C-Mpl Is Not Expressed or Functional At Detectable Levels on Primary Chronic Lymphocytic Leukemia (CLL) Tumor Samples

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2849-2849
Author(s):  
Robert D Loberg ◽  
Shen-Wu Wang ◽  
Scott D Patterson ◽  
Ian McCaffery

Abstract Abstract 2849 The development of thrombocytopenia is associated with progression of CLL to a more advanced stage and is commonly used to classify CLL into the higher disease risk categories. It has been estimated that 5% of CLL patients will present with associated immune thrombocytopenia purpura (ITP) and immune mediated destruction can exacerbate thrombocytopenia related to bone marrow infiltration. Thromopoietin (TPO) mimetics stimulate platelet production though activation of the thrombopoietin receptor (c-Mpl) on megakaryocytes and are currently indicated for chronic ITP. In principle, this approach could be considered for treatment of ITP in CLL patients. In order to rule out the possibility that c-Mpl is functionally expressed in CLL tumor cells; we analyzed expression and TPO-dependent function in primary patient samples. We have developed assays for the analysis of c-Mpl expression on the surface of B-cells in CLL patient samples and to assess functional response to ex-vivo stimulation of theses primary samples with TPO. Peripheral blood was collected from CLL patients and mononuclear cells isolated by Ficoll separation. This cohort included treatment naïve CLL samples (n=57) and CLL samples collected from subjects undergoing active treatment (n=30). CLL cells were analyzed by flow cytometry and identified based upon viability and CD5+/CD19+ expression. c-Mpl expression was measured using a novel c-Mpl-specific monoclonal antibody that was shown to be specific for c-Mpl by flow cytometry. Residual platelets associated with individual PBMC aliquot served as an internal control for c-Mpl expression. To investigate c-Mpl function, CLL cells were stimulated with rhTPO (10 ng/mL for 10 min) and induction of pSTAT5 was measured to assess a functional response to ex-vivo stimulation of TPO. In addition c-Mpl mRNA expression was surveyed in CLL by using mRNA microarray analyses to correlate c-Mpl mRNA expression with protein and functional expression of c-Mpl. Robust c-Mpl protein expression was observed in platelets from normal and CLL patients (fold over control -normal: 31.90 ± 6.39, CLL: 26.76 ± 6.57; mean ± 95%CI), no significant expression of c-Mpl was observed on CD5+/CD19+ CLL cells (fold over control −1.06 ± 0.021; mean ± 95%CI). No induction of STAT5 phosphorylation was detected in B-cell CLL cells in any of the samples stimulated with TPO (fold over control - normal: 0.90 ± 0.02, CLL: 1.04 ± 0.034; mean ± 95%CI). Microarray analysis of the CLL samples demonstrated c-Mpl mRNA expression levels equivalent to background across all CLL samples analyzed (intensity score −10.3 ± 3.0; mean ± 95%CI). In conclusion, we demonstrated a lack of cell surface c-Mpl protein expression in CLL cells. The additional data suggesting the lack of evidence for significant expression of c-Mpl mRNA expression supports the hypothesis that CLL cells do not express c-Mpl and unlikely to be stimulated in patients treated with TPO mimetics. This hypothesis will need to be tested in an appropriate clinical trial to assess the potential benefits of TPO mimetics for the treatment of thrombocytopenia in CLL patients. Disclosures: Loberg: Amgen: Employment, Equity Ownership. Wang:Amgen: Employment, Equity Ownership. Patterson:Amgen: Employment, Equity Ownership. McCaffery:Amgen: Employment, Equity Ownership.

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1366-1366 ◽  
Author(s):  
Watkins M Krystal ◽  
Russell Walker ◽  
Nathan Fishkin ◽  
Charlene Audette ◽  
Yelena Kovtun ◽  
...  

