Dynamic behavior of NK cells during activation in lymph nodes

Blood ◽  
2009 ◽  
Vol 114 (15) ◽  
pp. 3227-3234 ◽  
Author(s):  
Hélène Beuneu ◽  
Jacques Deguine ◽  
Béatrice Breart ◽  
Ofer Mandelboim ◽  
James P. Di Santo ◽  
...  

Abstract During infection, Toll-like receptor agonists induce natural killer (NK)–cell activation by stimulating dendritic cells (DCs) to produce cytokines and transpresent IL-15 to NK cells. Yet the cellular dynamics underlying NK-cell activation by DCs in secondary lymphoid organs are largely unknown. Here, we have visualized NK-cell activation using mice in which NK cells and DCs express different fluorescent proteins. In response to polyI:C or lipopolysaccharide, NK cells maintained a vigorous migratory behavior, establishing multiple short contacts with maturing DCs. Furthermore, mature antigen-loaded DCs that made long-lived interactions with T cells formed short-lived contacts with NK cells. The different behaviors of T cells and NK cells during activation was correlated with distinct calcium responses upon interaction with DCs. That NK cells become activated while remaining motile may constitute an efficient strategy for sampling local concentrations of cytokines around DCs in secondary lymphoid tissues.

Cancers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2171
Author(s):  
Isabel Valhondo ◽  
Fakhri Hassouneh ◽  
Nelson Lopez-Sejas ◽  
Alejandra Pera ◽  
Beatriz Sanchez-Correa ◽  
...  

Background: Acute myeloid leukemia (AML) remains a major clinical challenge due to poor overall survival, which is even more dramatic in elderly patients. TIGIT, an inhibitory receptor that interacts with CD155 and CD112 molecules, is considered as a checkpoint in T and NK cell activation. This receptor shares ligands with the co-stimulatory receptor DNAM-1 and with TACTILE. The aim of this work was to analyze the expression of DNAM-1, TIGIT and TACTILE in NK cells and T cell subsets in AML patients. Methods: We have studied 36 patients at the time of diagnosis of AML and 20 healthy volunteers. The expression of DNAM-1, TIGIT and TACTILE in NK cells and T cells, according to the expression of CD3 and CD56, was performed by flow cytometry. Results: NK cells, CD56− T cells and CD56+ T (NKT-like) cells from AML patients presented a reduced expression of DNAM-1 compared with healthy volunteers. An increased expression of TIGIT was observed in mainstream CD56− T cells. No differences were observed in the expression of TACTILE. Simplified presentation of incredibly complex evaluations (SPICE) analysis of the co-expression of DNAM-1, TIGIT and TACTILE showed an increase in NK and T cells lacking DNAM-1 and co-expressing TIGIT and TACTILE. Low percentages of DNAM-1−TIGIT+TACTILE+ NK cells and DNAM-1− TIGIT+TACTILE+ CD56− T cells were associated with a better survival of AML patients. Conclusions: The expression of DNAM-1 is reduced in NK cells and in CD4+ and CD8+ T cells from AML patients compared with those from healthy volunteers. An increased percentage of NK and T cells lacking DNAM-1 and co-expressing TIGIT and TACTILE is associated with patient survival, supporting the role of TIGIT as a novel candidate for checkpoint blockade.


Blood ◽  
2010 ◽  
Vol 116 (17) ◽  
pp. 3238-3248 ◽  
Author(s):  
Enrico Lugli ◽  
Carolyn K. Goldman ◽  
Liyanage P. Perera ◽  
Jeremy Smedley ◽  
Rhonda Pung ◽  
...  

Abstract Interleukin-15 (IL-15) is a cytokine with potential therapeutic application in individuals with cancer or immunodeficiency to promote natural killer (NK)– and T-cell activation and proliferation or in vaccination protocols to generate long-lived memory T cells. Here we report that 10-50 μg/kg IL-15 administered intravenously daily for 12 days to rhesus macaques has both short- and long-lasting effects on T-cell homeostasis. Peripheral blood lymphopenia preceded a dramatic expansion of NK cells and memory CD8 T cells in the circulation, particularly a 4-fold expansion of central memory CD8 T cells and a 6-fold expansion of effector memory CD8 T cells. This expansion is a consequence of their activation in multiple tissues. A concomitant inverted CD4/CD8 T-cell ratio was observed throughout the body at day 13, a result of preferential CD8 expansion. Expanded T- and NK-cell populations declined in the blood soon after IL-15 was stopped, suggesting migration to extralymphoid sites. By day 48, homeostasis appears restored throughout the body, with the exception of the maintenance of an inverted CD4/CD8 ratio in lymph nodes. Thus, IL-15 generates a dramatic expansion of short-lived memory CD8 T cells and NK cells in immunocompetent macaques and has long-term effects on the balance of CD4+ and CD8+ T cells.


