Anti CMV and/or Anti Adenovirus IFN-g-Positive CD4+ CD8+ T Lymphocytes for Treatment of Viral Infections After Allogeneic HSC Transplantation: First Results

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1906-1906
Author(s):  
Liliane Dal Cortivo ◽  
RITA Creidy ◽  
Aurélie Gabrion ◽  
Marianne Leruez-Ville ◽  
Sebastien Heritier ◽  
...  

Abstract Abstract 1906 Reactivation of latent viruses such as cytomegalovirus (CMV) and adenovirus (AdV) is responsible for infections which may be life-threatening in HSCT recipients. In the post-transplantation period, severity and frequency of these infections depend on (a) the degree of donor-recipient HLA incompatibility and (b) the intensity of immunosuppressive therapy used to prevent immunological complications. Antiviral drugs may be partially effective, often toxic and cannot always control those viral infections.T cell immunity plays a major role in the control of viral infections. It has been demonstrated that the transfer of donor T lymphocytes specifically directed against viral antigens is capable of preventing, controlling and clearing viral infection (Feuchtinger T et al., 2004 and 2010). The present project aimed the evaluation of specific, cell-based immunity against CMV and AdV by injection of IFN-g-positive CD4+and CD8+ donor T lymphocytes isolated ex vivo after stimulation with viral peptides. Methods: Our protocol was designed for pediatric or adult patients treated by allogeneic HSCT and matching the following inclusion criteria: (1) biological and/or clinical symptoms of CMV and/or AdV infection 2) no response or contraindication to conventional antiviral treatment and (3) no or low grade pre-existing aGvHD at inclusion (≤ grade II) controlled by corticoids (<1 mg/kg). Antiviral treatments are allowed during the inclusion period. Donor IFN-g-positive T lymphocytes are isolated with the CliniMACS Cytokine Capture System (Miltenyi Biotech) after incubation with viral peptide pools. Primary evaluation criterion is the efficacy of the treatment on CMV viral load 21 days after the first injection. In the event of a negative or partial response and the absence of aGvHD, a second injection may be scheduled. Secondary evaluation criteria are (1) the occurrence of de novo aGvHD or aggravation of existing aGvHD, (2) the evolution of clinical symptoms potentially related to the infection, (3) the demonstration of biological in vivo expansion of injected T lymphocytes (as evidenced by the IFN-g secretion capacity and specific tetramer assays) and (4) for AdV infection, evaluation of efficacy (viral load, in vivo expansion of transfused lymphocytes, clinical symptoms) and the safety (occurrence of aGvHD) of this immunotherapy. Results: From September 2010 to July 2012, 9 patients were included: 3 male adults (46–54 years, 1 CLL, 1 CML and 1 AA, 2 geno- and 1 pheno-identical transplantation) and 6 children (age: 7–25 months, sex ratio F/M: 4/2, 4 FLH, 1 SCID and 1AA, 4 haplo, 1 geno- and 1 pheno-id transplantation). 4/9 patients were treated for CMV, 3/9 for AdV and 2/9 for CMV and AdV reactivation. 5/9 patients received 2 cytotoxic T lymphocytes (CTL) injections. Mean number of CD3 IFN-g positive cells injected was 4206/kg (1167–6000/kg) with 55% and 69% of CD4 and CD8 anti CMV-T cells and 56% and 61% of CD4 and CD8 anti AdV T cells respectively. Mean delay of first immunotherapy was 109 days (28–270) after transplantation. 2/9 patients were not evaluable due to early death (<21 days post injection) and 1/9 patient died of graft failure 43 days after CTL injection without efficacy on infectious evolution. 6 patients are still alive: 4 with complete, 1 with partial remission of virus replication and 1 recently included, is still under evaluation. An in vivo expansion of transfused CTL was observed (mean expansion was 33 and 35 fold for CD8-IFN-g and CD4-IFN-g positive cells respectively 42 days after injection) in parallel with the decrease of viral load in all alive patients. No aGvHD was detected in the 5/6 evaluated patients. One of 6 presenting cGvH at inclusion need increase of corticotherapy 3 months after second injection of CTL One patient presenting with CMV retinitis received 2 CTL injections without worsening of retina lesions which healed. Conclusion: The CliniMACS Cytokine Capture System allows the isolation of virus-specific T cells in a brief delay (24 hours) with a satisfactory enrichment of both CD4 and CD8 T cells. First results show efficacy of virus-specific T cells injection on viral load without signs of aGvHD in 5/6 evaluable patients. More patients need to be included in this trial in order to confirm these encouraging results. Disclosures: Cambouris: Miltenyi Biotec: Employment.

