Targeting Deptor in Multiple Myeloma

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 575-575
Author(s):  
Yonghui Yang ◽  
Joseph Gera ◽  
Alan Lichtenstein

Abstract Abstract 575 DEPTOR is an mTOR binding protein specifically over-expressed in some genetic subtypes of multiple myeloma (MM). DEPTOR binds mTOR in TORC1 and TORC2 complexes and inhibits their kinase activity. As a result, p70 and 4E-BP1 phosphorylation, substrates of TORC1, are decreased. However, TORC1/p70 down-regulation results in marked feedback activation of the PI3K/AKT pathway and AKT becomes activated even though DEPTOR restrains TORC2. Most importantly, DEPTOR knockdown is deleterious to over-expressing MM cell lines, resulting in apoptosis. We hypothesized that compounds preventing DEPTOR-mTOR association would have cytotoxic effects in these cell lines, comparable to DEPTOR knockdown. We, thus, developed a yeast two-hybrid assay where survival of yeast in histidine-depleted media depended upon an association between DEPTOR and mTOR in genetically engineered yeast. After demonstrating a robust yeast two-hybrid protein interaction, yeast were screened against the NCI small inhibitor library (>150,000 compounds) and six compounds were identified that inhibited the interaction. These compounds rapidly increased p70 phosphorylation in MM cell lines in a concentration-dependent fashion, consistent with an inhibition of DEPTOR's inhibitory effect on mTORC1. Co-immunoprecipitation confirmed the compounds inhibited binding of DEPTOR to mTOR without effects on an mTOR-RICTOR interaction. The compounds also significantly inhibited cell survival of cell lines and they were at least 10 × fold more effective against DEPTOR over-expressing MM lines (8226, OPM-2, MM1.S) versus non-expressing lines (U266, FR4, delta 47). These results support a drug development strategy for myeloma that focuses on preventing DEPTOR binding to mTOR within TORC complexes for subsequent anti-myeloma cytotoxic effects. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 5026-5026
Author(s):  
Bao Hoang ◽  
Joseph Gera ◽  
Alan Lichtenstein

Abstract Abstract 5026 Recent data indicate that TORC2 is necessary for survival of multiple myeloma (MM) cells. Currently, drugs targeting mTOR either inhibit TORC1 alone or both TORC1 and TORC2. To identify drugs that specifically target TORC2, we performed a drug screen in a yeast-two hybrid system to identify compounds that prevented an interaction between rictor and mTOR. We identified several potential compounds and have begun to characterize their molecular activity. These compounds induced significant MM cell apoptosis when used at concentrations below 4 uM. This cytotoxic effect was accomplished by a down regulation of TOR activity which was specific for TORC2 (ie., decreased S473 AKT phosphorylation and NDRG T346 phosphorylation). Co-immunoprecipitation experiments confirmed that at least some of the compounds prevented binding of rictor to mTOR within MM cells while having no effect on binding of raptor to mTOR. In addition, myeloma cells expressing TORC2 phosphomimetic protein substrates (AKTS473D or SGKS422D) were significantly less sensitive to apoptosis as compared to the empty vector control when treated with these compounds. These data suggest that the drug-induced cytotoxicity was mediated specifically through the inhibition of TORC2 kinase activity. These results are the initial characterization of TORC2-specific drugs and support a rationale for targeting TORC2 in multiple myeloma. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 362-362
Author(s):  
Jianbiao Zhou ◽  
Yunlu Jia ◽  
Tze King Tan ◽  
Tae-Hoon Chung ◽  
Takaomi Sanda ◽  
...  

