Tet2 Negatively Regulates Homeostasis and Differentiation of Hematopoietic Stem Cells in Mice

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2354-2354
Author(s):  
Myunggon Ko ◽  
Hozefa S. Bandukwala ◽  
Jungeun An ◽  
Edward D. Lamperti ◽  
Elizabeth C. Thompson ◽  
...  

Abstract Abstract 2354 Epigenetic alterations in cancer cells include aberrant DNA methylation and histone modifications. Specifically, cancer cells display global hypomethylation associated with genomic instability as well as promoter hypermethylation associated with inactivation of tumor suppressor, cell cycle or repair-related genes. In the hematopoietic system, whole-genome sequencing and other genetic analyses have led to the discovery of recurrent somatic alterations that contribute to the pathogenesis of a variety of myeloid malignancies by perturbing the epigenetic landscape of cancer cells. Ten-Eleven-Translocation (TET) family enzymes, TET1, TET2, and TET3 modify DNA methylation status by converting 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) in a 2-oxoglutarate and Fe2+-dependent manner. TET2 is located in chromosome 4q24, a region undergoing frequent microdeletions and uniparental disomy in patients with a wide spectrum of myeloid malignancies. Somatic mutations in TET2 are some of the most prevalent acquired mutations in myelodysplastic syndromes (MDS), myeloproliferative neoplasms (MPN), MDS/MPN overlap syndromes including chronic myelomonocytic leukemia (CMML), acute myeloid leukemia (AML) and secondary AML (sAML). We previously showed that missense mutations of TET2 in myeloid malignancies are loss-of-function mutations that compromise its dioxygenase activity. TET2 mutations correlate with decreased levels of 5hmC in patients. Tet2-depleted mouse hematopoietic precursor cells are preferentially committed to differentiation towards monocyte/ macrophage lineages in culture. The levels of DNA methylation in patients with high 5hmC versus healthy controls are similar, however, samples from patients with low 5hmC show hypomethylation relative to controls at the majority of differentially methylated CpG sites. Although it is postulated that impaired TET2 activity may potentiate myeloid transformation by influencing hematopoietic stem/progenitor cells (HSPCs), it has yet to be directly tested whether Tet2 mutations or deletions are implicated in abnormal hematopoiesis in vivo. To clarify the function of Tet2 in hematopoietic development, we generated mice with targeted disruption of the Tet2 catalytic domain and found that Tet2 is critical for self-renewal and differentiation of hematopoietic stem cells (HSCs). Ablation of Tet2 specifically repressed Tet2 expression with no effect on the other Tet family members, Tet1 and Tet3. Dot blot analysis showed that Tet2-deficient cells contain significantly diminished levels of genomic 5hmC in several organs examined. Tet2 deficiency augmented the frequency and absolute number of HSPC compartment in a cell-autonomous manner. In competitive transplantation assays, Tet2-deficient HSCs were capable of multi-lineage reconstitution and possessed a competitive advantage over wild type HSCs, resulting in enhanced hematopoiesis into both lymphoid and myeloid lineages. In vitro differentiation assays showed that Tet2 restrains HSCs from undergoing differentiation, as assessed by expression of lineage markers upon differentiation. Despite this antagonizing effect, however, the number of monocyte/ macrophage cells was greater in Tet2−/− cultures compared with controls, and immature Tet2−/− progenitor cells differentiated prematurely into the monocyte/macrophage lineage. These results indicate that Tet2 deficiency alters stem/progenitor cell properties to delay HSC differentiation and induce developmental skewing towards the monocyte/macrophage lineage. Taken together, these studies indicate that Tet2 has a critical role in regulating the expansion and self-renewal of HSCs. Our data suggest that cell fate decisions of HSPC are affected by TET2 mutations that decrease enzymatic activity, and that this phenomenon has a crucial role in the pathogenesis of diverse myeloid malignancies. We are testing whether Tet2 deficiency synergises with other recurrent mutations to promote myeloid malignancies. Because loss-of-function mutations in TET1 or TET3 have not been reported in most TET2-mutated cancer and TET2 loss-of-function seems to facilitate myeloid transformation because of impaired 5hmC production, it might be beneficial from the perspective of cancer therapies to develop strategies to activate the enzymatic activity of other TET proteins. Disclosures: No relevant conflicts of interest to declare.

