Micrornas Promote Activation and Maturation of Natural Killer Cells Through Toll-Like Receptor Signaling.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2160-2160 ◽  
Author(s):  
Jianhua Yu ◽  
Shun He ◽  
Lai-Chu Wu ◽  
Hsiaoyin Mao ◽  
Sumithira Vasu ◽  
...  

Abstract Abstract 2160 Introduction: MicroRNAs (miRNAs) are short ribonucleic acids, which consist of an average of 22 nucleotides, and bind to complementary sequences of target mRNAs to result in translational repression or target degradation, thus silencing gene expression. MiRNAs can be abundantly found in circulating blood, yet whether, as a class of regulatory molecules, they may interact with innate immune natural killer (NK) cells has not been explored. Methods: Human NK cells were first enriched from the peripheral blood of healthy donors by negative selection using RosetteSep NK cell enrichment cocktail, followed by positive selection using anti-CD56 microbeads. After purity of ≥ 99% was confirmed by flow cytometry, NK cells were used for experiments. After being isolated from healthy donor serum by ExoQuick Exosome precipitation and verified by immunoblotting for CD9 expression, exosomes were assessed for miRNA content via real-time reverse-transcriptase (RT)-PCR using TaqMan miRNA assays. Purified NK cells were stimulated with either whole exosomes or miRNAs complexed with DOTAP, a liposomal transfection reagent. Downstream activation of Toll-like receptor (TLR) signaling by miRNAs was measured via immunoblotting for NF-kB, and its inhibition was similarly assayed in the presence of TLR blocking antibodies. Flow cytometry was used to assess NK cell activation (via CD69 surface expression) and NK cytotoxicity against tumor cells (in a CD107a degranulation assay). IFN-g production was measured via Real-time RT-PCR and enzyme-linked immunosorbent assay (ELISA). For in vivo stimulation, a complex consisting of miRNAs and Lipofectamine 2000 was administered by tail-vein injection. NK cell activation was then measured using the aforementioned in vitro assays. After in vivo stimulation with miRNAs, which was performed in the presence of NK cells or following NK depletion by TM-β1 (IL-2/15Rβ) mAb, development of implanted lymphoma tumor cells was monitored by bioluminescent imaging. NK cells purified from lymphoma patients and from healthy donors were assessed for expression of the NF-kB signaling component, p65, and TLRs via real-time RT-PCR. NK cell maturation was analyzed by flow cytometric staining for surface receptors, such as CD56 and CD94, indicative of NK cell maturation. Results: We found that, in the presence of a low dose IL-12, treatment of human NK cells with several mature miRNAs induced CD69 expression, IFN-g production, and expression of the degranulation marker, CD107a. MiRNA-containing exosomes freshly isolated from normal human donors were also able to activate NK cells, even in the absence of IL-12. In vivo, infusion of several miRNAs into the peripheral blood similarly activated murine NK cells, while T cells were not activated. Furthermore, miRNA administration significantly protected mice from developing tumors, and this occurred in an NK cell-dependent manner. Interestingly, miRNAs also augmented expression of surface markers associated with NK cell maturation, such as CD56 and CD94, suggesting that miRNAs may play a role in promoting NK cell maturation. Mechanistically, we found that stimulation with miRNAs led to downstream activation of NF-kB. This effect was blunted upon blockade of TLR (e.g. TLR1) signaling, and was attenuated in lymphoma patients. Conclusion: Collectively, we provide the first evidence that extrinsic miRNAs, as a class of regulatory molecules, directly activate and may also promote the maturation of NK cells. These effects on NK cell activation and maturation are mediated, at least in part, by the TLR signaling pathway. This phenomenon may be important for normal host defense against infection and/or malignant transformation. Our studies indentify a new function of miRNAs with physiological relevance, and their potential for applications in preventing or treating cancer and infections either alone or as an adjuvant. Disclosures: Jaglowski: Pharmacyclics: Research Funding.

Blood ◽  
2011 ◽  
Vol 117 (10) ◽  
pp. 2874-2882 ◽  
Author(s):  
Karine Crozat ◽  
Céline Eidenschenk ◽  
Baptiste N. Jaeger ◽  
Philippe Krebs ◽  
Sophie Guia ◽  
...  