Background: Multiple myeloma (MM) is an aggressive neoplastic plasma cell cancer characterized by diversely cytogenetic abnormalities. MM can be divided into subtypes with immunoglobulin heavy chain (IGH) gene translocations involving CCND1-3, FGFR3/MMSET, MAFs and hyperdiploid myeloma containing trisomies of several odd numbered chromosomes 3, 5, 7, 9, 11, 15, 19, and 21. Although several new drugs have been introduced into clinic, treatment for MM patients remains challenge and refractory/resistant to therapy is often seen. Thus, a better understanding of the molecular pathogenesis of MM can lead to generate new prognostic classification and identify new therapeutic targets. Super-enhancers (SEs) are defined as large clusters of cis-acting enhancers, marked by high level bindings of acetylation of histone H3 lysine 27 (H3K27ac) and mediator complex. SEs have been shown to control genes for maintaining cellular identity and also key tumor drivers in various malignancies. Methods: H3K27Ac ChIP-seq and RNA-seq were performed on primary MM patient samples, MM cell lines. Normal plasma cells and lymphoma cell lines were served as controls. We systematically compared SEs and their associated genes of normal and cancerous tissue. THZ1, a CDK7 inhibitor, was used to efficiently down-regulate SE-associated genes. Combinatory analysis of THZ1-sensitive and SE-associated gene revealed a number of promising MM oncogenes. CRISPR/Cas9 technology and ectopic expression experiments in conjunction with cellular functional assays were performed to determine the effects of candidate SE-genes on MM cells. Circularized chromatin conformation capture followed by sequencing (4C-seq) was applied to explore the direct contact of SE and promoter. Results: SE analysis uncovered some cell lineage-specific transcription factors (TFs) and known oncogenes in MM. Several key TFs, including IRF4, PRDM1, MYC and XBP1, were identified in most MM samples, confirming the origin of MM cells. These data reinforce the concept that SE establishment is a key component of MM biology. The acquisition of SEs around oncogene drivers is widely observed during tumorigenesis. ST3GAL6 and ADM were two known oncogenic drivers in myeloma cells, which were associated with super-enhancers in all MM samples but not in normal plasma cell and lymphoma cells. We also found SE constituents for multiple subtype-specific key oncogenes such as CCND1 in t(11;14) cells, C-MAF in t(14;16) cells, and NSD2 and FGFR3 in t(4;14) cells. Furthermore, THZ1 showed prominent anti-neoplastic effect against MM cells. SE-associated genes were more sensitive to THZ1 compared with those genes associated with typical enhancers (TEs). By overlapping THZ1-sensitve gene with SE-associated genes, we identified a number of novel MM oncogenes, including MAGI2, EDEM3, HJURP, LAMP5, MBD1 and UCK2 as a potential druggable kinase. The expression level of MAGI2 and HJURP confers poor prognosis in several MM datasets. MAGI2 silencing in MM cells decreased cell proliferation and induced apoptosis. qRT-PCR and Western blot analysis confirmed the overexpression of HJURP in t(4;14) cells relative to non-t(4;14) MM cells. Furthermore, 4C-seq analysis revealed the physical interaction between HJURP-SE and promoter and THZ1 treatment diminished this interaction. Motif search at SE constituents revealed a highly significant enrichment of NSD2 recognition. Significant reduction of NSD2 binding at HJURP-SE region was observed in KMS11 infected with NSD2-specific shRNAs. Interestingly, blocking SE sites by CRISPR/Cas9i or silencing HJURP by shRNA led to decreased HJURP expression and cell apoptosis, whereas overexpression of this gene promoted cell growth. Taken together, our data demonstrated that HJURP is a novel SE-associated oncogene in t(4;14) MM. Conclusions: Our integrative approaches by combing H3K27Ac ChIP-seq, RNA-seq and THZ1-sensitive transcript defined the landscape of SE and identified SE-associated novel oncogenes, as well as lineage-specific TFs in MM. Furthermore, we also revealed subtype-specific SE-driving oncogenic program in MM. Taken together, these results not provide novel insight into the MM pathology, but also offer novel, potential therapeutic targets, such as MAGI2, and HJURP for the treatment of MM patients. Disclosures No relevant conflicts of interest to declare.