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1403-1403
Author(s):  
Philipp J. Jost ◽  
Monica Yabal ◽  
Heiko Adler ◽  
Nathalie Knies ◽  
Christina Groß ◽  
...  

Abstract The hyper-inflammatory syndrome X-linked lymphoproliferative syndrome type 2 (XLP-2) is defined by mutations in BIRC4 (XIAP). XLP-2 is often diagnosed in paediatric patients and is characterized by hyper-inflammation triggered by common viral infections. Symptoms include splenomegaly, HLH, fevers, and chronic haemorrhagic colitis among others. Recent work has also shown that mutations in BIRC4 predispose to the development of early-onset IBD, which is not necessarily associated with symptoms of systemic hyper-inflammation. Symptoms of XLP-2 are mostly attributed to the aberrant activation of macrophages and dendritic cells (DC) and the subsequent accumulation of activated T-lymphocytes. We have characterized the inflammatory response of mice deficient for BIRC4 (XIAP) to viral infections with the murine herpes virus 68 (MHV-68) as the closest murine model for human EBV-driven mononucleosis. Xiap-/- mice were capable of clearing the virus normally during early infection (day 6, 16), but failed to do so during the course of the infection measured as elevated viral genomic loads during late (day 43) and very late (day 84) latency. Xiap-/- mice responded to intranasal application of the virus with systemic hyper-inflammation exemplified by elevated IL-1beta levels, splenomegaly and increased activation of peripheral T lymphocytes such as CD4+ effector T cells, regulatory T cells (Treg), and IFNg+ T cells. In previous work, we have shown that TNF is critically required to drive the hyper-inflammatory phenotype of macrophages and dendritic cells of XIAP-deficient mice. Indeed, genetic deletion of TNF in vivo or, alternatively, anti-TNF treatment in vivo using Eternacept (Enbrel) ameliorated the symptoms of XIAP-deficient mice in response to viral infection. Elevated IL-1beta levels were also observed in human peripheral blood-derived monocytes from XLP-2 patients (7 patients from 5 different families) when compared to healthy controls. In conclusion, this data supports the notion that anti-TNF treatment might be able to ameliorate the hyper-inflammatory responses in XLP-2 patients, when used early during an infection. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2006 ◽  
Vol 108 (12) ◽  
pp. 3890-3897 ◽  
Author(s):  
Juan Vera ◽  
Barbara Savoldo ◽  
Stephane Vigouroux ◽  
Ettore Biagi ◽  
Martin Pule ◽  
...  

AbstractThere has been interest in generating T cells expressing chimeric artificial receptors (CARs) targeting CD19/CD20 antigens to treat B-cell lymphomas. If successful, however, this approach would likely impair humoral immunity because T cells may persist long-term. Most low-grade lymphoma and chronic lymphocytic leukemia (B-CLL) cells express monoclonal immunoglobulins carrying either κ or λ light chains. We, therefore, explored whether T lymphocytes could be genetically modified to target the tumor-associated light chain, sparing B lymphocytes expressing the reciprocal light chain, and consequently reduce impairment of humoral immunity. We found that T lymphocytes expressing the anti-κ light chain CAR showed cytotoxic activity against Igκ+ tumor cell lines and B-CLL cells both in vitro and in vivo. We also found that the incorporation of the CD28 endodomain within the CAR enhanced the in vitro and in vivo expansion of transgenic T cells after tumor-associated antigen stimulation. Free Igκ+ did not compromise the ability of redirected T lymphocytes to eliminate Igκ+ tumors because these free immunoglobulins served to sustain proliferation of CAR-CD28 transgenic T cells. Thus, adoptive transfer of T lymphocytes targeting the appropriate light chain could be a useful immunotherapy approach to treat B-lymphocyte malignancies that clonally express immunoglobulin without entirely compromising humoral immunity.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Dehua Lu ◽  
Yanpu Wang ◽  
Ting Zhang ◽  
Feng Wang ◽  
Kui Li ◽  
...  