Abstract Natural killer (NK) cells are innate immune cells that express members of the leukocyte β2 integrin family in humans and mice. These CD11/CD18 heterodimers play critical roles in leukocyte trafficking, immune synapse formation, and costimulation. The cell-surface expression of one of these integrins, CD11b/CD18, is also recognized as a major marker of mouse NK-cell maturation, but its function on NK cells has been largely ignored. Using N-ethyl-N-nitrosourea (ENU) mutagenesis, we generated a mouse carrying an A → T transverse mutation in the Itgb2 gene, resulting in a mutation that prevented the cell-surface expression of CD18 and its associated CD11a, CD11b, and CD11c proteins. We show that β2 integrin–deficient NK cells have a hyporesponsive phenotype in vitro, and present an alteration of their in vivo developmental program characterized by a selective accumulation of c-kit+ cells. NK-cell missing-self recognition was partially altered in vivo, whereas the early immune response to mouse cytomegalovirus (MCMV) infection occurred normally in CD18-deficient mice. Therefore, β2 integrins are required for optimal NK-cell maturation, but this deficiency is partial and can be bypassed during MCMV infection, highlighting the robustness of antiviral protective responses.


Blood ◽  
2009 ◽  
Vol 114 (15) ◽  
pp. 3227-3234 ◽  
Author(s):  
Hélène Beuneu ◽  
Jacques Deguine ◽  
Béatrice Breart ◽  
Ofer Mandelboim ◽  
James P. Di Santo ◽  
...  

Abstract During infection, Toll-like receptor agonists induce natural killer (NK)–cell activation by stimulating dendritic cells (DCs) to produce cytokines and transpresent IL-15 to NK cells. Yet the cellular dynamics underlying NK-cell activation by DCs in secondary lymphoid organs are largely unknown. Here, we have visualized NK-cell activation using mice in which NK cells and DCs express different fluorescent proteins. In response to polyI:C or lipopolysaccharide, NK cells maintained a vigorous migratory behavior, establishing multiple short contacts with maturing DCs. Furthermore, mature antigen-loaded DCs that made long-lived interactions with T cells formed short-lived contacts with NK cells. The different behaviors of T cells and NK cells during activation was correlated with distinct calcium responses upon interaction with DCs. That NK cells become activated while remaining motile may constitute an efficient strategy for sampling local concentrations of cytokines around DCs in secondary lymphoid tissues.


2020 ◽  
Vol 8 (Suppl 2) ◽  
pp. A32.1-A32
Author(s):  
I Truxova ◽  
L Kasikova ◽  
C Salek ◽  
M Hensler ◽  
D Lysak ◽  
...  

In some settings, cancer cells responding to treatment undergo an immunogenic form of cell death that is associated with the abundant emission of danger signals in the form of damage-associated molecular patterns. Accumulating preclinical and clinical evidence indicates that danger signals play a crucial role in the (re-)activation of antitumor immune responses in vivo, thus having a major impact on patient prognosis. We have previously demonstrated that the presence of calreticulin on the surface of malignant blasts is a positive prognostic biomarker for patients with acute myeloid leukemia (AML). Calreticulin exposure not only correlated with enhanced T-cell-dependent antitumor immunity in this setting but also affected the number of circulating natural killer (NK) cells upon restoration of normal hematopoiesis. Here, we report that calreticulin exposure on malignant blasts is associated with enhanced NK cell cytotoxic and secretory functions, both in AML patients and in vivo in mice. The ability of calreticulin to stimulate NK-cells relies on CD11c+CD14high cells that, upon exposure to CRT, express higher levels of IL-15Rα, maturation markers (CD86 and HLA- DR) and CCR7. CRT exposure on malignant blasts also correlates with the upregulation of genes coding for type I interferon. This suggests that CD11c+CD14high cells have increased capacity to migrate to secondary lymphoid organs, where can efficiently deliver stimulatory signals (IL-15Rα/IL- 15) to NK cells. These findings delineate a multipronged, clinically relevant mechanism whereby surface-exposed calreticulin favors NK-cell activation in AML patients.Disclosure InformationI. Truxova: None. L. Kasikova: None. C. Salek: None. M. Hensler: None. D. Lysak: None. P. Holicek: None. P. Bilkova: None. M. Holubova: None. X. Chen: None. R. Mikyskova: None. M. Reinis: None. M. Kovar: None. B. Tomalova: None. J.P. Kline: None. L. Galluzzi: None. R. Spisek: None. J. Fucikova: None.


2020 ◽  
Vol 55 (5) ◽  
pp. 1802422
Author(s):  
Justine Devulder ◽  
Cécile Chenivesse ◽  
Valérie Ledroit ◽  
Stéphanie Fry ◽  
Pierre-Emmanuel Lobert ◽  
...  