Blood ◽  
2021 ◽  
Author(s):  
Melissa M Berrien-Elliott ◽  
Michelle Becker-Hapak ◽  
Amanda F. Cashen ◽  
Miriam T. Jacobs ◽  
Pamela Wong ◽  
...  

NK cells are a promising alternative to T cells for cancer immunotherapy. Adoptive therapies with allogeneic, cytokine-activated NK cells are being investigated in clinical trials. However, the optimal cytokine support after adoptive transfer to promote NK cell expansion, and persistence remains unclear. Correlative studies from two independent clinical trial cohorts treated with MHC-haploidentical NK cell therapy for relapsed/refractory AML revealed that cytokine support by systemic IL-15 (N-803) resulted in reduced clinical activity, compared to IL-2. We hypothesized that the mechanism responsible was IL-15/N-803 promoting recipient CD8 T cell activation that in turn accelerated donor NK cell rejection. This idea was supported by increased proliferating CD8+ T cell numbers in patients treated with IL-15/N-803, compared to IL2. Moreover, mixed lymphocyte reactions showed that IL-15/N-803 enhanced responder CD8 T cell activation and proliferation, compared to IL-2 alone. Additionally, IL-15/N-803 accelerated the ability of responding T cells to kill stimulator-derived ML NK cells, demonstrating that additional IL-15 can hasten donor NK cell elimination. Thus, systemic IL-15 used to support allogeneic cell therapy may paradoxically limit their therapeutic window of opportunity and clinical activity. This study indicates that stimulating patient CD8 T cell allo-rejection responses may critically limit allogeneic cellular therapy supported with IL-15.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2160-2160 ◽  
Author(s):  
Jianhua Yu ◽  
Shun He ◽  
Lai-Chu Wu ◽  
Hsiaoyin Mao ◽  
Sumithira Vasu ◽  
...  

Abstract Abstract 2160 Introduction: MicroRNAs (miRNAs) are short ribonucleic acids, which consist of an average of 22 nucleotides, and bind to complementary sequences of target mRNAs to result in translational repression or target degradation, thus silencing gene expression. MiRNAs can be abundantly found in circulating blood, yet whether, as a class of regulatory molecules, they may interact with innate immune natural killer (NK) cells has not been explored. Methods: Human NK cells were first enriched from the peripheral blood of healthy donors by negative selection using RosetteSep NK cell enrichment cocktail, followed by positive selection using anti-CD56 microbeads. After purity of ≥ 99% was confirmed by flow cytometry, NK cells were used for experiments. After being isolated from healthy donor serum by ExoQuick Exosome precipitation and verified by immunoblotting for CD9 expression, exosomes were assessed for miRNA content via real-time reverse-transcriptase (RT)-PCR using TaqMan miRNA assays. Purified NK cells were stimulated with either whole exosomes or miRNAs complexed with DOTAP, a liposomal transfection reagent. Downstream activation of Toll-like receptor (TLR) signaling by miRNAs was measured via immunoblotting for NF-kB, and its inhibition was similarly assayed in the presence of TLR blocking antibodies. Flow cytometry was used to assess NK cell activation (via CD69 surface expression) and NK cytotoxicity against tumor cells (in a CD107a degranulation assay). IFN-g production was measured via Real-time RT-PCR and enzyme-linked immunosorbent assay (ELISA). For in vivo stimulation, a complex consisting of miRNAs and Lipofectamine 2000 was administered by tail-vein injection. NK cell activation was then measured using the aforementioned in vitro assays. After in vivo stimulation with miRNAs, which was performed in the presence of NK cells or following NK depletion by TM-β1 (IL-2/15Rβ) mAb, development of implanted lymphoma tumor cells was monitored by bioluminescent imaging. NK cells purified from lymphoma patients and from healthy donors were assessed for expression of the NF-kB signaling component, p65, and TLRs via real-time RT-PCR. NK cell maturation was analyzed by flow cytometric staining for surface receptors, such as CD56 and CD94, indicative of NK cell maturation. Results: We found that, in the presence of a low dose IL-12, treatment of human NK cells with several mature miRNAs induced CD69 expression, IFN-g production, and expression of the degranulation marker, CD107a. MiRNA-containing exosomes freshly isolated from normal human donors were also able to activate NK cells, even in the absence of IL-12. In vivo, infusion of several miRNAs into the peripheral blood similarly activated murine NK cells, while T cells were not activated. Furthermore, miRNA administration significantly protected mice from developing tumors, and this occurred in an NK cell-dependent manner. Interestingly, miRNAs also augmented expression of surface markers associated with NK cell maturation, such as CD56 and CD94, suggesting that miRNAs may play a role in promoting NK cell maturation. Mechanistically, we found that stimulation with miRNAs led to downstream activation of NF-kB. This effect was blunted upon blockade of TLR (e.g. TLR1) signaling, and was attenuated in lymphoma patients. Conclusion: Collectively, we provide the first evidence that extrinsic miRNAs, as a class of regulatory molecules, directly activate and may also promote the maturation of NK cells. These effects on NK cell activation and maturation are mediated, at least in part, by the TLR signaling pathway. This phenomenon may be important for normal host defense against infection and/or malignant transformation. Our studies indentify a new function of miRNAs with physiological relevance, and their potential for applications in preventing or treating cancer and infections either alone or as an adjuvant. Disclosures: Jaglowski: Pharmacyclics: Research Funding.