2019 ◽  
Vol 3 (3) ◽  
pp. 419-431 ◽  
Author(s):  
Fang Dong ◽  
Haitao Bai ◽  
Xiaofang Wang ◽  
Shanshan Zhang ◽  
Zhao Wang ◽  
...  

Abstract The cell of origin, defined as the normal cell in which the transformation event first occurs, is poorly identified in leukemia, despite its importance in understanding of leukemogenesis and improving leukemia therapy. Although hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) were used for leukemia models, whether their self-renewal and differentiation potentials influence the initiation and development of leukemia is largely unknown. In this study, the self-renewal and differentiation potentials in 2 distinct types of HSCs (HSC1 [CD150+CD41−CD34−Lineage−Sca-1+c-Kit+ cells] and HSC2 [CD150−CD41−CD34−Lineage−Sca-1+c-Kit+ cells]) and 3 distinct types of HPCs (HPC1 [CD150+CD41+CD34−Lineage−Sca-1+c-Kit+ cells], HPC2 [CD150+CD41+CD34+Lineage−Sca-1+c-Kit+ cells], and HPC3 [CD150−CD41−CD34+Lineage−Sca-1+c-Kit+ cells]) were isolated from adult mouse bone marrow, and examined by competitive repopulation assay. Then, cells from each population were retrovirally transduced to initiate MLL-AF9 acute myelogenous leukemia (AML) and the intracellular domain of NOTCH-1 T-cell acute lymphoblastic leukemia (T-ALL). AML and T-ALL similarly developed from all HSC and HPC populations, suggesting multiple cellular origins of leukemia. New leukemic stem cells (LSCs) were also identified in these AML and T-ALL models. Notably, switching between immunophenotypical immature and mature LSCs was observed, suggesting that heterogeneous LSCs play a role in the expansion and maintenance of leukemia. Based on this mouse model study, we propose that acute leukemia arises from multiple cells of origin independent of the self-renewal and differentiation potentials in hematopoietic stem and progenitor cells and is amplified by LSC switchover.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1397-1397
Author(s):  
Nadim Mahmud ◽  
Kazumi Yoshinaga ◽  
Craig Beam ◽  
Hiroto Araki

Abstract Widespread clinical use of ex-vivo expanded human umbilical cord blood (CB) grafts has been limited by lack of proper understanding of factors regulating self-renewal type of symmetric cell divisions. The expansion of the number of functional hematopoietic stem cells (HSC) ex-vivo requires the creation of an environment which favors symmetrical division. In our current studies, addition of late acting cytokines, (GM-CSF, IL-6, Epo) with early acting cytokines (thrombopoietin, SCF, Flt-3 ligand) resulted in loss of expansion of stem/progenitor cells. These data indicate that modification of HSC fate is not fully independent of external humoral influences. We have previously demonstrated that following treatment of CD34+ cells with 5-aza-2-deoxycytidine (5azaD) and trichostatin A (TSA) there is a 10- fold increase in the number of SCID mouse repopulating cells (SRC). This increase of SRC, however, occurred concomitantly with an increase in absolute number of CD34+CD90+ cells as well as primitive progenitors which gives rise to colony forming unit Mix lineage (CFU-Mix). We hypothesized that if the primary CD34+ cells generates CFU-Mix/CFU-GM in a ratio of ‘X’, then to observe a higher rate of symmetric cell division we would expect to see the ratio increased (>X) in the 5azaD/TSA treated cells in comparison to cells cultured in the absence of 5azaD/TSA (< X). Interestingly, analyses of our data suggest that when 5azaD/TSA treated CD34+ cells are cultured for 5 days and assayed for colonies we observed a significant increase in the ratio of CFU-Mix/CFU-GM in contrast to cells cultured in cytokines alone, 0.373 ± 0.06 and 0.066 ± 0.032 respectively. The ratio of CFU-Mix/CFU-GM of CB CD34+ cells (day 0) was 0.262 ± 0.045. These findings indicate that 5azaD/TSA treatment promotes the ratio of CFU-Mix/CFU-GM possibly by enhancing symmetric division of CFU-Mix while in the absence of 5azaD/TSA treatment the culture condition likely induces differentiation. In addition, we have also investigated the ratio of progenitor cells/differentiated cells by assessing the ratio of human CD34+ cells/CD33+ cells in the bone marrow of immunodeficient mice following transplantation (8 weeks) of equal numbers of CD34+ cells. The ratio of CD34+ cells/CD33+ cells following transplantation of 5azaD/TSA treated cells was 0.52 ± 0.14 (n = 11) while in the absence of 5azaD/TSA the ratio dropped to 0.31± 0.16 (n = 4). The ratio following transplantation of primary CD34+ (day 0) cells was 0.62 ± 0.14 (n = 6). These data suggest that 5azaD/TSA treated cells maintain the balance of generation of CD34+ cells/CD33+ cells at a comparable rate to that of primary CD34+ cells, while the CD34+ cells generated in the absence of 5azaD/TSA promotes generation of more differentiated cells. Alternatively, it is also possible that 5azaD/TSA treatment of CD34+ cells in the culture results in inhibition of myeloid differentiation at the cost of proliferation. However, the latter possibility is unlikely, since treatment of CB cells with 5azaD/TSA results in an increase in the absolute number of progenitors including SRC possessing both myeloid and lymphoid differentiation potential. Taken together, these data support our hypothesis that chromatin modifying agents in the culture is capable of promoting self-renewal type of symmetric cell division possessing in vivo multilineage marrow repopulating potential.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1799-1799
Author(s):  
Ingmar Bruns ◽  
Sebastian Büst ◽  
Akos G. Czibere ◽  
Ron-Patrick Cadeddu ◽  
Ines Brückmann ◽  
...  