Abstract IMGN779 is a CD33-targeting ADC consisting of a humanized anti-CD33 antibody, Z4681A, conjugated to DGN462, a novel DNA-alkylating agent, through a cleavable disulfide linker, sulfo-SPDB. CD33 is broadly expressed on leukemic blasts of patients with AML, making it a promising target for AML therapy. DGN462 is a member of the novel IGN class of DNA-acting cytotoxic agents, that consists of an indolino-benzodiazepine dimer containing a mono-imine moiety. Potent killing of AML tumor cells by DGN462 and IMGN779 has previously been demonstrated in vitro (K. Whiteman et. al, ASH 2014 #2321). Here we describe studies elucidating the mechanism of action of this novel payload in the AML cell lines: MV4-11, HL60, and EOL-1. The ability of DGN462 to alkylate DNA was demonstrated in an AML cell line by isolation and analysis of the genomic DNA from cells. DGN462 was found to co-purify with DNA, demonstrating that it covalently reacts with cellular DNA. A comet assay was performed confirming that DGN462 does not cross-link DNA. H2AX is known to be phosphorylated on serine 139 in response to DNA damage. Using flow cytometry, we assessed the phosphorylation of H2AX in AML cell lines following exposure to DGN462 and IMGN779. Increases in phosphorylated H2AX levels were detected as early as 4 hours following exposure to DGN462-SMe and 12 hours following exposure to IMGN779. Additional flow cytometry analysis showed that exposure to DGN462-SMe and IMGN779 leads to S-phase accumulation, G2/M arrest, followed by induction of apoptotic markers (cleaved PARP and cleaved Caspase-3) at later time points. Ex vivo studies using AML patient samples also showed elevation of phosphorylated H2AX and an increase in apoptosis in myeloid blasts following exposure to DGN462-SMe and IMGN779. As a demonstration of proof-of-mechanism in AML disease models, our results suggest that cell killing by IMGN779 is mediated by DNA damage, as a consequence of DNA alkylation. The DNA damage response is accompanied by cell cycle arrest, which leads to apoptosis. This relationship will be further explored in additional AML preclinical models to support the use of phosphorylated H2AX as a pharmacodynamic biomarker for IMGN779 activity in future clinical studies. Disclosures Krystal: ImmunoGen, Inc.: Employment, Equity Ownership. Walker:ImmunoGen, Inc.: Employment, Equity Ownership. Fishkin:ImmunoGen, Inc.: Employment, Equity Ownership. Audette:ImmunoGen, Inc.: Employment, Equity Ownership. Kovtun:ImmunoGen, Inc.: Employment, Equity Ownership. Romanelli:ImmunoGen, Inc.: Employment, Equity Ownership.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 217-217 ◽  
Author(s):  
Kobina Dufu ◽  
Donna Oksenberg ◽  
Chengjing Zhou ◽  
Athiwat Hutchaleelaha ◽  
David R. Archer

Abstract Sickle cell disease (SCD) is caused by a point mutation in the β-globin gene leading to production of hemoglobin S (HbS) that polymerizes under hypoxic conditions with subsequent formation of sickled red blood cells (RBCs). We have developed a novel small molecule, GTx011, which attains effective concentrations in blood upon oral dosing in multiple species. GTx011 increases the affinity of oxygen (O2) for HbS, delays in vitro HbS polymerization and prevents sickling of isolated RBCs under hypoxic conditions. We report here that GTx011 prevents in vitro sickling of RBCs in blood from sickle cell patients. Moreover, in a murine model of sickle cell disease (Townes SS mice), GTx011 prevents ex vivo sickling of RBCs and prolongs RBC half-life. We previously reported that GTx011 prevents sickling of isolated sickle cell RBCs (SSRBCs) subjected to a fixed hypoxic condition (pO2 of ~30 mm Hg) for 30 min. For a more physiologically relevant evaluation, we determined the anti-sickling activity of GTx011 in blood under variable hypoxic conditions over a shorter duration of time. Sickling of SSRBCs in blood was evaluated using a combination of hemoximetry and morphometric measurements. Whole blood from sickle cell patients was modified in vitro with GTx011 prior to hemoximetry. Conversely, blood from SS mice with GTx011 orally dosed acutely or chronically for 10-12 days was used for hemoximetry. SSRBCs were harvested during hemoximetry at various O2 tensions and immediately fixed in a deoxygenated solution of 2% glutaraldehyde/PBS prior to morphological quantitative analysis with CellVigene software or imaging flow cytometry (AMNIS ImageStreamX MkII). To evaluate the effect of GTx011 on RBC half-life in SS mice, N-hydroxysuccinimide biotin was injected into SS mice on day 5 of chronic dosing, producing a pulse-label. Flow cytometry was performed using fluorescently labeled streptavidin to determine the decay of biotinylation and RBC half-life. Reticulocyte counts were measured at different intervals during the dosing regimen by determining the percentage of blood cells that were Ter-119+, Thiazole-Orange+ and CD45- by flow cytometry. In a dose-dependent manner, GTx011 decreased the p50 value of human blood indicating an increase in Hb-O2 affinity. In parallel, GTx011 dose-dependently reduced the number of sickled SSRBCs under all hypoxic conditions (pO2 of <40 mm Hg) evaluated. Moreover, at an O2 tension mimicking typical hypoxic conditions in tissue capillaries (40 mm Hg), 300 µM of GTx011 was sufficient to prevent sickling of human SSRBCs in whole blood (20% Hct). Similarly, ex vivo sickling analysis indicated that, relative to blood from vehicle-treated SS mice, blood from GTx011-treated SS mice showed a pronounced reduction in the number of sickled RBCs under hypoxic conditions with a concurrent reduction in p50. For example, at a pO2 of 10 mm Hg, 19% of SSRBCs in blood from GTx011-treated mice sickled ex vivo compared with 56% in blood from vehicle-treated SS mice. In SS mice chronically dosed with GTx011, a prolongation of the RBC half-life from 2.4 days to 3.8 days was achieved together with a marked decrease in reticulocyte count. This increase in RBC half-life and accompanying reduction in reticulocyte count was observed in mice with GTx011 concentrations in blood that corresponded to >30% calculated Hb target occupancy. Taken together, these data suggest that GTx011 has the potential to be a beneficial therapeutic agent for the chronic treatment of SCD. Table SS mice RBC half life Reticulocytes Sickled RBCs Hemoximetry Chronic treatment, PO, BID, 10-12 days (Days) (%) (% at 10 mm Hg) p20 (mm Hg) p50 (mm Hg) Vehicle-treated 2.4 53 56 18 32 GBT440-treated (100mg/kg) 3.8 32 19 4.5 21 Disclosures Dufu: Global Blood Therapeutics: Employment, Equity Ownership. Oksenberg:Global Blood Therapeutics: Employment, Equity Ownership. Zhou:Global Blood Therapeutics: Research Funding. Hutchaleelaha:Global Blood Therapeutics: Employment, Equity Ownership. Archer:Global Blood Therapeutics: Consultancy, Research Funding.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2746-2746
Author(s):  
Xiaoxian Zhao ◽  
Darren C. Phillips ◽  
Andrew J. Souers ◽  
Juraj Bodo ◽  
Paul Tapang ◽  
...  