Rhinovirus infections are the main cause of asthma exacerbations. As natural killer (NK) cells are important actors of the antiviral innate response, we aimed at evaluating the functions of NK cells from severe asthma patients in response to rhinovirus-like molecules or rhinoviruses.Peripheral blood mononuclear cells from patients with severe asthma and healthy donors were stimulated with pathogen-like molecules or with the rhinoviruses (RV)-A9 and RV-2. NK cell activation, degranulation and interferon (IFN)-γ expression were analysed.NK cells from severe asthma patients were less cytotoxic than those from healthy donors in response to toll-like receptor (TLR)3, TLR7/8 or RV-A9 but not in response to RV-2 stimulation. Furthermore, when cultured with interleukin (IL)-12+IL-15, cytokines which are produced during viral infections, NK cells from patients with severe asthma were less cytotoxic and expressed less IFN-γ than NK cells from healthy donors. NK cells from severe asthmatics exhibited an exhausted phenotype, with an increased expression of the checkpoint molecule Tim-3.Together, our findings indicate that the activation of NK cells from patients with severe asthma may be insufficient during some but not all respiratory infections. The exhausted phenotype may participate in NK cell impairment and aggravation of viral-induced asthma exacerbation in these patients.


Blood ◽  
2005 ◽  
Vol 106 (7) ◽  
pp. 2252-2258 ◽  
Author(s):  
Thierry Walzer ◽  
Marc Dalod ◽  
Scott H. Robbins ◽  
Laurence Zitvogel ◽  
Eric Vivier

AbstractSeveral recent publications have focused on the newly described interactions between natural-killer (NK) cells and dendritic cells (DCs). Activated NK cells induce DC maturation either directly or in synergy with suboptimal levels of microbial signals. Immature DCs appear susceptible to autologous NK-cell-mediated cytolysis while mature DCs are protected. NK-cell-induced DC activation is dependent on both tumor necrosis factor-α (TNF-α)/interferon-γ (IFN-γ) secretion and a cell-cell contact involving NKp30. In vitro, interleukin-12 (IL-12)/IL-18, IL-15, and IFN-α/β production by activated DCs enhance, in turn, NK-cell IFN-γ production, proliferation, and cytotoxic potential, respectively. In vivo, NK-cell/DC interactions may occur in lymphoid organs as well as in nonlymphoid tissues, and their consequences are multiple. By inducing DC activation, NK-cell activation induced by tumor cells can indirectly promote antitumoral T-cell responses. Reciprocally, DCs activated through Toll-like receptors (TLRs) induce potent NK-cell activation in antiviral responses. Thus, DCs and NK cells are equipped with complementary sets of receptors that allow the recognition of various pathogenic agents, emphasizing the role of NK-cell/DC crosstalk in the coordination of innate and adaptive immune responses.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4894-4894
Author(s):  
Claudia Penafuerte Graduate ◽  
Jacques Galipeau

Abstract NK cells constitute a potential candidate for cancer cell therapy because they express a diverse array of inhibitory and activating receptors, which recognize and kill infected or tumor cells without prior immune sensitization. However, autologous NK cell mediated adoptive immunotherapy is restricted due to insufficient cytolytic activity of NK cells from patient with aggressive malignancies. In contrast, the infusion of alloreactive NK cells has shown more successful outcomes in the treatment of cancer, but this approach also presents difficulties such as the high doses of cytokines required to induce NK cell expansion ex vivo, which may also sensitize NK cells to apoptosis. Therefore, a critical issue for NK cell based therapy is the use of appropriate growth factors or cytokines that promote NK cell expansion and activation. We have previously shown that a murine GM-CSF/IL-2 fusion protein (aka GIFT2) displays novel antitumor properties in vivo compared to both cytokines in combination regarding tumor site recruitment of macrophages and significant functional NK cell infiltration [Stagg et al., Cancer Research (December 2004)]. In the present work, we found that human GIFT2 will lead to a substantial two fold proliferation of human blood-derived NK cells which is significantly (p<0.05) superior to either IL2 or GMCSF single cytokine treatment or both cytokines combined at equimolar concentration. In addition, we observed that GIFT2 leads to robust expression of NK-cell activation markers CD69 and CD107a. In conclusion, the human GIFT2 fusokine is a novel and potent tool for ex vivo expansion of activated NK cells which may be of use in cell-based immunotherapy of cancer.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 36-36 ◽  
Author(s):  
Sabrina Inselmann ◽  
Simone Liebler ◽  
Cornelia A Brendel ◽  
Steffen Koschmieder ◽  
Andreas Neubauer ◽  
...  