Abstract Abstract 1799 Poster Board I-825 Multiple myeloma (MM) patients often present with anemia at the time of initial diagnosis. This has so far only attributed to a physically marrow suppression by the invading malignant plasma cells and the overexpression of Fas-L and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) by malignant plasma cells triggering the death of immature erythroblasts. Still the impact of MM on hematopoietic stem cells and their niches is scarcely established. In this study we analyzed highly purified CD34+ hematopoietic stem and progenitor cell subsets from the bone marrow of newly diagnosed MM patients in comparison to normal donors. Quantitative flowcytometric analyses revealed a significant reduction of the megakaryocyte-erythrocyte progenitor (MEP) proportion in MM patients, whereas the percentage of granulocyte-macrophage progenitors (GMP) was significantly increased. Proportions of hematopoietic stem cells (HSC) and myeloid progenitors (CMP) were not significantly altered. We then asked if this is also reflected by clonogenic assays and found a significantly decreased percentage of erythroid precursors (BFU-E and CFU-E). Using Affymetrix HU133 2.0 gene arrays, we compared the gene expression signatures of stem cells and progenitor subsets in MM patients and healthy donors. The most striking findings so far reflect reduced adhesive and migratory potential, impaired self-renewal capacity and disturbed B-cell development in HSC whereas the MEP expression profile reflects decreased in cell cycle activity and enhanced apoptosis. In line we found a decreased expression of the adhesion molecule CD44 and a reduced actin polymerization in MM HSC by immunofluorescence analysis. Accordingly, in vitro adhesion and transwell migration assays showed reduced adhesive and migratory capacities. The impaired self-renewal capacity of MM HSC was functionally corroborated by a significantly decreased long-term culture initiating cell (LTC-IC) frequency in long term culture assays. Cell cycle analyses revealed a significantly larger proportion of MM MEP in G0-phase of the cell cycle. Furthermore, the proportion of apoptotic cells in MM MEP determined by the content of cleaved caspase 3 was increased as compared to MEP from healthy donors. Taken together, our findings indicate an impact of MM on the molecular phenotype and functional properties of stem and progenitor cells. Anemia in MM seems at least partially to originate already at the stem and progenitor level. Disclosures Off Label Use: AML with multikinase inhibitor sorafenib, which is approved by EMEA + FDA for renal cell carcinoma.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. SCI-33-SCI-33 ◽  
Author(s):  
Ari M. Melnick ◽  
Ross L Levine ◽  
Maria E Figueroa ◽  
Craig B. Thompson ◽  
Omar Abdel-Wahab