Abstract The early phase studies have shown the high response rates in chronic lymphocytic leukemia (CLL) patients treated with the BH3 mimetic venetoclax (ABT-199). It indicated that inhibition of BCL-2 is a viable strategy for the treatment of lymphoid malignancies. Objective anti-tumor responses were also observed in patients with other common B-cell non-Hodgkin lymphomas (NHLs) such as follicular lymphoma (FL) or diffuse large B-cell lymphoma (DLBCL), however the overall response rates are not as high as those in CLL patients. Targeting only one anti-apoptotic protein may lead to or uncover resistance owing to activity of other anti-apoptotic BCL2-family members in these settings. MCL-1 is associated with both intrinsic and acquired resistance to venetoclax and thus inhibition of MCL-1 is being explored through either direct inhibition or indirect targeting. Expression of MCL-1 is maintained via p-TEFb-mediated transcription, of which CDK9 plays a critical role. Here we aimed to investigate the combined effects of CDK9 inhibitor and venetoclax in primary DLBCL and FL cells. Inhibition of CDK9 via a small molecule A-1467729.0 (AbbVie) caused rapid loss in phosphorylation (Serine 2) of RNA polymerase II and MCL-1 expression in all tested primary cells of DLBCL and FL patients, confirming the intended effect of CDK9 inhibition. Primary samples from 12 NHL cases (6 DLBCL including 3 GCB/3 non-GCB and 6 FL) were tested for their ex vivo response to A-1467729.0 or venetoclax alone or in combination. Apoptosis assays showed negligible effects (<10% induction) of A-1467729.0 at concentrations of 1, 10, 50 and 100 nM in 11 of 12 samples, while venetoclax at same dose range induced dose-dependent apoptosis in all samples. At 10 nM, the range of venetoclax-induced apoptosis was 16.8% - 55.3% (median 27.9%). Co-treatment with venetoclax and A-1467729.0 demonstrated synergistic effects at multiple doses in all 12 samples as evidenced by flow cytometry based apoptotic assay and PARP cleavage. Quantitative flow cytometry (QFC) studies (molecules/cell) showed that DLBCL and FL patient samples had comparable levels of anti-apoptotic proteins including BCL-2, MCL-1 and BCL-xl. However, BIM levels were higher in DLBCL in comparison to FL samples. Immunohistochemical staining of BIM in formalin-fixed paraffin embedded tissues confirmed this trend. Interestingly, venetoclax was more potent in inducing apoptosis in DLBCL patient samples than FL patient samples ex vivo. QFC data revealed a correlation between 1) BCL-2/BIM ratio and IC50 of venetoclax; 2) BCL-2/(MCL-1+BCL-xl) ratio and IC50 of venetoclax in FL. Importantly, venetoclax and CDK9 inhibitor combination demonstrated superior anti-tumor efficacy in xenograft mouse model of B-cell NHL than either agent alone. In summary, small molecule inhibition of CDK9 in primary NHL cells results in rapid down regulation of MCL1 expression. A-1467729.0, in combination with venetoclax, demonstrates synergistic activity as shown by apoptosis induction in primary DLBCL and FL cells. QFC of BCL-2 family proteins may be a useful biomarker for predicting response to BCL-2 inhibition in FL. The in vitro synergy between CDK9 inhibitor and venetoclax was also seen in vivo xenograft studies. These data support further investigation for combination therapy with CDK9 inhibitor and venetoclax in B-cell NHL. Disclosures Phillips: AbbVie: Employment, Other: Shareholder, Patents & Royalties. Souers:AbbVie: Employment, Equity Ownership. Tapang:AbbVie: Employment, Equity Ownership. Albert:AbbVie: Employment, Equity Ownership.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5206-5206 ◽  
Author(s):  
Sacha L. Prashad ◽  
Leylah Drusbosky ◽  
Hassan Sibai ◽  
Mark D. Minden ◽  
Stephen J. Western ◽  
...  

