Next-Generation STAT3 Inhibitors As Targeted Therapeutics in Chronic Myeloid Leukemia.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2445-2445
Author(s):  
Ira L Kraft ◽  
Anna M. Eiring ◽  
Brent DG Page ◽  
Clinton C Mason ◽  
Zhimin Gu ◽  
...  

Abstract Abstract 2445 Constitutive activation of signal transducer and activator of transcription 3 (STAT3) correlates with drug resistance and a poor prognosis in many cancers. STAT3 signaling is mediated by phosphorylation at tyrosine-705 (p STAT3Y705), dimerization, and nuclear transactivation. In chronic myeloid leukemia (CML), pSTAT3Y705 is demonstrable under two distinct resistance scenarios: (1) extrinsic resistance, in which BCR-ABL1 kinase-independent survival signals originating from the bone marrow (BM) microenvironment activate pSTAT3Y705 in a JAK2- or TYK2-dependent manner, and (2) intrinsic resistance, in which BCR-ABL1 kinase-independent signals activate pSTAT3Y705 in response to kinase inhibition. Based on these observations, we identified TKI-resistant CML as an excellent model for developing and optimizing pharmacologic STAT3 inhibitors. Using K562 and AR230 CML cells that are resistant to 1 μM imatinib (K562R and AR230R; intrinsic resistance) and primary CML CD34+ progenitor cells exposed to BM stromal-derived conditioned medium (CM; extrinsic resistance), we examined the effects of direct pharmacologic inhibition of STAT3 in TKI-resistant CML. Here, we report the design and validation of next-generation STAT3 inhibitors identified through computational modeling and screening in AR230R CML cells expressing high levels of pSTAT3Y705. We initially examined the effects of an established STAT3 inhibitor, S3I-201.1066 (SF1–066). K562R or AR230R cells were treated with 1 μM imatinib and/or 10 μM SF1–066, followed by culture in methylcellulose medium and scoring after 14–16 days. Combination treatment reduced the clonogenicity of K562R and AR230R cells to 31.4% (p<0.02) and 27.5% (p<0.004) of controls, respectively. In contrast, SF1–066 did not synergize with imatinib in parental K562 and AR230 cells that lack constitutive pSTAT3Y705 (p>0.05). Next, CD34+ cells from newly diagnosed CML patients (n=4) were cultured for 96 hours in the presence of CM and treated with 2.5 μM imatinib, 10 μM SF1–066 or both. Equal numbers of cells were then plated in colony forming assays. Imatinib combined with SF1–066 reduced colony formation to 54.8% (p<0.002) of controls treated with imatinib. Given that dual treatment reduces but does not completely suppress colony formation, we reasoned that some STAT3 signaling must persist in the presence of SF1–066. Thus, we developed next-generation STAT3 inhibitors with increased activity compared to SF1–066. Computational modeling informed the design and synthesis of a second-generation, SF1–066-based library. We evaluated compounds with shared molecular functionalities using AR230R cells expressing a luciferase reporter containing sequential STAT3 sis-inducible elements (AR230R-SIE). At 10 μM, we found two inhibitors, BP2–047 and BP3–163, that reduced luminescence by 69.2% (p<3.6×10−6) and 59.7% (p<8.6×10−6), respectively, compared to controls (n=3). However, the compounds also reduced luminescence in AR230R cells expressing a scrambled luciferase reporter (AR230R-NEG). This screen provided information on the structure-activity relationships of the compounds and was used to generate 64 more candidate STAT3 inhibitors. To account for the reduced luminescence in AR230R-NEG cells and analyze for more potent inhibitors, we performed the luciferase assay with candidate inhibitors at 5 μM. We identified BP5–087 and BP5–088, each with increased potency and STAT3 selectivity compared to SF1–066. These compounds decreased luminescence in AR230R-SIE cells by 36.1% (p<2.6×10−7) and 25.5% (p<6.1×10−10), respectively (n=3), with minimal effects on AR230R-NEG cells (p>0.05). Confirmation of STAT3 binding was obtained using fluorescence polarization assays, in which the EC50 values of BP5–087 and BP5–088 measured 8.5 μM and 4.6 μM, respectively. Studies with mouse and human liver microsomes also revealed that BP5–087 and BP5–088 exhibit enhanced metabolic stability compared to SF1–066. Interestingly, treatment with BP5–087 or BP5–088 (both at 1 and 5 μM) in CML CD34+ progenitors grown in CM showed increased cytoplasmic accumulation of pSTAT3Y705 compared to controls. Thus, we identified BP5–087 and BP5–088 as two of the most potent small-molecule binders of STAT3 reported. These compounds are promising frontrunners toward new therapies for TKI-resistant CML and other diseases in which STAT3 activation drives malignant phenotypes. Disclosures: No relevant conflicts of interest to declare.