Abstract Abstract 36 Introduction: Chronic myeloid leukemia (CML) is caused by the BCR-ABL oncogene. CML patients lack expression of IRF-8 - an interferon-regulated transcription factor that has been shown to exert tumor suppressor functions. IRF-8 is also critical for the development of a rare dendritic cell population, so called plasmocytoid dendritic cells (PDC). PDC are quantitatively significantly reduced or absent in the peripheral blood of first diagnosis CML patients. PDC are also the major producers of IFN-alpha (IFNa) in man. IFNa is a cytokine that has significant therapeutic efficiency in the treatment of CML patients. We here wished to experimentally test, whether BCR-ABL expression and loss of IRF-8 may be causally linked to a reduction of PDC in murine CML and whether there could be any functional relevance for PDC loss in CML development or treatment. Methods: PDC counts were studied from peripheral blood samples of primary CML patients at diagnosis, at the time of remission or from healthy donors. PDC function was assessed in vitro by treatment of magnetic bead-enriched PDC with Toll-like receptor 9-specific oligos (ODN 2216) and subsequent assessment of the intracellular IFNa expression in stimulated PDC. A supposed link between BCR-ABL expression, IRF-8 repression and loss of PDC counts was studied in vivo using a murine CML transduction-transplantation model (C57/Bl6 mice, 7Gy sub-lethal irradiation for conditioning). Multiparameter flow cytometry and cell sorting were performed to analyze and enrich, BCR-ABL-positive (GFP+) hematopoietic subpopulations and PDC in order to then quantitate their IRF-8 and BCR-ABL transcript level by RT-PCR. In order to also test the functional relevance of PDC during CML leukemogenesis, CML mice were injected intravenously, weekly from day +5 after transplantation with in vitro generated PDC. Mice were simultaneously also s.c.-injected weekly with ODN 2216 to stimulate IFNα secretion in adoptively transferred PDC in vivo. Results: As previously reported, newly diagnosed CML patients displayed a significantly reduced PDC count when compared to healthy donors (p<0.001). Upon remission induction with imatinib, PDC counts restored partially, but to a much lesser extend in patients successfully treated with IFNa therapy. Importantly, albeit significantly reduced in number, BCR-ABL-positive first diagnosis CML PDC seem to be functionally intact: CML and healthy donor PDC produced comparable amounts of IFNa in response to Toll-like receptor 9 -specific CpG ODN 2216 stimulation. This suggested that BCR-ABL may compromise PDC function by quantitative rather than qualitative dysregulation. CML mice developed a fatal, BCR-ABL-positive myeloproliferation within 13 to 29 days with 88% penetrance. Compared to control mice (n=8), CML mice (n=14) showed a 7-fold and 3-fold reduction of the frequency of B220+mPDCA-1+ PDC in bone marrow and spleen, respectively. This was associated with a statistically significant (4-fold) suppression of IRF8 mRNA expression in sorted BCR-ABL(GFP)-positive PDC relative to BCR-ABL-negative PDC from the same mice (n=3) or from control transplantations (n=5). By RT-PCR, there was a trend also for lower IRF8 expression in CML progenitor cells (Lin− c-Kit+ Sca-1- GFP+), but not in the stem cell enriching population (Lin− c-Kit+ Sca-1+ GFP+). This implied that IRF8 expression is lost during BCR-ABL-induced leukemogenesis in more mature compartments, which supposedly include PDC precursors. Intriguingly, a once weekly adoptive transfer of in vitro generated (to > 30% enriched) PDC for three successive weeks combined with a once weekly subcutaneous injection of CpG ODN 2216 for three weeks was sufficient to almost double survival of CML mice. Conclusions: Using a murine model of CML, we provide first experimental evidence that BCR-ABL induced myeloproliferation is causally linked to a quantitative suppression of PDC, and that this is associated with a BCR-ABL-mediated suppression of IRF8 transcription. Since adoptively transferred PDC were capable of counteracting murine CML development, BCR-ABL may facilitate leukemogenesis in part by obstructing PDC maturation. PDC could thus be a novel immunological effector cell population that exerts and/or integrates anti-leukemic immune responses in CML. Disclosures: No relevant conflicts of interest to declare.


2008 ◽  
Vol 205 (8) ◽  
pp. 1829-1841 ◽  
Author(s):  
Sandeep K. Tripathy ◽  
Peter A. Keyel ◽  
Liping Yang ◽  
Jeanette T. Pingel ◽  
Tammy P. Cheng ◽  
...  