Abstract Background: Prognoses for acute promyelocytic leukemia (APL) patients improved drastically upon the introduction of differentiation therapy with all-trans-retinoic acid (ATRA) in combination with conventional chemotherapy. Unfortunately, this therapeutic approach has not translated to other genetic subtypes of acute myeloid leukemia (AML) where patients demonstrate marked heterogeneity to differentiating agents. To provide improved detection of drug-induced differentiation in AML patients, we have developed a high-throughput, flow cytometry-based personalized medicine platform. Methods: Total white blood cells were isolated from each patient sample by red cell lysis, plated in serum-free media in 384-well format and incubated with drugs for 3 days. Viable cells remaining after each drug treatment were identified and quantified using cell surface marker expression, cell membrane integrity, and morphology (FSC/SSC) to determine the compound's efficacy and specificity against the blast population. Changes in cell surface marker expression and shifts in morphology indicative of blast differentiation were also evaluated with each compound. As a control for ex vivo differentiation, two APL patient samples were treated ex vivo with ATRA and we observed the blasts gaining CD66b expression indicating granulocytic differentiation. Results: A refractory AML patient was identified whose leukemic blasts exhibited a strong differentiating response to dexamethasone treatment ex vivo. This resulted in loss of CD34 expression (a marker of immature blast cells), gain of CD163 expression (a marker of monocytic/macrophage maturation) and a significant change in cellular size and granularity. After being enrolled in a clinical trial (REB: 13-6962-C) the patient was treated based on the assay for 1 week (40 mg/day) with dexamethasone. Post-treatment samples from the peripheral blood and bone marrow of the patient exhibited the same morphological and cell surface marker changes predicted by the ex vivo assay. The CD163+ cells in the patient also gained additional markers of myeloid differentiation (CD11b, CD14, CD16). After additional cytarabine and fludarabine treatment, the patient remains in remission 4 months post-treatment. Conclusions: Following this initial study, we have continued to identify subgroups of both AML and Myelodysplastic Syndrome patients where blasts differentiate in response to dexamethasone, calcitriol, ATRA or other known differentiating agents using unique cell surface markers of monocytic and myeloid maturation. Flow cytometry expression changes correlated with changes in morphology as observed by May-Grunwald Giemsa staining. In the patient described above this included an increase in cytoplasm and vacuoles consistent with monocytic/macrophage differentiation, which positively correlates with CD163 expression. We aim to apply our assay towards the identification of subgroups of AML patients who respond to differentiation therapies and develop clinical trials to combine differentiating agents with chemotherapy. This approach has the potential to extend the clinical success of APL differentiation therapy to AML patients. Disclosures Prashad: Notable Labs: Employment, Equity Ownership. Western:Notable Labs: Consultancy. Biondi:Notable Labs: Employment. Shah:Notable Labs: Employment. Liu:Notable Labs: Employment, Equity Ownership. Nguyen:Notable Labs: Employment, Equity Ownership. Warnock:Notable Labs: Employment, Equity Ownership. Quinzio:Notable Labs: Employment, Equity Ownership. De Silva:Notable Labs: Employment, Equity Ownership. Schimmer:Novartis: Honoraria. Heiser:Notable Labs: Employment, Equity Ownership.


Reproduction ◽  
2015 ◽  
Vol 149 (4) ◽  
pp. 317-327 ◽  
Author(s):  
Martyna Łupicka ◽  
Gabriel Bodek ◽  
Nahum Shpigel ◽  
Ehud Elnekave ◽  
Anna J Korzekwa

The aim of this study was to identify uterine pluripotent cells both in bovine uterine tissues as well in epithelial, stromal, and myometrial uterine cell populations. Moreover, the relationship of pluripotent markers expression with age and the uterine horn side was considered. Uterine tissue was collected from ipsilateral and contralateral horns (days 8–10 of the estrous cycle). Immunohistostaining for C-KIT, OCT3/4, NANOG, and SOX2 in uterine tissue was determined. mRNA expression of C-KIT, OCT3/4, NANOG and SOX2 was evaluated in uterine tissue relative to the age of the cow and uterine horn side. Gene and protein expression of these markers in the uterine luminal epithelial, stromal, and myometrial cells was evaluated by real-time PCR and western blotting respectively. The expression of pluripotent cell markers OCT3/4, NANOG, and SOX2 was identified by flow cytometry assay in epithelial, stromal, and myometrial cells. Multilineage differentiation of the bovine uterine cells was performed. mRNA expression of OCT3/4, NANOG, and SOX2 in uterine tissue was higher in the ipsilateral horn than in the contralateral horn. Flow cytometry assay revealed positive fluorescence for OCT3/4, NANOG, and SOX2 in all uterine cell types. Results showed the age-dependent expression of pluripotent markers in uterine tissue. Beside, the different expression of pluripotent cells in each horn of uterus suggests the influence of ovarian hormones on these characteristics. The highest mRNA and protein expression for pluripotent markers was observed in stromal cells among uterine cells, which indicates this population of cells as the main site of pluripotent cells in the cow uterus.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1848-1848
Author(s):  
Maria Karvouni ◽  
Heyue Zhou ◽  
Arnika Kathleen Wagner ◽  
Qiangzhong Ma ◽  
Alamdar H. Baloch ◽  
...  