Abstract Abstract SCI-33 Epigenetic deregulation of gene expression through aberrant DNA methylation or histone modification plays an important role in the malignant transformation of hematopoietic cells. In particular, acute myeloid leukemias (AMLs) can be classified according to epigenetic signatures affecting DNA methylation or histone modifications affecting specific gene sets. Heterozygous somatic mutations in the loci encoding isocitrate dehydrogenase 1 and 2 (IDH1/2) occur in ∼20% of AMLs and are accompanied by global DNA hypermethylation and hypermethylation and silencing of a number of specific gene promoters. IDH1/2 mutations are almost completely mutually exclusive with somatic loss-of-function mutations in TET2, which hydroxylates methylcytosine (mCpG). DNA hydroxymethylation can function as an intermediate step in mCpG demethylation. TET2 mutant de novo AMLs also display global and promoter specific hypermethylation partially overlapping with IDH1/2 mutant cases. Mutations in the IDH1/2 loci result in a neomorphic enzyme that generates the aberrant oncometabolite 2-hydroxyglutarate (2HG) using α-ketoglutarate (αKG) as a substrate. 2HG can disrupt the activity of enzymes that use αKG as a cofactor, including TET2 and the jumonji family of histone demethylases. Expression of mutant IDH isoforms inhibits TET2 hydroxymethylation and jumonji histone demethylase functions. IDH and TET2 mutant AMLs accordingly exhibit reduced levels of hydroxymethylcytosine and a trend towards increased histone methylation. Mutant IDH or TET2 loss of function causes differentiation blockade and expansion of hematopoietic stem cells and TET2 knockout results in a myeloproliferative phenotype in mice. Hydroxymethylcytosine is in abundance in hematopoietic stem cells and displays specific distribution patterns, yet the function of this covalent modification is not fully understood. Recent data link TET2 with the function of cytosine deaminases as a pathway towards DNA demethylation, which has implications as well for B cell lymphomas and CML lymphoid blast crisis, which are linked with the actions of activation induced cytosine deaminase. Altogether, the available data implicate mutations in IDH1/2 and TET2 in promoting malignant transformation in several tissues, by disrupting epigenomics programming and altering gene expression patterning. Disclosures: Thompson: Agios Pharmaceuticals: Consultancy.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 477-477
Author(s):  
Christopher B Cole ◽  
Angela M. Verdoni ◽  
David H Spencer ◽  
Timothy J. Ley