Author(s):  
Samira Hasanbeiglu ◽  
Kamran Hosseini ◽  
Ommoleila Molavi ◽  
Parina Asgharian ◽  
Vahideh Tarhriz

Background: Eryngium is genus flowering plants in the Umbelliferae family having pharmacological properties such as anti-inflammatory and anti-diabetic. Given the nature of melanoma and breast cancers in recent years and the fact that the anti-cancer properties of Eryngium billardieri on mentioned cell lines have not been studied, the present study conducted to explore these properties. Objective: The mechanisms of cytotoxicity and apoptosis of aerial parts of various extracts and fractions of E. billardieri on cancerous cells and normal cells were investigated. Methods: Samples were collected from natural habitats, dried and then extracted by Soxhlet apparatus with solvents of n-Hex, DCM and methanol, respectively. The cytotoxic effects of the extracts were investigated by MTT method on MCF7, B16 and HFF-2 classes for 24 and 48 hours. Flowcytometry, was also used to investigate the mechanism of cytotoxicity and confirming by Real-time PCR of p53 and Bax genes, which codes apoptosis regulator proteins. Meanwhile, volatile compounds of extracts were identified by GC-MS method. Results: The obtained data showed that the n-Hex extract of E. billardieri on B-16 and MCF7 cell lines and dichromethane extract on MCF7 cell line had the most significant cytotoxic effect compared to DMSO control (p value <0.001). Our finding showed that the mechanism of n-Hex extract with 80% and 100% vlc fractions on B16 induced apoptotic compared to HFF-2 control cells, moreover, n-Hex extract and 80% vlc fraction on MCF7 was apoptotic. The major compounds of n-Hex, DCM and 80% and 100% fractions of n-Hex extract obtained from GC-MS are non-terpenoid. Conclusion: Non-terpenoids compounds of E. billardieri can be the responsible for showing the most cytotoxic effects on MCF7 and B16 cell lines with apoptotic mechanism and n-Hex extract had the most significant inhibitory effect on cancerous cells compared to the HFF-2 control cells by the mechanism of apoptosis.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 670-670
Author(s):  
Teru Hideshima ◽  
Noopur Raje ◽  
Ruben Carrasco ◽  
Hiroshi Ikeda ◽  
Yutaka Okawa ◽  
...  

Abstract NF-κB pathway plays a crucial role in the pathogenesis in cancer cells including multiple myeloma (MM). The NF-κB complex is dimer in different combinations of Rel family proteins, including p65 (RelA), RelB, c-Rel, p50 (NF-κB1), and p52 (NF-κB2). Recent studies have revealed that NF-κB activity is mediated via two distinct pathways. In the canonical pathway, NF-kB is typically a heterodimer composed of p50 and p65 subunits. In the non-canonical pathway, NF-kB is typically a heterodimer composed of RelB and p100 subunits. We have shown anti-MM activities of IKKβ inhibitors (PS-1145, MLN120B); however, effects of these agents were modest. Our studies therefore suggest that baseline NF-kB activity in MM cells is not totally dependent on the canonical pathway, and that inhibition of only canonical NF-κB pathway may not be sufficient to block total NF-kB activity. In this study, we therefore hypothesized whether non-canonical inhibitors significantly enhanced NF-κB inhibition induced by canonical inhibitors in MM cells. We first examined baseline NF-κB activity using electrophoretic mobility shift assay (EMSA). NF-κB activity varied between cell lines; for example MM.1S, MM.1R and H929 cells have higher level of NF-κB activity than in RPMI8226, INA6 and OPM2 cells. To define the role of canonical and non-canonical pathway, we next examined protein expression of p50, p65 and p52 NF-κB in these cell lines: p65 was highly expressed in all MM cell lines; however, expression of p50 and 52 is variable. Surprisingly, no detectable or weak expression of p50 was observed in U266, RPMI8226, LR5, H929 and OPM2 cell lines, suggesting that baseline NF-kB activity in these cell lines is not maintained only by the canonical pathway. We then attempted to block non-canonical NF-κB pathway in MM cell lines. Specifically since IKKα and IKKβ are client proteins of heat shock protein (Hsp) 90, we examined whether 17AAG could inhibit expression and/or function of IKKα and IKKβ in MM cells. Importantly, both IKKα and IKKβ were significantly downregulated by 17AAG in MM cell lines. To determine whether downregulation of these IKK proteins by 17AAG was due to inhibition of transcription, we next performed real-time quantitative PCR and no significant inhibition of relative expression of IKKβ was observed by 17AAG treatment, suggesting that downregulation of these proteins was a post transcription event. We further examined whether 17AAG enhanced the effect of IKKβ inhibitor MLN120B on NF-κB activity. Although the inhibitory effect by either MLN120B or 17AAG alone on phosphorylation (p) of IκBα triggered by TNFα was marginal, combination treatment of MLN120B with 17AAG almost completely blocked IκBα, suggesting that this combination synergistically inhibit canonical NF-κB activity in MM cells. Importantly, the combination of MLN120B with 17AAG also significantly blocked baseline and TNFα-triggered NF-κB activity, assessed by EMSA, in MM cells. Finally, 17AAG augmented the growth inhibitory effect of MLN120B in the context of bone marrow stromal cells. Taken together, these results showed that baseline and TNFα-triggered NF-κB activities were completely blocked by this combination treatment, and provide the rationale for its clinical evaluation to induce maximum inhibition of NF-κB activity and improve patient outcome in MM.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1552-1552
Author(s):  
Hirohiko Shibayama ◽  
Yuri Saito ◽  
Akira Tanimura ◽  
Hirokazu Tanaka ◽  
Itaru Matsumura ◽  
...  