Abstract Background Adoptive T cell transfer-based immunotherapy yields unsatisfactory results in the treatment of solid tumors, partially owing to limited tumor infiltration and the immunosuppressive microenvironment in solid tumors. Therefore, strategies for the noninvasive tracking of adoptive T cells are critical for monitoring tumor infiltration and for guiding the development of novel combination therapies. Methods We developed a radiolabeling method for cytotoxic T lymphocytes (CTLs) that comprises metabolically labeling the cell surface glycans with azidosugars and then covalently conjugating them with 64Cu-1,4,7-triazacyclononanetriacetic acid-dibenzo-cyclooctyne (64Cu-NOTA-DBCO) using bioorthogonal chemistry. 64Cu-labeled control-CTLs and ovalbumin-specific CTLs (OVA-CTLs) were tracked using positron emission tomography (PET) in B16-OVA tumor-bearing mice. We also investigated the effects of focal adhesion kinase (FAK) inhibition on the antitumor efficacy of OVA-CTLs using a poly(lactic-co-glycolic) acid (PLGA)-encapsulated nanodrug (PLGA-FAKi). Results CTLs can be stably radiolabeled with 64Cu with a minimal effect on cell viability. PET imaging of 64Cu-OVA-CTLs enables noninvasive mapping of their in vivo behavior. Moreover, 64Cu-OVA-CTLs PET imaging revealed that PLGA-FAKi induced a significant increase in OVA-CTL infiltration into tumors, suggesting the potential for a combined therapy comprising OVA-CTLs and PLGA-FAKi. Further combination therapy studies confirmed that the PLGA-FAKi nanodrug markedly improved the antitumor effects of adoptive OVA-CTLs transfer by multiple mechanisms. Conclusion These findings demonstrated that metabolic radiolabeling followed by PET imaging can be used to sensitively profile the early-stage migration and tumor-targeting efficiency of adoptive T cells in vivo. This strategy presents opportunities for predicting the efficacy of cell-based adoptive therapies and for guiding combination regimens. Graphic Abstract


Blood ◽  
2003 ◽  
Vol 102 (1) ◽  
pp. 200-206 ◽  
Author(s):  
Martin Wilhelm ◽  
Volker Kunzmann ◽  
Susanne Eckstein ◽  
Peter Reimer ◽  
Florian Weissinger ◽  
...  

Abstract There is increasing evidence that γδ T cells have potent innate antitumor activity. We described previously that synthetic aminobisphosphonates are potent γδ T cell stimulatory compounds that induce cytokine secretion (ie, interferon γ [IFN-γ]) and cell-mediated cytotoxicity against lymphoma and myeloma cell lines in vitro. To evaluate the antitumor activity of γδ T cells in vivo, we initiated a pilot study of low-dose interleukin 2 (IL-2) in combination with pamidronate in 19 patients with relapsed/refractory low-grade non-Hodgkin lymphoma (NHL) or multiple myeloma (MM). The objectives of this trial were to determine toxicity, the most effective dose for in vivo activation/proliferation of γδ T cells, and antilymphoma efficacy of the combination of pamidronate and IL-2. The first 10 patients (cohort A) who entered the study received 90 mg pamidronate intravenously on day 1 followed by increasing dose levels of continuous 24-hour intravenous (IV) infusions of IL-2 (0.25 to 3 × 106 IU/m2) from day 3 to day 8. Even at the highest IL-2 dose level in vivo, γδ T-cell activation/proliferation and response to treatment were disappointing with only 1 patient achieving stable disease. Therefore, the next 9 patients were selected by positive in vitro proliferation of γδ T cells in response to pamidronate/IL-2 and received a modified treatment schedule (6-hour bolus IV IL-2 infusions from day 1-6). In this patient group (cohort B), significant in vivo activation/proliferation of γδ T cells was observed in 5 patients (55%), and objective responses (PR) were achieved in 3 patients (33%). Only patients with significant in vivo proliferation of γδ T cells responded to treatment, indicating that γδ T cells might contribute to this antilymphoma effect. Overall, administration of pamidronate and low-dose IL-2 was well tolerated. In conclusion, this clinical trial demonstrates, for the first time, that γδ T-cell–mediated immunotherapy is feasible and can induce objective tumor responses. (Blood. 2003;102:200-206)