Background: Multiple myeloma (MM) is a plasma cell malignancy that remains incurable. The identification of CD38, a transmembrane glycoprotein overexpressed on MM cells, led to the development of target-specific therapeutics such as the FDA approved monoclonal antibody (mAb) Daratumumab (DARA). Although a valuable treatment option for refractory/relapsed (R/R) MM patients, DARA has a limited response rate of below 50%, which highlights the clinical need for novel therapeutics. Aims: Aiming to further exploit the therapeutic potential of CD38 in the MM setting, immunotherapies based on the novel anti-CD38 mAb CD38A2 were tested. Methods: For the first approach, the CD38A2 mAb -that binds to a unique, distinct from DARA's, CD38 epitope- was conjugated with either the alkylating agent Duomycin (ADC-136) or the microtubulin binder Duostatin (ADC-129). The ADCs were compared to DARA, in cultures of primary MM cells from patients refractory to DARA treatment. In a second approach, a chimeric antigen receptor (CAR) consisting of the CD38A2 scFv and the intracellular domains of CD28 and CD3ζ was used to transduce primary T and NK cells from R/R MM patients. The functionality of the CAR-T and CAR-NK cells was assessed in cytotoxicity assays against autologous myeloma cells. Results: ADC-136 demonstrated the most potent cytotoxicity against the MM cells with an IC50 of 6pM at day 6 following a single dose treatment. ADC-129 showed cell killing with an IC50 of 30pM, while DARA did not exhibit appreciable cytotoxicity. Regarding the cell therapy approach, patients' T and NK cells were effectively transduced, showing a CD38A2-CAR expression ranging between 11-68%. In functional assays, CAR-T and CAR-NK cells were assayed against autologous myeloma cells, where they exhibited an increase in target cell cytotoxicity, compared to the untransduced cells. Summary/Conclusion: Altogether, our preliminary findings demonstrate that CD38 targeting using CD38A2-based immunotherapies could be a viable therapeutic approach in R/R MM patients previously exposed to DARA. Currently, an anti-CD38 CAR-T therapy based on CD38A2 is being evaluated in Phase 1 studies in R/R MM patients by Sorrento Therapeutics, Inc. Disclosures Zhou: Sorrento Therapeutics Inc: Employment, Equity Ownership. Ma:Sorrento Therapeutics Inc: Employment, Equity Ownership. Zhu:Sorrento Therapeutics Inc: Employment, Equity Ownership. Zhang:Sorrento Therapeutics Inc: Employment, Equity Ownership. Kaufmann:Sorrento Therapeutics, Inc.: Employment, Equity Ownership, Patents & Royalties.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3021-3021 ◽  
Author(s):  
V. Michael Holers ◽  
Istvan Mazsaroff ◽  
Hillary Akana ◽  
Christopher G. Smith ◽  
J. Woodruff Emlen ◽  
...  

Abstract Abstract 3021 Poster Board II-997 The complement system is activated through three pathways: classical, lectin/mannose and alternative. Polymorphisms and mutations that promote Complement Alternative Pathway (CAP) activity are associated with human diseases including atypical hemolytic uremic syndrome (aHUS) and age-related macular degeneration (AMD). The complement system is also centrally involved in many hemolytic disorders, including paroxysmal nocturnal hemoglobinuria (PNH) where the CAP initiates complement activation resulting in intravascular hemolysis (IVH) after engagement of C5 and formation of the membrane attack complex (MAC). Systemic neutralization of C5 with the anti-C5 monoclonal antibody, eculizumab, abrogates IVH when plasma concentrations are maintained above the minimal efficacious concentration (Cmin = 35 μg/mL). However, because eculizumab does not inhibit CAP activity prior to C5, C3 fragments (C3frag) continue to covalently bind to and accumulate on PNH red blood cells (RBCs). Clearance by the reticuloendothelial system of PNH RBCs that are C3frag-coated is a putative cause of extravascular hemolysis (EVH) in eculizumab-treated patients. In order to selectively modulate CAP activity, we developed TT30, a novel therapeutic 65kD fusion protein linking the first four short consensus repeat (SCR) domains of human complement receptor type 2 (CR2/CD21) with the first five SCR of human factor H (fH). CR2 SCR1-4 encompasses the antigen-fixed C3frag (iC3b, C3dg and C3d) binding domain. Factor H is the primary soluble phase, negative regulator of CAP activity functioning via the SCR1-5 domains. The unique mechanism of TT30 utilizes CR2 SCR1-4 to recognize and bind to C3frag on cells in which complement activation is occurring, thus delivering cell surface-targeted inhibition of CAP activity via fH SCR 1-5. TT30 both prevents CAP-dependent hemolysis of rabbit RBCs in human serum and blocks accumulation of C3frag on the RBC surface. By design, TT30 should also be a potent inhibitor of the CAP, but with minimal inhibition of the complement classical (CCP) and mannose (lectin; CMP) pathways. To test this hypothesis, we utilized sensitive pharmacodynamic assays that allow in vitro or ex vivo assessment in an ELISA format of individual complement pathway activity present in human serum. In this format, TT30 is a potent and selective inhibitor of CAP activity in normal human complement-preserved serum, with EC50 and EC100 values of ∼0.1 and 1 μg/mL serum. As predicted by the use of fH in its construction, TT30 is a much less potent inhibitor of the CCP and CMP, with EC100 values of ∼65 μg/mL. By contrast, in these assays a monoclonal and polyclonal anti-C5 antibody each demonstrate non-selective inhibition of CAP and CCP activity at all