Abstract Abstract 1552 [Background] Anamorsin (also called CIAPIN-1) is a cell-death-defying factor, which was originally isolated as a molecule that conferred resistance to apoptosis induced by growth factor starvation. Anamorsin is ubiquitously expressed in various organs, including hematopoietic tissues like bone marrow, spleen, and thymus. Anamorsin-deficient (AM KO) mice die in late gestation. AM KO embryos are anemic and the size of the embryos is very small. It is thought that anamorsin plays a crucial role in hematopoiesis during late and/or terminal stages of differentiation and embryogenesis. Anamorsin does not show any homology to known apoptosis and cell growth regulatory molecules such as Bcl-2 family, caspase family, or signal transduction molecules. (J Exp Med 199: 581–592, 2004) Anamorsin is composed of a methyltransferase domain in the N-terminal region and a hypothetical Zn-ribbon-like motif in the C-terminal region, however, the precise biological effects of anamorsin remained to be elucidated. [Methods & Results] In an attempt to clarify the mechanisms of the anamorsin functions, we have performed the yeast-two-hybrid assay to identify anamorsin-interacting molecules and found that PICOT (PKCθ interacting cousin of thioredoxin) preferentially bound to anamorsin. Next, we tried to determine the binding sites of anamorsin and PICOT with the yeast-two-hybrid assays by using their several deletion mutants and found that the N-terminal region (11-180aa) of anamorsin and the N-terminal region (18-117aa) of PICOT were essential for binding each other. Furthermore, we tried to examine the signaling pathways by using murine embryonic fibroblast (MEF) cells produced from E-14.5 AM KO or wild type (WT) embryos. The proliferation of AM KO MEF cells was quite retarded compared with that of WT MEF cells. It is found that the phosphorylation states of ERK1/2, NFkB, and AKT were similar both in AM KO MEF cells and WT MEF cells, while PKCθ, PKCδ and p38 MAPK were more phosphorylated in AM KO MEF cells than in WT MEF cells. The expression of cyclin D1, the target molecule of p38 MAPK, was down-regulated in AM KO MEF cells. The PKC inhibitor, Rottlerin, blocked p38 MAPK phosphorylation and the p38 MAPK inhibitor, SB203580, restored the expression of cyclin D1 and the cell growth of AM KO MEF cells. [Conclusion] P38 MAPK, the stress activated MAPK, and PKCs have been known to link to cell growth, differentiation, and apoptosis, and also to be essential for cell survival in response to various stimuli. From our results, it was thought that PKCθ, PKCδ, and p38 MAPK activation lead to cell cycle retardation of AM KO MEF cells and anamorsin might negatively regulate PKCθ, PKCδ, and p38 MAPK cooperatively with PICOT in MEF cells. This study clarified a novel mechanism of the anamorsin functions. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 832-832 ◽  
Author(s):  
Michael A Chapman ◽  
Jean-Philippe Brunet ◽  
Jonathan J Keats ◽  
Angela Baker ◽  
Mazhar Adli ◽  
...  