2015 ◽  
Author(s):  
Jacob Hanna ◽  
Ofer Mandelboim

Initiation of the adaptive immune response is dependent on the priming of naive T cells by APCs. Proteomic analysis of unactivated and activated human NK cell membrane-enriched fractions demonstrated that activated NK cells can efficiently stimulate T cells, since they upregulate MHC class II molecules and multiple ligands for TCR costimulatory molecules. Furthermore, by manipulating antigen administration, we show that NK cells possess multiple independent unique pathways for antigen uptake. These results highlight NK cell-mediated cytotoxicity and specific ligand recognition by cell surface-activating receptors on NK cells as unique mechanisms for antigen capturing and presentation. In addition, we analyzed the T cell-activating potential of human NK cells derived from different clinical conditions, such as inflamed tonsils and noninfected and CMV-infected uterine decidual samples, and from transporter-associated processing antigen 2–deficient patients. This in vivo analysis revealed that proinflammatory, but not immune-suppressive, microenvironmental requirements can selectively dictate upregulation of T cell-activating molecules on NK cells. Taken together, these observations offer new and unexpected insights into the direct interactions between NK and T cells and suggest novel APC-like activating functions for human NK cells.


Blood ◽  
2006 ◽  
Vol 107 (4) ◽  
pp. 1342-1351 ◽  
Author(s):  
Zusen Fan ◽  
Ping Yu ◽  
Yang Wang ◽  
Yugang Wang ◽  
May Lynne Fu ◽  
...  

Natural killer (NK) cells are generally reported as innate effector cells for killing virally infected and transformed cells. It is unclear how NK cells evoke adaptive immunity to eradicate tumors. We now demonstrate that the TNF superfamily member, LIGHT, known as TNFSF14 and a T-cell costimulatory molecule, is a critical ligand for the activation of NK cells. Herpesvirus entry mediator (HVEM) is expressed on NK cells, and its engagement with LIGHT mediates NK-cell activation. The expression of LIGHT inside tumors leads to rapid rejection in a NK-dependent manner. Both NK and CD8+ cells are essential but not sufficient for the rejection of tumors because mice lacking either population fail to reject the tumor. Interestingly, activated NK cells do not kill tumors directly but can facilitate the priming of tumor-specific CD8+ T cells in an IFN-γ–dependent manner. Conversely, intratumor depletion of either NK cells or IFN-γ during tumor progression disrupts CD8+ cell–mediated tumor rejection, suggesting that the tumor is the essential site for the crosstalk between NK and CD8+ cells. Furthermore, IFNG-deficient NK cells fail to effectively activate CD8+ T cells, suggesting IFN-γ plays an important role in NK-mediated activation of cytotoxic T lymphocytes (CTLs). Our findings establish a direct role for LIGHT in NK activation/expansion and a critical helper role of activated NK cells in priming CD8+ T cells and breaking T-cell tolerance at the tumor site.


2010 ◽  
Vol 40 (12) ◽  
pp. 3472-3477 ◽  
Author(s):  
Matthew B. B. McCall ◽  
Meta Roestenberg ◽  
Ivo Ploemen ◽  
Anne Teirlinck ◽  
Joost Hopman ◽  
...  

2016 ◽  
Vol 90 (9) ◽  
pp. 4441-4453 ◽  
Author(s):  
Rasmus Offersen ◽  
Sara Konstantin Nissen ◽  
Thomas A. Rasmussen ◽  
Lars Østergaard ◽  
Paul W. Denton ◽  
...  