effective concentrations. TT30 activity is dependent upon CR2 binding to C3frag, as an anti-CR2 monoclonal antibody reverses the surface inhibition of CAP activity. This surface-targeting approach to delivering fH SCR1-5 results in a molecule with a 10-fold potency gain in CAP inhibition relative to added purified fH and an ∼30-fold potency gain relative to the total fH present in the serum used in the assay. TT30 administered as a single IV injection at 20 mg/kg to rats, rabbits and monkeys results in Cmax values of ∼400, 500 and 300 μg/mL and concentration-dependent inhibition of CAP activity. At serum concentrations of TT30 that induced maximal (100%) inhibition of systemic CAP activity for up to 12 hours, CCP activity is modestly (∼35-60%) inhibited for only 2 hours. CAP activity returns to baseline levels in a predictable fashion. Pharmacokinetic analysis indicates no gender-related differences and the expected scaling of parameters across species. TT30 is pharmacologically active in monkeys, rabbits and mice. TT30 administered as a single subcutaneous injection at 20 mg/kg to monkeys results in Cmax values of ∼25 μg/mL, and EC100 values identical to those observed with IV administration, but with a 3-fold prolongation of the maximal pharmacodynamic effect. The novel therapeutic TT30 has been shown in vitro and ex vivo to deliver cell surface-targeted control of CAP activation with minimal CCP and CMP inhibition and effective blockade of C3frag accumulation and MAC formation. As a result, TT30 has potential utility for the treatment of complement-mediated diseases such as PNH, AMD and aHUS, in which cell surface-targeted control of CAP activation may be clinically beneficial. Disclosures Holers: Taligen Therapeutics: Employment, Equity Ownership, Patents & Royalties, Research Funding. Mazsaroff:Taligen Therapeutics: Employment. Akana:Taligen Therapeutics: Employment. Smith:Taligen Therapeutics: Employment. Emlen:Taligen Therapeutics: Employment, Equity Ownership. Marians:Taligen Therapeutics: Employment. Horvath:Taligen Therapeutics: Employment.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1451-1451
Author(s):  
Caroline Desponts ◽  
David Robbins ◽  
Thuy Le ◽  
Annie Chi ◽  
Scott Thies ◽  
...  

Abstract Abstract 1451 A systematic investigation was performed to optimize the treatment protocol for ex vivo incubation of human hematopoietic stem cells (HSCs) with 16,16-dimethyl prostaglandin E2 (FT1050) prior to transplantation. This protocol is part of an ongoing Phase Ib clinical trial of FT1050-enhanced double cord blood (CB) transplantation after reduced intensity conditioning. FT1050 has been previously shown in vertebrate models to improve the engraftment potential of HSCs from bone marrow (BM) and CB after a brief ex vivo treatment. In these models, treatment of BM or CB with FT1050 was performed for 1 to 2 hours at 4 °C, followed by a wash and subsequent cell infusion into the recipient (North et al. Nature 2007, Hoggatt et al. Blood 2009). Several groups have demonstrated that under these conditions, FT1050-treated cells have an engraftment advantage over vehicle treated cells. The objective of the current investigation was to identify a set of conditions that maximizes the biologic activity of FT1050. Genome-wide expression analysis and cAMP assays were used to optimize the ex vivo FT1050 treatment protocol with respect to concentration, time and temperature. Using this approach, hundreds of up- and down-regulated genes were identified in FT1050-treated CD34+ cells. These signature genes include upregulation of CXCR4, a known mediator of HSC homing via SDF-1a, and CREB, a key gene involved in cAMP signaling. Results from these experiments demonstrated that FT1050 concentrations above 10 μM did not result in increased levels of biologic activity. In terms of duration of incubation, cAMP activity reached maximal levels within 30 minutes of exposure while a 2 hour treatment period was necessary to maximize the changes in gene expression. Finally, the biologic activity of FT1050 was highly sensitive to temperature, with treatment of cells at 37 °C yielding larger changes in cAMP production and gene expression as compared to incubation of cells at 25 °C and 4 °C. The biological effects of FT1050 on subsets of CD34+ cells isolated from CB were also determined. Interestingly, the stem/progenitor subsets of CD34+ cells (Lin-CD34+CD38-CD90+CD45RA-, Lin-CD34+CD38-CD90-CD45RA- and Lin-CD34+) had a greater response to FT1050 relative to the lineage positive cells. The different conditions were also evaluated using CFU-C and 7-AAD assays. No evidence of adverse effects were observed. Based upon these findings, the ongoing clinical trial incorporates the optimized FT1050 ex vivo treatment protocol (10 μM for 120 minutes at 37 °C). Disclosures: Desponts: Fate Therapeutics, Inc.: Employment, Equity Ownership. Robbins:Fate Therapeutics, Inc.: Employment, Equity Ownership. Le:Fate Therapeutics, Inc.: Employment, Equity Ownership. Thies:Fate Therapeutics, Inc.: Employment, Equity Ownership. Mendlein:Fate Therapeutics, Inc.: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees. Grayson:Fate Therapeutics Inc.: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees. Multani:Fate Therapeutics, Inc.: Employment, Equity Ownership. Shoemaker:Fate Therapeutics: Employment, Equity Ownership.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4043-4043
Author(s):  
Anita K Gandhi ◽  
Herve Avet-Loiseau ◽  
Michelle Waldman ◽  
Anjan Thakurta ◽  
Sharon L Aukerman ◽  
...  