Natural killer (NK) cell tolerance mechanisms are incompletely understood. One possibility is that they possess self-specific activation receptors that result in hyporesponsiveness unless modulated by self–major histocompatability complex (MHC)–specific inhibitory receptors. As putative self-specific activation receptors have not been well characterized, we studied a transgenic C57BL/6 mouse that ubiquitously expresses m157 (m157-Tg), which is the murine cytomegalovirus (MCMV)–encoded ligand for the Ly49H NK cell activation receptor. The transgenic mice were more susceptible to MCMV infection and were unable to reject m157-Tg bone marrow, suggesting defects in Ly49H+ NK cells. There was a reversible hyporesponsiveness of Ly49H+ NK cells that extended to Ly49H-independent stimuli. Continuous Ly49H–m157 interaction was necessary for the functional defects. Interestingly, functional defects occurred when mature wild-type NK cells were adoptively transferred to m157-Tg mice, suggesting that mature NK cells may acquire hyporesponsiveness. Importantly, NK cell tolerance caused by Ly49H–m157 interaction was similar in NK cells regardless of expression of Ly49C, an inhibitory receptor specific for a self-MHC allele in C57BL/6 mice. Thus, engagement of self-specific activation receptors in vivo induces an NK cell tolerance effect that is not affected by self-MHC–specific inhibitory receptors.


Blood ◽  
2008 ◽  
Vol 112 (10) ◽  
pp. 4080-4089 ◽  
Author(s):  
Norman Nausch ◽  
Ioanna E. Galani ◽  
Eva Schlecker ◽  
Adelheid Cerwenka

Abstract Myeloid-derived suppressor cells (MDSCs) accumulate in cancer patients and tumor-bearing mice and potently suppress T-cell activation. In this study, we investigated whether MDSCs regu-late natural killer (NK)–cell function. We discovered that mononuclear Gr-1+CD11b+F4/80+ MDSCs isolated from RMA-S tumor-bearing mice do not suppress, but activate NK cells to produce high amounts of IFN-γ. Gr-1+CD11b+F4/80+ MDSCs isolated from tumor-bearing mice, but not myeloid cells from naive mice, expressed the ligand for the activating receptor NKG2D, RAE-1. NK-cell activation by MDSCs depended partially on the interaction of NKG2D on NK cells with RAE-1 on MDSCs. NK cells eliminated Gr-1+CD11b+F4/80+ MDSCs in vitro and upon adoptive transfer in vivo. Finally, depletion of Gr-1+ cells that comprise MDSCs confirmed their protective role against the NK-sensitive RMA-S lymphoma in vivo. Our study reveals that MDSCs do not suppress all aspects of antitumor immune responses and defines a novel, unexpected activating role of MDSCs on NK cells. Thus, our results have great impact on the design of immune therapies against cancer aiming at the manipulation of MDSCs.


2009 ◽  
Vol 206 (13) ◽  
pp. 2967-2976 ◽  
Author(s):  
Stephen McCartney ◽  
William Vermi ◽  
Susan Gilfillan ◽  
Marina Cella ◽  
Theresa L. Murphy ◽  
...  

The double-stranded RNA (dsRNA) analogue poly(I:C) is a promising adjuvant for cancer vaccines because it activates both dendritic cells (DCs) and natural killer (NK) cells, concurrently promoting adaptive and innate anticancer responses. Poly(I:C) acts through two dsRNA sensors, Toll-like receptor 3 (TLR3) and melanoma differentiation-associated protein-5 (MDA5). Here, we investigated the relative contributions of MDA5 and TLR3 to poly(I:C)-mediated NK cell activation using MDA5−/−, TLR3−/−, and MDA5−/−TLR3−/− mice. MDA5 was crucial for NK cell activation, whereas TLR3 had a minor impact most evident in the absence of MDA5. MDA5 and TLR3 activated NK cells indirectly through accessory cells and induced the distinct stimulatory cytokines interferon-α and interleukin-12, respectively. To identify the relevant accessory cells in vivo, we generated bone marrow chimeras between either wild-type (WT) and MDA5−/− or WT and TLR3−/− mice. Interestingly, multiple accessory cells were implicated, with MDA5 acting primarily in stromal cells and TLR3 predominantly in hematopoietic cells. Furthermore, poly(I:C)-mediated NK cell activation was not notably impaired in mice lacking CD8α DCs, providing further evidence that poly(I:C) acts through diverse accessory cells rather than solely through DCs. These results demonstrate distinct yet complementary roles for MDA5 and TLR3 in poly(I:C)-mediated NK cell activation.


Sign in / Sign up

Export Citation Format

Share Document