Abstract Abstract 832 We hypothesized that new therapeutic targets for multiple myeloma (MM) could be discovered through the integrative computational analysis of genomic data. Accordingly, we generated gene expression profiling and copy number data on 250 clinically-annotated MM patient samples. Utilizing an outlier statistical approach, we identified HOXA9 as the top candidate gene for further investigation. HOXA9 expression was particularly high in patients lacking canonical MM chromosomal translocations, and allele-specific expression analysis suggested that this overexpression was mono-allelic. Indeed, focal copy number amplifications at the HOXA locus were observed in some patients. Outlier HOXA9 expression was further validated in both a collection of 52 MM cell lines and 414 primary patient samples previously described. To further verify the aberrant expression of HOXA9 in MM, we performed quantitative RT-PCR, which confirmed expression in all MM patients and cell lines tested, with high-level expression in a subset. To further investigate the mechanism of aberrant HOXA9 expression, we interrogated the pattern of histone modification at the HOXA locus because HOXA gene expression is particularly regulated by such chromatin marks. Accordingly, immunoprecipitation studies showed an aberrantly low level of histone 3 lysine 27 trimethylation marks (H3K27me3) at the HOXA9 locus. H3K27me3 modification is normally associated with silencing of HOXA9 in normal B-cell development. As such, it appears likely that the aberrant expression of HOXA9 in MM is due at least in part to defects in histone modification at this locus. To determine the functional consequences of HOXA9 expression in MM, we performed RNAi-mediated knock-down experiments in MM cell lines. Seven independent HOXA9 shRNAs that diminished HOXA9 expression resulted in growth inhibition of 12/14 MM cell lines tested. Taken together, these experiments indicate that HOXA9 is essential for survival of MM cells, and that the mechanism of HOXA9 expression relates to aberrant histone modification at the HOXA9 locus. The data thus suggest that HOXA9 is an attractive new therapeutic target for MM. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1444-1444
Author(s):  
Denisa Urban ◽  
Ling Li ◽  
James Wasmuth ◽  
Hilary Christensen ◽  
John Parkinson ◽  
...  

Abstract Abstract 1444 Human platelets contain α-granules, dense (δ-) granules and lysosomes that release their contents upon platelet activation. Platelet granule release is important for hemostasis, since patients with inherited granule defects have bleeding problems. α-granules are absent in the gray platelet and ARC syndromes, while deficient δ-granules are observed in isolation, in combination with α-granule deficiency, or as part of a syndrome in the Hermansky-Pudlak, Chediak-Higashi and Griscelli syndromes. The biogenesis of α-granules is poorly understood. Our laboratory has identified VPS33B as a central player in the formation of platelet α-granules. VPS33B has yet to be characterized in detail, however, its homolog VPS33A is known to be part of a multiprotein complex involved intracellular vesicle trafficking. Studies in our laboratory suggest that VPS33B is also part of a multiprotein complex. We performed a yeast two-hybrid library screen with VPS33B as bait and found another member of the complex: the unidentified gene product of chromosome 14 open reading frame 133 (C14orf133). Sequence analysis indicated this to be human VPS16B. Our studies show that VPS16B specifically binds to VPS33B but not its homologue, VPS33A. Furthermore, we show that VPS33B forms a distinct complex from that of its homologue VPS33A. VPS16B was found to co-localize with trans-Golgi, late endosome and α-granule markers in megakaryocytic Dami cells. Ongoing studies suggest that knockdown of VPS16B affects α-granule formation. We conclude that VPS16B, much like its binding partner VPS33B, plays a crucial role in megakaryocyte and platelet α-granule biogenesis. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1919-1919
Author(s):  
Kinga A Kocemba ◽  
Richard W Groen ◽  
Harmen van Andel ◽  
Karene Mahtouk ◽  
Marie Jose Kersten ◽  
...  

