect). Hexokinase II (HKII), a key enzyme of glycolysis, is widely over-expressed in cancer cells. However, HKII levels and its roles in ATP production and ATP-dependent cellular process have not been elucidated in hematopoietic malignant cells including myeloma (MM) cells. In the present study, we therefore explored the expression levels of HKII and the effect of HKII inhibition on ABC transporter activity as well as the susceptibility to chemotherapeutic agents in MM cells. HKII protein was constitutively expressed at higher level in MM cells than in normal peripheral blood mononuclear cells (PBMCs). The expression level of HKII in MM cells was further up-regulated when cocultured with osteoclasts. 3-bromopyruvate (3BrPA), an inhibitor of HKII promptly inhibited glycolysis and substantially suppressed ATP production in MM cells but not in normal PBMCs. 3BrPA preferentially induced cell death in MM cells but not in normal hematopoietic cells in bone marrow samples from patients with MM, suggesting that HKII is a potential target for treatment of MM cells. We next examined the effects of 3BrPA on ABC transporter activity in RPMI 8226 (MM) and KG-1 (acute myeloid leukemia) cells which are aberrantly over-expressed breast cancer resistance protein (ABCG2) and P-glycoprotein (ABCB1), respectively. After passive incorporation of auto-fluorescence emitting daunorubicin, these cells were washed and incubated for 2 hours without daunorubicin in the absence or presence of 3BrPA, and then the intracellular daunorubicin levels were measured by flow cytometry. Treatment with 3BrPA markedly enhanced the accumulation and retention of daunorubicin in both cells. Therefore, inhibition of HKII by 3BrPA appears to be able to effectively deplete intracellular ATP production and suppress ABC transporter activity. Importantly, 3BrPA restored cytotoxic effects of doxorubicin and daunorubicin on RPMI 8226 and KG-1 cells. We next focused on “Side population (SP)” which is regarded as a highly drug-resistant fraction with enhanced ABC transporter activity, and contains clonogenic or tumor-initiating cells. SP cells isolated from RPMI 8226 cells exhibited higher levels of glycolysis with an increased expression of genes involved in the glycolytic pathway. Treatment with 3BrPA abolished Hoechst 33342 exclusion in the SP cells, and clonogenic capacity in RPMI 8226 and KG-1 cells. Furthermore, 3BrPA cooperatively suppressed subcutaneous tumor growth in combination with doxorubicin in RPMI 8226-implanted mice. These results demonstrate that HKII is a tumor specific target for treatment of MM and that inhibition of HKII effectively depletes ATP and inactivate ABC transporters to overcome drug resistance. ABC transporter-expressing SP cells with enhanced glycolysis and clonogenic cells with high proliferative potential are suggested to be a good target of the inhibition of glycolysis. These findings highlight a novel role of enhanced glycolysis in malignant cells in tumor growth and drug resistance, and relevance to anti-cancer strategies attempting to target unique metabolic pathway of cancer cells. Disclosures: No relevant conflicts of interest to declare.


2016 ◽  
Vol 34 (2_suppl) ◽  
pp. 592-592 ◽  
Author(s):  
Chen Zhao ◽  
Christopher G. Wood ◽  
Jose A. Karam ◽  
Tapati Maity ◽  
Lei Wang

592 Background: Zinc finger protein 395 (ZNF395) is frequently altered in several tumor types. However, the role of ZNF395 remains poorly studied in patients with clear cell renal cell carcinoma (RCC). In this study, we investigated the in vitro and in vivo role of ZNF395 in ccRCC. Methods: cBioPortal For Cancer Genomics was used to correlate the expression of ZNF395 with RCC patient clinical, pathological and molecular profiles. ZNF395 protein and mRNA levels were studied in several RCC cell lines in vitro. Subsequently, ZNF395 knockdown was performed in 786-O and UMRC3 RCC cells and overexpression was done in Caki-1 and 769-P RCC cells. We then evaluated ZNF395 modulation in these cell lines by in vitro MTT, migration and invasion assays. Finally, we studied the effect of ZNF395 knockout and overexpression in vivo using SCID xenograft models. Results: Patients with higher expression of ZNF395 experienced longer disease-free survival and overall survival. Using in vitro models, we confirmed that knockdown of ZNF395 decreased ZNF395 expression, and increased proliferation, migration and invasiveness of 786-O and UMRC3, while overexpression of ZNF395 increased ZNF395 expression, and reduced proliferation, migration and invasiveness of Caki-1 and 769-P. Using in vivo mouse models, knockdown of ZNF395 expression in 786-O promoted tumor growth while its overexpression in Caki-1 resulted in tumor growth inhibition. We are currently performing experiments to understand the process by which ZNF395 regulates ccRCC pathogenesis. Conclusions: Our data support the role of ZNF395 as an important tumor suppressor gene in the pathogenesis of RCC.


2015 ◽  
Vol 93 (7) ◽  
pp. 567-578 ◽  
Author(s):  
V. Lozano ◽  
R. Martínez-Escauriaza ◽  
M.L. Pérez-Parallé ◽  
A.J. Pazos ◽  
J.L. Sánchez

Multidrug resistance associated proteins (MRP) belong to the ABCC branch of the ABC transporters. The MRP together with P-gp (P-glycoprotein; MDR1; ABCB1) and BCRP (breast cancer resistance protein; ABCG2) confer multixenobiotic resistance (MXR) in marine vertebrates. In aquatic invertebrates, little is known about the presence and role of these ABC transporters. The ABC transporters play an important role in the absorption, distribution, and excretion of drugs, xenobiotics, and endogenous compounds and are predominantly expressed in excretory organs. In the present study, we identified and characterized two MRP/ABCC transporters (mrp1 and mrp2) from the Mediterranean mussel (Mytilus galloprovincialis Lamarck, 1819). The two cDNAs finally obtained were 4648 bp for mrp1 and 5065 bp for mrp2 with open reading frames of 1500 and 1524 residues, respectively. Analysis of the amino acid sequences revealed the structural organization of ABC transporters with the typical and highly conserved motifs. The expression levels of these genes revealed that the highest expression of mrp1 and mrp2 genes was found in the digestive gland followed by gills, and the lowest expression of the three tissues was detected in the mantle. The expression of these genes was also studied in mussels naturally contaminated with okadaic acid (from a bloom of Dinophysis acuminata Claparède and Lachmann, 1859). The overexpression of mrp2 in the digestive gland suggests that this gene is involved in the process of detoxification of okadaic acid in M. galloprovincilais. These expression patterns agree with the suggested role of these genes in the protection against endogenous or exogenous compounds in aquatic organisms.


Sign in / Sign up

Export Citation Format

Share Document