2011 ◽  
Vol 4 (4) ◽  
pp. 211
Author(s):  
Serena Meraviglia ◽  
Carmela La Mendola ◽  
Valentina Orlando ◽  
Francesco Scarpa ◽  
Giuseppe Cicero ◽  
...  

The potent anti-tumor activities of γδ T cells, their ability to produce pro-inflammatory cytokines, and their strong cytolytic activity have prompted the development of protocols in which γδ agonists or ex vivo-expanded γδ cells are administered to tumor patients. γδ T cells can be selectively activated by either synthetic phosphoantigens or by drugs that enhance their accumulation into stressed cells as aminobisphosphonates, thus offering new avenues for the development of γδ T cell-based immunotherapies. The recent development of small drugs selectively activating Vγ9Vδ2 T lymphocytes, which upregulate the endogenous phosphoantigens, has enabled the investigators to design the experimental approaches of cancer immunotherapies; several ongoing phase I and II clinical trials are focused on the role of the direct bioactivity of drugs and of adoptive cell therapies involving phosphoantigen- or aminobisphosphonate-activated Vγ9Vδ2 T lymphocytes in humans. In this review, we focus on the recent advances in the activation/expansion of γδ T cells in vitro and in vivo that may represent a promising target for the design of novel and highly innovative immunotherapy in patients with hematologic malignancies.<br />


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Giovanni Cimmino ◽  
Giovanni Ciccarelli ◽  
Stefano Conte ◽  
Grazia Pellegrino ◽  
Luigi Insabato ◽  
...  

Background: Activation of T-cells plays an important role in the pathophysiology of acute coronary syndromes (ACS). We have previously shown that plaques from ACS patients are characterized by a selective oligoclonal expansion of T-cells, indicating a specific, antigen-mediated recruitment of T-cells within the unstable lesions. We have also previously reported that activated T-cells in vitro express functional Tissue Factor (TF) on their surface. At the moment, however it is not known whether expression of TF by T-cells may contribute to thrombus formation in vivo. Methods: Blood was collected from the aorta and the coronary sinus of 13 NSTEMI and 10 stable CAD patients. CD3+ cells were selectively isolated and TF gene expression (real time PCR)and protein levels (western blot) were evaluated. In additional 7 STEMI patients, thrombotic formation material was obtained from the occluded coronary artery by catheter aspiration during primary PCI. TF expression in CD3+ cells was evaluated by immunohistochemistry and confocal microscopy. Results: Transcardiac TF expression in CD3+ cells was significantly higher in NSTEMI patients as compared to CD3+ cells obtained from stable CAD patients. Interestingly, thrombi aspirated from STEMI patients resulted enriched in CD3+cells, which expressed TF on their surface as shown in the figure. Conclusions: Our data demonstrate that in patients with ACS, T-lymphocytes may express surface TF, thus contributing to the process of thrombus formation. This finding may shed new light into the pathophysiologyof ACS.


Pathogens ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 600 ◽  
Author(s):  
Constanza Cárdenas ◽  
Fanny Guzmán ◽  
Marisela Carmona ◽  
Cristian Muñoz ◽  
Luis Nilo ◽  
...  