Abstract Abstract 4043 Background: Cereblon (CRBN), a component of the DDB1-CUL4A-Roc1 ubiquitin ligase complex, has been identified as a target of the immunomodulatory agents thalidomide, lenalidomide, and pomalidomide (Lopez-Girona et al. Leukemia. 2012; Zhu et al. Blood. 2011; Ito et al. Science. 2010.). CRBN binding by these agents mediates their anti-proliferative effects in multiple myeloma (MM) cells (Lopez-Girona et al. Leukemia. 2012; Zhu et al. Blood. 2011). However, the role of CRBN quantification as a marker for disease responsiveness or resistance to these drugs remains to be fully defined. Furthermore, it is unclear whether measuring mRNA or protein expression is the best approach for development of a quantitative CRBN expression assay. In order to define the optimal assay approach, we have studied CRBN mRNA and protein expression in MM cell lines (n=20) and MM patient samples. Methods: CRBN isoform mapping was undertaken using a nested PCR approach and Sanger sequencing. Commercially available and newly generated rabbit anti-CRBN antibodies were characterized with recombinant human CRBN protein and MM cell line extracts via western blot analysis. Results: Our data show that in addition to the transcript for full length protein (GenBank Accession NM_016302.3), in MM cells there are at least 6 alternatively spliced isoforms of CRBN as depicted in Figure 1. Five of the 6 CRBN isoforms (CRBN-003, -004, -005, -006, and -007) contain novel splice junctions not previously described. In addition, 3 of the identified transcripts (CRBN-002, -003, and -005) contain in-frame ORFs, suggesting they encode variants of CRBN protein. Of note, exon 10, which contains a portion of the IMiD-binding domain, is not present in CRBN-002. The functional consequence of CRBN-002 remains to be elucidated, but may be a marker of drug resistance. In order to measure CRBN protein levels, we developed and characterized three rabbit monoclonal antibodies to CRBN including antibody CRBN65, which has the potential to discriminate between the different CRBN protein products, including CRBN-002 by western blot analysis. Additionally, we compared 8 commercially available CRBN antibodies. Western blot analysis of cell lines with commercial and newly developed antibodies identified full length protein at 51 kD. Most commercial antibodies also identified multiple bands of other sizes which may represent CRBN protein variants; however, many are likely non-specific bands as they are larger than full-length CRBN. Conclusion: We have identified novel splice variants of CRBN from MM cell lines and primary tumor samples. The structure of the isoforms and their potential ability to be translated into several protein variants of CRBN reflect the complex regulation of the CRBN gene. These data suggest that accurate quantification of CRBN mRNA level in clinical studies may require measurement of both full-length CRBN mRNA as well as other mRNA isoforms. Currently available primers and gene expression arrays are not capable of identifying and/or resolving the complex set of CRBN isoforms present in cells. These data also demonstrate that CRBN65 is a highly specific and sensitive antibody that could be used for detection of CRBN and its key variants. Taken together, our data emphasize the importance for developing standardized reagents and assays for both mRNA and protein level measurement of CRBN before using them as markers for clinical response or resistance. Disclosures: Gandhi: Celgene Corp: Employment, Equity Ownership. Waldman:Celgene Corp: Employment, Equity Ownership. Thakurta:Celgene Corp: Employment, Equity Ownership. Aukerman:Celgene Corp: Employment, Equity Ownership. Chen:Celgene Corp: Employment, Equity Ownership. Mendy:Celgene Corp.: Employment, Equity Ownership. Rychak:Celgene Corp: Employment, Equity Ownership. Miller:Celgene Corp: Employment, Equity Ownership. Gaidarova:Celgene Corp: Employment, Equity Ownership. Gonzales:Celgene Corp: Employment, Equity Ownership. Cathers:Celgene Corp: Employment, Equity Ownership. Schafer:Celgene: Employment, Equity Ownership. Daniel:Celgene Corporation: Employment. Lopez-Girona:Celgene Corp: Employment, Equity Ownership. Chopra:Celgene Corp: Employment, Equity Ownership.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 580-580
Author(s):  
Mark Wunderlich ◽  
Mahesh Shrestha ◽  
Lin Kang ◽  
Eric Law ◽  
Vladimir Jankovic ◽  
...  