We previously identified recurrent mutations in the DNA methyltransferase DNMT3A in patients with acute myeloid leukemia (AML). DNMT3A and the highly homologous gene DNMT3B encode the two methyltransferases that are primarily responsible for mediating de novo methylation of specific CpG residues during differentiation. Loss of Dnmt3a in hematopoietic stem cells impairs their ability to differentiate into committed progenitors (Challen et al Nat Gen 44:23, 2011). Importantly, DNMT3A mutations are mutually exclusive of the favorable prognosis AML-initiating translocations, including the t(15;17) translocation (which creates the PML-RARA fusion gene), and translocations involving MLL. PML-RARA has been shown to interact with DNMT3A in vitro (Di Croce et al Science 295:1079,2002), and to require DNMT3A to induce methylation and transcriptional silencing of a subset of specific target genes. These findings, and the lack of DNMT3A mutations in APL patients, suggest that PML-RARA may require functional DNMT3A to initiate leukemia. To investigate this possibility, we utilized a well-characterized transgenic mouse model (in a pure B6 background) in which expression of PML-RARA is driven in hematopoietic stem/progenitor cells by the mouse Cathepsin G locus (Ctsg-PML-RARA+/- mice). These mice spontaneously develop acute promyelocytic leukemia (APL) with high penetrance and long latency, and also exhibit a preleukemic phenotype marked by the accumulation of myeloid cells in bone marrow and spleen. In addition, myeloid progenitor cells derived from these mice have the ability to serially replate in methylcellulose cultures, demonstrating aberrant self-renewal. We generated Ctsg-PML-RARA+/- mice lacking Dnmt3a (PML-RARA+/- x Dnmt3a-/-) as well as mice in which conditional ablation of Dnmt3b in hematopoietic cells is driven by Vav-Cre (PML-RARA+/- x Dnmt3b fl/fl x Vav-Cre+). Loss of Dnmt3a completely abrogated the ex vivo replating ability of PML-RARA bone marrow (Figure 1). Although colonies from both PML-RARA+/- and PML-RARA+/- x Dnmt3a-/- mice appeared similar in morphology and number on the first plating, PML-RARA+/- x Dnmt3a-/- marrow ceased to form colonies with subsequent replating (see Figure), and cultured cells lost the expression of the myeloid marker CD11b. The same phenotype was also observed using bone marrow from both genotypes that was secondarily transplanted into wild type recipients, indicating that it is intrinsic to transplantable hematopoietic progenitors. Reintroduction of DNMT3A into bone marrow cells derived from PML-RARA+/- x Dnmt3a-/- mice with retroviral transduction restored replating ability and CD11b expression. Competitive repopulation experiments with PML-RARA+/- x Dnmt3a-/- marrow revealed a decreased contribution to peripheral lymphoid and myeloid cells at 4 weeks, relative to PML-RARA+/- or WT control animals. Finally, 12 weeks after transplantation, recipients of PML-RARA+/- x Dnmt3a-/- bone marrow did not display an accumulation of myeloid cells in the bone marrow and spleen. Importantly, bone marrow from PML-RARA+/- x Dnmt3b fl/fl x Vav-Cre+/- mice displayed no replating deficit or loss of CD11b expression ex vivo, indicating different functions for Dnmt3a versus Dnmt3b in this model. Finally, we interrogated the effect of Dnmt3a loss on bone marrow DNA methylation patterns using a liquid phase DNA capture technique that sampled ∼1.9 million mouse CpGs at >10x coverage. Loss of Dnmt3a caused a widespread loss of DNA methylation in whole bone marrow cells, with 36,000 CpGs that were highly methylated (methylation value >0.7) in the PML-RARA+/- and WT mice, but hypomethylated (methylation value <0.4) in Dnmt3a-/- and PML-RARA+/- x Dnmt3a-/- mice. Characterization of the effect of Dnmt3a loss on leukemia latency, penetrance, and phenotype in PML-RARA+/- mice is currently being defined in a tumor watch. In summary, we have demonstrated that PML-RARA requires functional Dnmt3a (but not Dnmt3b) to drive aberrant self-renewal of myeloid progenitors ex vivo, and that loss of Dnmt3a leads to widespread DNA hypomethylation in bone marrow cells, and abrogates preleukemic changes in mice expressing PML-RARA. This data may explain why DNMT3A mutations are not found in patients with APL initiated by PML-RARA. Disclosures: No relevant conflicts of interest to declare.


2019 ◽  
Vol 3 (15) ◽  
pp. 2355-2367 ◽  
Author(s):  
Yueh-Chwen Hsu ◽  
Tsung-Chih Chen ◽  
Chien-Chin Lin ◽  
Chang-Tsu Yuan ◽  
Chia-Lang Hsu ◽  
...  

Abstract Plant homeodomain finger gene 6 (PHF6) encodes a 365-amino-acid protein containing 2 plant homology domain fingers. Germline mutations of human PHF6 cause Börjeson-Forssman-Lehmann syndrome, a congenital neurodevelopmental disorder. Loss-of-function mutations of PHF6 are detected in patients with acute leukemia, mainly of T-cell lineage and in a small proportion of myeloid lineage. The functions of PHF6 in physiological hematopoiesis and leukemogenesis remain incompletely defined. To address this question, we generated a conditional Phf6 knockout mouse model and investigated the impact of Phf6 loss on the hematopoietic system. We found that Phf6 knockout mice at 8 weeks of age had reduced numbers of CD4+ and CD8+ T cells in the peripheral blood compared with the wild-type littermates. There were decreased granulocyte-monocytic progenitors but increased Lin–c-Kit+Sca-1+ cells in the marrow of young Phf6 knockout mice. Functional studies, including competitive repopulation unit and serial transplantation assays, revealed an enhanced reconstitution and self-renewal capacity in Phf6 knockout hematopoietic stem cells (HSCs). Aged Phf6 knockout mice had myelodysplasia-like presentations, including decreased platelet counts, megakaryocyte dysplasia, and enlarged spleen related to extramedullary hematopoiesis. Moreover, we found that Phf6 loss lowered the threshold of NOTCH1-induced leukemic transformation at least partially through increased leukemia-initiating cells. Transcriptome analysis on the restrictive rare HSC subpopulations revealed upregulated cell cycling and oncogenic functions, with alteration of key gene expression in those pathways. In summary, our studies show the in vivo crucial roles of Phf6 in physiological and malignant hematopoiesis.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1345-1345
Author(s):  
Erin J. Oakley ◽  
Gary Van Zant