Abstract Abstract 1919 Aberrant activation of the Wnt/β-catenin pathway is implicated in driving the formation of various human cancers. Recent studies indicate that the Wnt pathway plays at least two distinct roles in the pathogenesis of multiple myeloma (MM): i) Aberrant, presumably autocrine, activation of canonical Wnt signaling in MM cells promotes tumor proliferation and metastasis; ii) Overexpression of the Wnt inhibitor Dickkopf1 (DKK1), contributes to osteolytic bone disease by inhibiting osteoblast differentiation. Since DKK1 itself is a target of TCF/β-catenin mediated transcription, these findings suggests the presence of a negative feedback loop in MM, in which DKK1 acts as a potential tumor suppressor. In line with this hypothesis, we show here that DKK1 expression is lost in most MM cell lines and in a subset of patients with advanced MM. This loss is correlated with activation of the Wnt pathway, as demonstrated by increased nuclear accumulation of β-catenin. Analysis of the DKK1 promoter revealed CpG island methylation in several MM cell lines as well as in MM cells from patients with advanced MM. Moreover, demethylation of the DKK1 promoter restores DKK1 expression, which results in inhibition of β-catenin/TCF-mediated gene transcription in MM lines. Taken together, our data identify aberrant methylation of the DKK1 promoter as a cause of DKK1 silencing in advanced stage MM, which may play an important role in the progression of MM by unleashing Wnt signaling. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1915-1915
Author(s):  
Unn-Merete Fagerli ◽  
Thorsten Stühmer ◽  
Toril Holien ◽  
Randi Utne Holt ◽  
Ove Bruland ◽  
...  

Abstract Abstract 1915 Multiple myeloma is a paradigm for a malignant disease that exploits external stimuli of the microenvironment for growth and survival. A thorough understanding of the complex interactions between malignant plasma cells and their surrounding requires a detailed analysis of the transcriptional response of myeloma cells to environmental signals. We hypothesized that the intracellular signals evoked by cytokines converge and regulate transcription of a set of genes that are common targets for several growth factors and therefore constitute pivotal mediators of the tumor-promoting effects of autocrine or paracrine stimuli. To identify such targets, we determined the changes in gene expression induced by IL-6, TNFalpha, IL-21 or co-culture with bone marrow stromal cells in myeloma cell lines. Among a limited set of genes that were consistently activated in response to growth factors, a prominent transcriptional target of cytokine-induced signaling in myeloma cells was the gene encoding the serine/threonine kinase SGK1, which is a down-stream effector of PI3-kinase and highly homologous to AKT. We could demonstrate a rapid, strong and sustained induction of SGK1 in the cell lines INA-6, ANBL-6, IH-1, OH-2 and MM.1S as well as in primary myeloma cells. Pharmacologic inhibition of the JAK/STAT pathway abolished STAT3 phosphorylation and SGK1 induction. In addition, shRNA-mediated knock-down of STAT3 reduced basal and induced SGK1 levels, demonstrating the involvement of the JAK/STAT3 signaling pathway in SGK1 induction. Furthermore, down-regulation of SGK1 by shRNAs resulted in decreased proliferation and viability of myeloma cell lines. Our results indicate that SGK1 is a highly cytokine-responsive gene in myeloma cells promoting their growth and survival and represents an attractive candidate for further evaluation as a therapeutic target. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1841-1841
Author(s):  
Dharminder Chauhan ◽  
Ajita V. Singh ◽  
Arghya Ray ◽  
Teru Hideshima ◽  
Paul G. Richardson ◽  
...  