Viral infections in salmonids represent an ongoing challenge for the aquaculture industry. Two RNA viruses, the infectious pancreatic necrosis virus (IPNV) and the infectious salmon anemia virus (ISAV), have become a latent risk without healing therapies available for either. In this context, antiviral peptides emerge as effective and relatively safe therapeutic molecules. Based on in silico analysis of VP2 protein from IPNV and the RNA-dependent RNA polymerase from ISAV, a set of peptides was designed and were chemically synthesized to block selected key events in their corresponding infectivity processes. The peptides were tested in fish cell lines in vitro, and four were selected for decreasing the viral load: peptide GIM182 for IPNV, and peptides GIM535, GIM538 and GIM539 for ISAV. In vivo tests with the IPNV GIM 182 peptide were carried out using Salmo salar fish, showing a significant decrease of viral load, and proving the safety of the peptide for fish. The results indicate that the use of peptides as antiviral agents in disease control might be a viable alternative to explore in aquaculture.


Blood ◽  
2003 ◽  
Vol 102 (3) ◽  
pp. 849-857 ◽  
Author(s):  
Alexander Röth ◽  
Hans Yssel ◽  
Jérôme Pène ◽  
Elizabeth A. Chavez ◽  
Mike Schertzer ◽  
...  

Abstract The loss of telomeric DNA with each cell division contributes to the limited replicative lifespan of human T lymphocytes. Although telomerase is transiently expressed in T lymphocytes upon activation, it is insufficient to confer immortality. We have previously shown that immortalization of human CD8+ T lymphocytes can be achieved by ectopic expression of the human telomerase reverse transcriptase (hTERT) gene, which encodes for the catalytic component of the telomerase complex. To study the role of endogenous hTERT in the lifespan of human T cells, we blocked endogenous hTERT expression by ectopic expression of dominant-negative (DN) hTERT. Cells expressing DN-hTERT had a decreased lifespan and showed cytogenetic abnormalities, including chromosome ends without detectable telomeric DNA as well as chromosome fusions. These results indicate that while endogenous hTERT cannot prevent overall telomere shortening, it has a major influence on the longevity of human T cells. Furthermore, we show that up-regulation of hTERT in T cells upon activation decreases over time in culture. Long-term–cultured T cells also show a decreased expression of c-myc upon activation, resulting in less c-myc–induced transcription of hTERT. Moreover, memory T cells, which have expanded in vivo upon antigen encounter, expressed a lower level of hTERT upon activation than naive cells from the same donor. The observed inverse correlation between telomerase levels and replicative history suggests that telomerase levels in T cells are limiting and increasingly insufficient to sustain their proliferation.


Blood ◽  
2007 ◽  
Vol 110 (13) ◽  
pp. 4285-4292 ◽  
Author(s):  
Véronique Mateo ◽  
Michael Ménager ◽  
Geneviève de Saint-Basile ◽  
Marie-Claude Stolzenberg ◽  
Bertrand Roquelaure ◽  
...  

Activation-induced cell death (AICD) is involved in peripheral tolerance by controlling the expansion of repeatedly stimulated T cells via an apoptotic Fas (CD95; APO-1)–dependent pathway. The TNFRSF-6 gene encoding Fas is mutated in children suffering from autoimmune lymphoproliferative syndrome (ALPS), which is characterized by lymphoproliferation and autoimmunity. We examined AICD in Fas-deficient T cells from ALPS patients. We showed that primary activated Fas-deficient T cells die by apoptosis after repeated T cell antigen receptor (TCR) stimulation despite resistance to Fas-mediated cell death. This Fas-independent AICD was found to be mediated through a cytotoxic granules-dependent pathway. Cytotoxic granules-mediated AICD was also detected in normal T lymphocytes though to a lesser extent. As expected, the cytotoxic granules-dependent AICD was abolished in T cells from Rab27a- or perforin-deficient patients who exhibited defective granules-dependent cytotoxicity. Supporting an in vivo relevance of the cytotoxic granules-dependent AICD in ALPS patients, we detected an increased number of circulating T lymphocytes expressing granzymes A and B. Altogether, these data indicated that the cytotoxic granules-dependent cell death in ALPS may compensate for Fas deficiency in T lymphocytes. Furthermore, they identified a novel AICD pathway as a unique alternative to Fas apoptosis in human peripheral T lymphocytes.


Sign in / Sign up

Export Citation Format

Share Document