Abstract It is well documented that both quantitative and qualitative changes in the murine hematopoietic stem cell (HSC) population occur with age. In mice, the effect of aging on stem cells is highly strain-specific, thus suggesting genetic regulation plays a role in HSC aging. We have previously mapped a quantitative trait locus (QTL) to murine Chr 2 that is associated with the variation in frequency of HSCs between aged B6 and D2 mice. In C57BL/6 (B6) mice the HSC population steadily increases with age, whereas in DBA/2 mice, this population declines. A QTL regulating the natural variation in lifespan between the two strains was mapped to the same location on mouse Chr 2, thus leading to the hypothesis that stem cell function affects longevity. B6 alleles, associated with expansion of the stem cell pool, are also associated with a ~50% increase in lifespan. Using a congenic mouse model, in which D2 alleles in the QTL interval were introgressed onto a B6 background, genome wide gene expression analyses were performed using sorted lineage negative hematopoietic cells, which are enriched for primitive stem and progenitor cells. Three variables were examined using Affymetrix M430 arrays:the effect of strain--congenic versus background;the effect of age--2 months versus 22 months; andthe effects of 2 Gy of radiation because previous studies indicated that congenic animals were highly sensitive to the effects of mild radiation compared to B6 background animals. Extensive analysis of the expression arrays pointed to a single strong candidate, the gene encoding ribosome binding protein 1 (Rrbp1). Real-time PCR was used to validate the differential expression of Rrbp1 in lineage negative, Sca-1+, c-kit+ (LSK) cells, a population highly enriched for stem and progenitor cells. Further analysis revealed the presence eight non-synonymous, coding single nucleotide polymorphisms (SNPs), and at least one of them because of its location and nature may significantly alter protein structure and function. The Rrbp1 gene consists of 23 exons in mouse and is highly conserved among mammalian species including mouse, human, and canine. The Rrbp1 protein is present on the surface of the rough endoplasmic reticulum where it tethers ribosomes to the membrane, stabilizes mRNA transcripts, and mediates translocation of nascent proteins destined for the cell secretory pathway. It is well established that the interaction of HSCs with microenvironmental niches in the bone marrow is crucial for their maintenance and self-renewal, and that this interaction is mediated in part by the molecular repertoires displayed on the cell surfaces of both HSCs and niche stromal cells. Therefore, we hypothesize that age and strain specific variation in Rrbp1, through its role in the secretory pathway, affects the molecular repertoire at the cell surface of the HSC, thus altering the way stem cells interact with their niches. This altered microenvironmental interaction could have profound effects on fundamental properties relevant to stem cell aging such as pluripotency, self-renewal, and senescence.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 392-392 ◽  
Author(s):  
Jennifer J. Trowbridge ◽  
Jonathan W. Snow ◽  
Jonghwan Kim ◽  
Stuart H. Orkin