Abstract Abstract 580 Generating a large number of pure, functional immune cells that can be used in human patients has been a major challenge for NK cell-based immunotherapy. We have successfully established a cultivation method to generate human NK cells from CD34+ cells isolated from donor-matched cord blood and human placental derived stem cells, which were obtained from full-term human placenta. This cultivation method is feeder-free, based on progenitor expansion followed by NK differentiation supported by cytokines including thrombopoietin, stem cell factor, Flt3 ligand, IL-7, IL-15 and IL-2. A graded progression from CD34+ hematopoietic progenitor cells (HSC) to committed NK progenitor cells ultimately results in ∼90% CD3-CD56+ phenotype and is associated with an average 10,000-fold expansion achieved over 35 days. The resulting cells are CD16- and express low level of KIRs, indicating an immature NK cell phenotype, but show active in vitro cytotoxicity against a broad range of tumor cell line targets. The in vivo persistence, maturation and functional activity of HSC-derived NK cells was assessed in NSG mice engineered to express the human cytokines SCF, GM-CSF and IL-3 (NSGS mice). Human IL-2 or IL-15 was injected intraperitoneally three times per week to test the effect of cytokine supplementation on the in vivo transferred NK cells. The presence and detailed immunophenotype of NK cells was assessed in peripheral blood (PB), bone marrow (BM), spleen and liver samples at 7-day intervals up to 28 days post-transfer. Without cytokine supplementation, very few NK cells were detectable at any time-point. Administration of IL-2 resulted in a detectable but modest enhancement of human NK cell persistence. The effect of IL-15 supplementation was significantly greater, leading to the robust persistence of transferred NK cells in circulation, and likely specific homing and expansion in the liver of recipient mice. The discrete response to IL-15 versus IL-2, as well as the preferential accumulation in the liver have not been previously described following adoptive transfer of mature NK cells, and may be unique for the HSC-derived immature NK cell product. Following the in vivo transfer, a significant fraction of human CD56+ cells expressed CD16 and KIRs indicating full physiologic NK differentiation, which appears to be a unique potential of HSC-derived cells. Consistent with this, human CD56+ cells isolated ex vivo efficiently killed K562 targets in in vitro cytotoxicity assays. In contrast to PB, spleen and liver, BM contained a substantial portion of human cells that were CD56/CD16 double negative (DN) but positive for CD244 and CD117, indicating a residual progenitor function in the CD56- fraction of the CD34+ derived cell product. The BM engrafting population was higher in NK cultures at earlier stages of expansion, but was preserved in the day 35- cultured product. The frequency of these cells in the BM increased over time, and showed continued cycling based on in vivo BrdU labeling 28 days post-transfer, suggesting a significant progenitor potential in vivo. Interestingly, DN cells isolated from BM could be efficiently differentiated ex vivo to mature CD56+CD16+ NK cells with in vitro cytotoxic activity against K562. We speculate that under the optimal in vivo conditions these BM engrafting cells may provide a progenitor population to produce a mature NK cell pool in humans, and therefore could contribute to the therapeutic potential of the HSC-derived NK cell product. The in vivo activity of HSC-derived NK cells was further explored using a genetically engineered human AML xenograft model of minimal residual disease (MRD) and initial data indicates significant suppression of AML relapse in animals receiving NK cells following chemotherapy. Collectively, our data demonstrate the utility of humanized mice and in vivo xenograft models in characterizing the biodistribution, persistence, differentiation and functional assessment of human HSC-derived cell therapy products, and characterize the potential of HSC-derived NK cells to be developed as an effective off-the-shelf product for use in adoptive cell therapy approaches in AML. Disclosures: Wunderlich: Celgene Cellular Therapeutics: Research Funding. Shrestha:C: Research Funding. Kang:Celgene Cellular Therapeutics: Employment, Equity Ownership, Patents & Royalties. Law:Celgene Cellular Therapeutics: Employment, Equity Ownership, Patents & Royalties. Jankovic:Celgene Cellular Therapeutics: Employment, Equity Ownership, Patents & Royalties. Zhang:Celgene Cellular Therapeutics: Employment, Equity Ownership, Patents & Royalties. Herzberg:Celgene Cellular Therapeutics: Employment, Equity Ownership, Patents & Royalties. Abbot:Celgene Cellular Therapeutics: Employment, Equity Ownership, Patents & Royalties. Hariri:Celgene Cellular Therapeutics: Employment, Equity Ownership, Patents & Royalties. Mulloy:Celgene Cellular Therapeutics: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document