2021 ◽  
Vol 12 ◽  
Author(s):  
Hui-Min Liu ◽  
Chun-Ling Guo ◽  
Yao-Fang Zhang ◽  
Jian-Fang Chen ◽  
Zhi-Peng Liang ◽  
...  

Leonurine, an active natural alkaloid compound isolated from Herba leonuri, has been reported to exhibit promising anticancer activity in solid tumors. The aim of this study was to explore whether leonurine is able to inhibit chronic myeloid leukemia (CML) malignancy. Here, we found that leonurine dose dependently inhibited the proliferation, migration, colony formation and promoted apoptosis of CML cells. Furthermore, leonurine markedly reduced CML xenograft growth in vivo. Mechanically, leonurine upregulated SOCS5 expression, thus leading JAK2/STAT3 signaling suppression. Silencing of SOCS5 by its siRNA abrogated the effect of leonurine on CML cells, demonstrating that SOCS5 mediates the anti-leukemia effect of leonurine. Notably, we observed that miR-18a-5p was remarkably increased in CML cells. Treating CML cells with leonurine significantly decreased miR-18a-5p expression. Moreover, we found miR-18a-5p repressed SOCS5 by directly targeting its 3′-UTR. miR-18a-5p downregulation induced by leonurine reduced the biological activity of CML cells by relieving miR-18a-5p repression of SOCS5 expression. Taken together, leonurine exerts significant anti-leukemia efficacy in CML by regulating miR-18a-5p/SOCS5/JAK2/STAT3 axis.


2021 ◽  
Vol 11 (7) ◽  
pp. 1377-1382
Author(s):  
Lixia Cao ◽  
Jing Zhang ◽  
Huijuan Ren ◽  
Yanqiu Han

miRNA has always been a hot spot research. We assessed the effect of down-regulation of miR-23b-3p on the differentiation of acute myeloid leukemia (AML). Human AML cell line U937 was divided into blank group, NC group and miR-23b-3p low expression group (transfected with miR-23b-3p inhibitor) and miR-23b-3p followed by analysis of WT1 level and relationship between miR-23b-3p and WT1 by dual luciferase reporter assay. All-trans retinoic acid is used to induce differentiation, and then the morphological changes of cells and CD11b level were detected. When miR-23b-3p level was reduced, WT1 mRNA and protein level was also decreased. Dual luciferase assay showed that miR-23b-3p bound to WT1 3’-UTR. Inhibition of miR-23b-3p significantly decreased cell proliferation. Swiss Giemsa staining showed that most of cells were in the differentiation stage with low miR-23b-3p expression. The differentiation marker CD11b was significantly higher than other groups, indicating that low miR-23b-3p expression can promote cell differentiation and reduce cell proliferation to a certain extent. Under low miR-23b-3p expression, the positive rate of CD11b was significantly increased. Down-regulating miR-23b-3p can inhibit WT1 to a certain extent and promote the differentiation of AML, which provides a guidance for the gene-level treatment of AML.


2013 ◽  
Vol 22 (23) ◽  
pp. 3043-3051 ◽  
Author(s):  
Elisa Einwallner ◽  
Eva Jaeger ◽  
Gerlinde Mitterbauer-Hohendanner ◽  
Martin Bilban ◽  
Ingrid Simonitsch-Klupp ◽  
...  

Genes ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1145
Author(s):  
Anna Deregowska ◽  
Monika Pepek ◽  
Katarzyna Pruszczyk ◽  
Marcin M. Machnicki ◽  
Maciej Wnuk ◽  
...  