Abstract Abstract 392 DNA methylation is essential for development and plays crucial roles in a variety of biological processes. The DNA methyltransferase Dnmt1 serves to maintain parental cell methylation patterns on daughter DNA strands in mitotic cells, however, the precise role of Dnmt1 in regulation of quiescent adult stem cells is not known. To examine the role of Dnmt1 in adult hematopoietic stem cells (HSCs), we crossed Dnmt1fl/fl mice with Mx1-Cre transgenic mice, and by injection of poly(I)-poly(C) we selectively deleted Dnmt1 in the hematopoietic system (Dnmt1Δ/Δ). In Dnmt1Δ/Δ mice, peripheral blood counts and mature multilineage composition of the bone marrow was found to be normal. Interestingly, specific defects were observed in Dnmt1Δ/Δ HSC self-renewal as assessed by long-term and secondary competitive transplantation, in retention of Dnmt1Δ/Δ HSCs within the bone marrow niche, and in the ability of Dnmt1Δ/Δ HSCs to give rise to multilineage hematopoiesis. Loss of Dnmt1 also had unique impact on myeloid progenitor cells (including common myeloid progenitors, granulocyte-macrophage progenitors, and megakaryocyte-erythrocyte progenitors), regulating their cycling and transcriptional lineage fidelity. To determine the molecular mechanisms underlying these defects, we performed global gene expression microarray analysis and bisulfite sequencing of select loci (IAP, Car1, and Gata1) in purified populations of control and Dnmt1Δ/Δ long-term HSCs, short-term HSCs/multipotent progenitor cells, and myeloid restricted progenitor cells. Through this approach, we demonstrate that loss of Dnmt1 has cell type-specific molecular consequences. For example, demethylation of the Car1 and Gata1 loci in Dnmt1Δ/Δ long-term HSCs is not sufficient to activate gene transcription, whereas demethylation of these genes in Dnmt1Δ/Δ short-term HSCs is associated with activation of transcription. In Dnmt1Δ/Δ myeloid restricted progenitor cells, we observed increases in DNA methylation at specific gene loci such as Car1, indicating that methylation can be established by other methyltransferases in the absence of Dnmt1. Our global gene expression microarray analysis clearly demonstrates that Dnmt1 regulates expression of distinct gene families in these closely related, primitive hematopoietic populations. We were unable to attribute specific functional defects in Dnmt1Δ/Δ hematopoietic stem and progenitor cells to alterations in expression of previously characterized genes, supporting the existence of novel, uncharacterized regulators of HSC and progenitor cell function to be explored from candidates in our data set. We conclude that maintenance methylation induced by Dnmt1 appears to be especially important for HSC and progenitor cell state transitions, such as the stepwise differentiation of long-term HSCs to multipotent progenitors, multipotent progenitors to myeloid restricted progenitors, stem cell mobilization, and regulating cell cycle entry. These findings establish a unique and critical role for Dnmt1 in the primitive hematopoietic compartment. Furthermore, our evidence suggests that epigenetic regulation, at least with respect to DNA methylation, of adult stem cells is distinct from embryonic stem cells and other somatic cell types. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2331-2331
Author(s):  
Hiroyoshi Kunimoto ◽  
Yumi Fukuchi ◽  
Masatoshi Sakurai ◽  
Ken Sadahira ◽  
Yasuo Ikeda ◽  
...  