Abstract Abstract 1841 Introduction: The dimeric Nuclear Factor-kappa B (NF-κB) transcription factor plays a key role during multiple myeloma (MM) cell adhesion-induced cytokine secretion in bone marrow stromal cells, which in turn triggers MM cell growth in a paracrine manner. NF-κB signaling pathway is mediated via canonical (IKK-α/IKK-β/NEMO-P50/65 or NF-κB1) and non-canonical (IKK-α/IKK-α/NIK-p52/RelB or NF-κB2) components. Prior studies have also linked constitutive activation of non-canonical NF-κB pathway to genetic abnormalities/mutation, allowing for an autocrine growth of MM cells. Other recent studies showed that constitutive NF-κB activity in tumor cells from MM patients renders these cells refractory to inhibition by bortezomib; and in fact, that bortezomib induces canonical NF-κB activity. These reports provided the impetus for the development of an agent with ability to modulate canonical and/or non-canonical NF-κB axis, allowing for a more robust and specific inhibition of NF-κB. Recent research and development efforts at Nereus Pharmaceuticals, Inc., have identified a novel small molecule acanthoic acid analog NPI-1342 as a potent NF-κB inhibitor. Here, we examined the effects of NPI-1342 on canonical versus non-canonical NF-κB signaling pathways, as well as its anti-tumor activity against MM cells using both in vitro and in vivo model systems. Methods: We utilized MM.1S, MM.1R, RPMI-8226, U266, KMS12PE, NCI-H929, OCI-MY5, LR5, Dox-40, OPM1, and OPM2 human MM cell lines, as well as purified tumor cells from patients with MM. Cell viability assays were performed using MTT and Trypan blue exclusion assays. Signal transduction pathways were evaluated using immunoblot analysis, ELISA, and enzymology assays. Animal model studies were performed using the SCID-hu model, which recapitulates the human BM milieu in vivo. Results: We first examined the effects of NPI-1342 on lipopolysaccharides (LPS)-induced NF-κB activity. Results showed that NPI-1342 inhibits LPS-stimulated NF-κB activity in vitro, as measured by phosphorylation of IkBa. To determine whether NPI-1342 triggers a differential inhibitory effect on IKKβ versus IKKα, MM.1S MM cells were treated with NPI-1342 for 48 hours, and protein lysates were subjected to kinase activity assays. NPI-1342 blocked IKKα, but not IKKβ or IKKγ phosphorylation. We next assessed whether the inhibitory effect of NPI-1342 on NF-κB activity is associated with cytotoxicity in MM cells. We utilized a panel of MM cell lines: at least five of these have mutations of TRAF3 (MM.1S, MM.1R, DOX40 and U266); one has no known NF-κB mutations (OPM2), and one has amplification of NF-κB1 (OCI-MY5). Treatment of MM cell lines and primary patient (CD138 positive) MM cells for 48 hours significantly decreased their viability (IC50 range 15–20 μM) (P < 0.001; n=3) without affecting the viability of normal peripheral blood mononuclear cells, suggesting selective anti-MM activity and a favorable therapeutic index for NPI-1342. NPI-1342-induced a marked increase in Annexin V+ and PI- apoptotic cell population (P < 0.001, n=3). Mechanistic studies showed that NPI-1342-triggered apoptosis in MM cells is associated with activation of caspase-8, caspase-9, caspase-3, and PARP cleavage. We next examined the in vivo effects of NPI-1342 in human MM xenograft models. For these studies, we utilized the SCID-hu MM model, which recapitulates the human BM milieu in vivo. In this model, MM cells are injected directly into human bone chips implanted subcutaneously in SCID mice, and MM cell growth is assessed by serial measurements of circulating levels of soluble human IL-6R in mouse serum. Treatment of tumor-bearing mice with NPI-1342 (20 mg/kg intraperitoneally, QD1-5 for 2 weeks), but not vehicle alone, significantly inhibits MM tumor growth in these mice (10 mice each group; P = 0.004). The doses of NPI-1342 were well tolerated by the mice, without significant weight loss. Finally, immunostaining of implanted human bone showed robust apoptosis and blockade of NF-κB in mice treated with NPI-1342 versus vehicle alone. Conclusions: We demonstrate the efficacy of a novel small molecule inhibitor of NF-κB NPI-1342 in MM using both in vitro and in vivo models. NPI-1342 blocks NF-κB activity with a preferential inhibitory activity against IKK-α component of NF-κB signaling. Our preclinical studies support evaluation of NPI-1342 as a potential MM therapy. Disclosures: Hideshima: Acetylon: Consultancy. Richardson:Millennium: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Johnson & Johnson: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees; Bristol Myers Squibb: Membership on an entity's Board of Directors or advisory committees. Palladino:Nereus Pharmaceuticals, Inc: Employment, Equity Ownership. Anderson:Celgene: Consultancy; Millennium: Consultancy; Onyx: Consultancy; Merck: Consultancy; Bristol Myers Squibb: Consultancy; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees; Acetylon:; Nereus Pharmaceuticals, Inc: Consultancy.


Sign in / Sign up

Export Citation Format

Share Document