Telomeres are specialized nucleoprotein complexes, localized at the physical ends of chromosomes, that contribute to the maintenance of genome stability. One of the features of chronic myeloid leukemia (CML) cells is a reduction in telomere length which may result in increased genomic instability and progression of the disease. Aberrant telomere maintenance in CML is not fully understood and other mechanisms such as the alternative lengthening of telomeres (ALT) are involved. In this work, we employed five BCR-ABL1-positive cell lines, namely K562, KU-812, LAMA-84, MEG-A2, and MOLM-1, commonly used in the laboratories to study the link between mutation, copy number, and expression of telomere maintenance genes with the expression, copy number, and activity of BCR-ABL1. Our results demonstrated that the copy number and expression of BCR-ABL1 are crucial for telomere lengthening. We observed a correlation between BCR-ABL1 expression and telomere length as well as shelterins upregulation. Next-generation sequencing revealed pathogenic variants and copy number alterations in major tumor suppressors, such as TP53 and CDKN2A, but not in telomere-associated genes. Taken together, we showed that BCR-ABL1 kinase expression and activity play a crucial role in the maintenance of telomeres in CML cell lines. Our results may help to validate and properly interpret results obtained by many laboratories employing these in vitro models of CML.


Blood ◽  
2000 ◽  
Vol 95 (7) ◽  
pp. 2198-2203 ◽  
Author(s):  
Liquan Gao ◽  
Ilaria Bellantuono ◽  
Annika Elsässer ◽  
Stephen B. Marley ◽  
Myrtle Y. Gordon ◽  
...  

Abstract Hematologic malignancies such as acute and chronic myeloid leukemia are characterized by the malignant transformation of immature CD34+ progenitor cells. Transformation is associated with elevated expression of the Wilm's tumor gene encoded transcription factor (WT1). Here we demonstrate that WT1 can serve as a target for cytotoxic T lymphocytes (CTL) with exquisite specificity for leukemic progenitor cells. HLA-A0201– restricted CTL specific for WT1 kill leukemia cell lines and inhibit colony formation by transformed CD34+ progenitor cells isolated from patients with chronic myeloid leukemia (CML), whereas colony formation by normal CD34+ progenitor cells is unaffected. Thus, the tissue-specific transcription factor WT1 is an ideal target for CTL-mediated purging of leukemic progenitor cells in vitro and for antigen-specific therapy of leukemia and other WT1-expressing malignancies in vivo.


Blood ◽  
2001 ◽  
Vol 97 (5) ◽  
pp. 1404-1412 ◽  
Author(s):  
David G. Peters ◽  
Russell R. Hoover ◽  
Melissa J. Gerlach ◽  
Eugene Y. Koh ◽  
Haiyan Zhang ◽  
...  

BCR/ABL, the oncoprotein responsible for chronic myeloid leukemia (CML), transforms hematopoietic cells through both Ras-dependent and -independent mechanisms. Farnesyl protein transferase inhibitors (FTIs) were designed to block mutant Ras signaling, but they also inhibit the growth of transformed cells with wild-type Ras, implying that other farnesylated targets contribute to FTI action. In the current study, the clinical candidate FTI SCH66336 was characterized for its ability to inhibit BCR/ABL transformation. When tested against BCR/ABL-BaF3 cells, a murine cell line that is leukemogenic in mice, SCH66336 potently inhibited soft agar colony formation, slowed proliferation, and sensitized cells to apoptotic stimuli. Quantification of activated guanosine triphosphate (GTP)-bound Ras protein and electrophoretic mobility shift assays for AP-1 DNA binding showed that Ras effector pathways are inhibited by SCH66336. However, SCH66336 was more inhibitory than dominant-negative Ras in assays of soft agar colony formation and cell proliferation, suggesting activity against targets other than Ras. Cell cycle analysis of BCR/ABL-BaF3 cells treated with SCH66336 revealed G2/M blockade, consistent with recent reports that centromeric proteins that regulate the G2/M checkpoint are critical farnesylated targets of FTI action. Mice injected intravenously with BCR/ABL-BaF3 cells developed acute leukemia and died within 4 weeks with massive splenomegaly, elevated white blood cell counts, and anemia. In contrast, nearly all mice treated with SCH66336 survived and have remained disease-free for more than a year. Furthermore, SCH66336 selectively inhibited the hematopoietic colony formation of primary human CML cells. As an oral, nontoxic compound with a mechanism of action distinct from that of ABL tyrosine kinase inhibition, FTI SCH66336 shows promise for the treatment of BCR/ABL-induced leukemia.


Leukemia ◽  
2016 ◽  
Vol 30 (9) ◽  
pp. 1861-1868 ◽  
Author(s):  
G Heller ◽  
T Topakian ◽  
C Altenberger ◽  
S Cerny-Reiterer ◽  
S Herndlhofer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document