ABSTRACTToll-like receptor (TLR) agonists are potent enhancers of innate antiviral immunity and may also reverse HIV-1 latency. Therefore, TLR agonists have a potential role in the context of a “shock-and-kill” approach to eradicate HIV-1. Our extensive preclinical evaluation suggests that a novel TLR9 agonist, MGN1703, may indeed perform both functions in an HIV-1 eradication trial. Peripheral blood mononuclear cells (PBMCs) from aviremic HIV-1-infected donors on antiretroviral therapy (ART) that were incubated with MGN1703ex vivoexhibited increased secretion of interferon alpha (IFN-α) (P= 0.005) and CXCL10 (P= 0.0005) in culture supernatants. Within the incubated PBMC pool, there were higher proportions of CD69-positive CD56dimCD16+NK cells (P= 0.001) as well as higher proportions of CD107a-positive (P= 0.002) and IFN-γ-producing (P= 0.038) NK cells. Incubation with MGN1703 also increased the proportions of CD69-expressing CD4+and CD8+T cells. Furthermore, CD4+T cells within the pool of MGN1703-incubated PBMCs showed enhanced levels of unspliced HIV-1 RNA (P= 0.036). Importantly, MGN1703 increased the capacity of NK cells to inhibit virus spread within a culture of autologous CD4+T cells assessed by using an HIV-1 p24 enzyme-linked immunosorbent assay (ELISA) (P= 0.03). In conclusion, we show that MGN1703 induced strong antiviral innate immune responses, enhanced HIV-1 transcription, and boosted NK cell-mediated suppression of HIV-1 infection in autologous CD4+T cells. These findings support clinical testing of MGN1703 in HIV-1 eradication trials.IMPORTANCEWe demonstrate that MGN1703 (a TLR9 agonist currently undergoing phase 3 clinical testing for the treatment of metastatic colorectal cancer) induces potent antiviral responses in immune effector cells from HIV-1-infected individuals on suppressive antiretroviral therapy. The significantly improved safety and tolerability profiles of MGN1703 versus TLR9 agonists of the CpG-oligodeoxynucleotide (CpG-ODN) family are due to its novel “dumbbell-shape” structure made of covalently closed, natural DNA. In our study, we found that incubation of peripheral blood mononuclear cells with MGN1703 results in natural killer cell activation and increased natural killer cell function, which significantly inhibited the spread of HIV in a culture of autologous CD4+T cells. Furthermore, we discovered that MGN1703-mediated activation can enhance HIV-1 transcription in CD4+T cells, suggesting that this molecule may serve a dual purpose in HIV-1 eradication therapy: enhanced immune function and latency reversal. These findings provide a strong preclinical basis for the inclusion of MGN1703 in an HIV eradication clinical trial.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nicolas Huot ◽  
Philippe Rascle ◽  
Caroline Petitdemange ◽  
Vanessa Contreras ◽  
Christina M. Stürzel ◽  
...  

AbstractNatural killer (NK) cells play a critical understudied role during HIV infection in tissues. In a natural host of SIV, the African green monkey (AGM), NK cells mediate a strong control of SIVagm infection in secondary lymphoid tissues. We demonstrate that SIVagm infection induces the expansion of terminally differentiated NKG2alow NK cells in secondary lymphoid organs displaying an adaptive transcriptional profile and increased MHC-E-restricted cytotoxicity in response to SIV Env peptides while expressing little IFN-γ. Such NK cell differentiation was lacking in SIVmac-infected macaques. Adaptive NK cells displayed no increased NKG2C expression. This study reveals a previously unknown profile of NK cell adaptation to a viral infection, thus accelerating strategies toward NK-cell directed therapies and viral control in tissues.


2013 ◽  
Vol 210 (6) ◽  
pp. 1065-1068 ◽  
Author(s):  
Yann Kerdiles ◽  
Sophie Ugolini ◽  
Eric Vivier

In light of their role in the immune response against tumors and viruses, natural killer (NK) cells represent a promising target for immunotherapy. Before this target is reached, the various mechanisms that control NK cell activity must first be identified and understood. In the past decades, studies have identified two critical processes that prevent spontaneous NK cell–mediated autoimmune activation while maximizing the efficiency of these cells during an immune response. First is the education process, whereby NK cells adapt to their environment by sensing ligands for inhibitory and activating receptors. Second is the priming phase of NK cell activation, which arms NK cells with appropriate cytotoxic molecules during inflammation. New studies now indicate that NK cell proliferation, accumulation, and activation are also under the control of regulatory T cells that restrict availability of IL-2 released by activated CD4+ T cells. Together with other recent studies, these data highlight the importance of the adaptive immune system in the regulation of NK cell activity.


Sign in / Sign up

Export Citation Format

Share Document