Abstract Abstract 2331 TET2 (ten-eleven-translocation 2) gene has been reported to be frequently mutated in various human myeloid malignancies, including myeloproliferative neoplasms, myelodysplastic syndromes, acute myeloid leukemia, and chronic myelomonocytic leukemia. These observations suggest critical roles of TET2 dysfunction in molecular pathogenesis of myeloid malignancies. Recent studies using conditional knockout mouse model indicated that mouse Tet2 loss leads to clonal dominance of adult hematopoietic stem cells (HSCs) in competitive repopulation assay. However, self-renewal capacity of adult HSCs has never been addressed precisely by serial transplantation assay. In addition, the effect of Tet2 loss on hematopoietic stem/ progenitor cells was examined only in the BM, but not in the fetal livers (FLs). Since FL HSCs and adult HSCs differ in several aspects of their phenotypes and functions, we speculated that Tet2 might be involved differently in the regulation of FL and adult hematopoiesis. To address this issue, we analyzed E14.5 FL cells from Tet2 gene-trap (Tet2gt) mice. In these mice, gene trap-cassette was inserted into the second intron, just before the first coding exon. RT-PCR analysis showed that over 99% of Tet2 mRNAs from endogenous promoter were trapped by the gene-trap cassette in Tet2gt/gt mice, showing that Tet2gt allele can be considered as a null allele. Initial analysis showed that Tet2gt/gt embryos developed normally, but most Tet2gt/gt mice were perinatally lethal. Total numbers of FL cells and the numbers of committed progenitors in FLs as revealed by colony assays were not significantly different between each genotype. Interestingly, Tet2gt/gt embryos displayed significant increase in lineage (Lin)(-)Sca-1(+)c-Kit(+)(LSK) fraction compared to wild type (WT) (Tet2+/+) littermate (2.42±0.66% vs. 1.17±0.18%, p=0.02). In addition, common myeloid progenitor (CMP) fraction (IL7Rα(-), Lin(-), Sca-1(-), C-Kit(+), CD34(+), FcgRII/ III(low)) was significantly increased in Tet2gt/gt FLs compared to WT (9.04±1.09% vs. 6.26±0.53%, p=0.008). In serial transplantation assays, donor cells derived from Tet2+/gt and Tet2gt/gt FLs showed significantly higher peripheral blood chimerism in secondary and tertiary recipient mice as compared to that of WT cells, showing that disruption of Tet2 leads to the enhanced self-renewal capacity of FL HSCs. Moreover, donor-derived HSC fraction (CD34−LSK cells) was significantly expanded in the recipients of Tet2gt/gt FL cells, suggesting that increased self-renewal capacity is cell intrinsic to Tet2gt/gt HSCs. We have also examined differentiation of Tet2-mutant FL cells in the recipients' peripheral blood, and found that Tet2gt/gt cells displayed impaired differentiation to Gr-1(+)CD11b(+) mature granulocytes (WT vs. Tet2gt/gt = 5.02±1.35% vs. 11.5±3.09% in the primary recipients) and slight, but significant increase of B cells. Liquid culture of FL cells with cocktails of cytokines in vitro demonstrated that Tet2gt/gt FL cells retained higher percentage and number of LSK, Lin- and c-Kit+ cells after the culture for 7-days compared to WT cells, showing enhanced resistance of Tet2gt/gt cells to differentiative stimuli in in vitro culture. It is of note that Tet2+/gt mice showed a significant increase in hematopoietic stem/progenitor fraction (LSK) in the BM compared to wild type littermate (0.48±0.11% vs. 0.32±0.04%, p=0.04). However, they presented no signs of extramedullary hematopoiesis such as splenomegaly and expansion of LSK cells in spleens during an observation up to 35-weeks. Taken together, we demonstrate that Tet2 critically regulates self-renewal and long-term repopulating capacity of FL HSCs and has pleiotropic functions in myeloid and lymphoid differentiation. These data strongly indicate that Tet2 is an essential regulator of BM and FL hematopoiesis. In addition, enhanced HSC self-renewal, expansion of HPC and myeloid progenitors and perturbed myeloid differentiation induced by TET2 ablation likely to set molecular basis for myeloid transformation, which explains high incidence of loss-of-function mutations of TET2 in myeloid malignancies. Disclosures: No relevant conflicts of interest to declare.


2014 ◽  
Vol 211 (2) ◽  
pp. 217-231 ◽  
Author(s):  
Joseph Y. Shin ◽  
Wenhuo Hu ◽  
Mayumi Naramura ◽  
Christopher Y. Park

Hematopoietic stem cells (HSCs) are heterogeneous with respect to their self-renewal, lineage, and reconstitution potentials. Although c-Kit is required for HSC function, gain and loss-of-function c-Kit mutants suggest that even small changes in c-Kit signaling profoundly affect HSC function. Herein, we demonstrate that even the most rigorously defined HSCs can be separated into functionally distinct subsets based on c-Kit activity. Functional and transcriptome studies show HSCs with low levels of surface c-Kit expression (c-Kitlo) and signaling exhibit enhanced self-renewal and long-term reconstitution potential compared with c-Kithi HSCs. Furthermore, c-Kitlo and c-Kithi HSCs are hierarchically organized, with c-Kithi HSCs arising from c-Kitlo HSCs. In addition, whereas c-Kithi HSCs give rise to long-term lymphomyeloid grafts, they exhibit an intrinsic megakaryocytic lineage bias. These functional differences between c-Kitlo and c-Kithi HSCs persist even under conditions of stress hematopoiesis induced by 5-fluorouracil. Finally, our studies show that the transition from c-Kitlo to c-Kithi HSC is negatively regulated by c-Cbl. Overall, these studies demonstrate that HSCs exhibiting enhanced self-renewal potential can be isolated based on c-Kit expression during both steady state and stress hematopoiesis. Moreover, they provide further evidence that the intrinsic functional heterogeneity previously described for HSCs extends to the megakaryocytic lineage.


Sign in / Sign up

Export Citation Format

Share Document