Overcoming Apoptosis Resistance In High Risk Acute Lymphoblastic Leukemia By Smac Mimetics In a Preclinical ALL Xenograft Model In Vivo

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1433-1433
Author(s):  
Melanie Schirmer ◽  
Manon Queudeville ◽  
Luca Trentin ◽  
Sarah M Eckhoff ◽  
Lueder H Meyer ◽  
...  

Abstract Intensified treatment of pediatric acute lymphoblastic leukemia (ALL) has lead to increased survival rates of about 80%, however therapy fails in the remaining patients leading to relapse of the disease associated with inferior prognosis. Because treatment failure is, at least in part, due to defects in apoptosis programs, novel therapeutic strategies that counter apoptosis resistance are needed. “Inhibitor of Apoptosis” (IAP) proteins block the apoptosis machinery at a central point and are highly expressed in acute leukemias, thereby providing a target structure for therapeutic intervention. Molecules antagonizing these apoptosis inhibitors, so called SMAC-mimetics, therefore provide a promising strategy to overcome apoptosis deficiency and effectively treat high risk ALL. In this study, we investigated the effects of the small molecule SMAC-mimetic BV6 (kindly provided by Genentech) in B cell precursor- (BCP-) ALL. BV6 showed a clear induction of cell death at nanomolar concentrations in ALL cell lines. ALL cells sensitive for SMAC-mimetic induced cell death showed rapid cIAP degradation, NFkB activation and secretion of TNF-alpha (TNF-a). Interestingly, mitochondrial perturbation and caspase activation could be inhibited by the soluble TNF-a receptor Etanercept indicating the induction of a TNF-a dependent feed forward loop by the SMAC-mimetic BV6. In addition to cell lines, we investigated the effects of BV6 on a series of 42 primary ALL samples isolated from ALL bearing mice of established patient derived NOD/SCID/huALL xenograft leukemias. Intriguingly, upon treatment with the small molecule SMAC mimetic BV6, induction of cell death was observed in a majority of 70% of all individual patient-derived leukemias and BV6 induced cell death was inhibited by Etanercept demonstrating TNF-a dependency also in primary ALL. We previously described that rapid engraftment of ALL cells transplanted onto NOD/SCID mice (short Time To Leukemia, TTLshort) is associated with deficient apoptosis signaling in the ALL cells and indicative for early patient relapse. Importantly, primary xenograft ALL samples with a TTLshort/early relapse phenotype showed increased cell death upon treatment with SMAC-mimetic BV6 and activation of the constitutive deficient apoptosis signaling pathway, demonstrating that SMAC-mimetics induce intact apoptosis signaling in former apoptosis resistant primary ALL cells. Based on theses findings, we further evaluated the in vivo effectivity of the SMAC-mimetic BV6 on high risk ALL using our NOD/SCID/huALL xenograft model in a preclinical setting. ALL bearing recipients were treated with either BV6 or solvent for a given time of two weeks and further investigated for the presence of leukemia. Most interestingly, a significant delay of post-treatment leukemia reoccurrence was observed upon BV6 in vivo treatment along with a profound reduction of tumor load in the recipients compared to solvent treated animals. In a clinical setting, high-risk disease is unlikely to be treated by one compound alone. Therefore, we combined BV6 with multidrug chemotherapy resembling ALL induction treatment and observed a significant delay of ALL reoccurrence and prolonged survival of animals treated with the combination of the SMAC-mimetic and chemotherapy in contrast to chemotherapy alone. Most importantly, concomitant in vivo therapy with Etanercept revoked the cell death sensitizing effect of BV6, both in single treatment and in combination with chemotherapy. This indicates that BV6 induced apoptosis sensitization involves signaling via TNF-a and thereby provides a potential biomarker for the identification of patients who would benefit from SMAC-mimetic treatment. Taken together, we show that the small molecule SMAC-mimetic BV6 induces cell death via a TNF-a loop ex vivo and in vivo in primary patient-derived ALL. Moreover, BV6 is able to overcome apoptosis deficiency of high risk ALL leading to prolonged in vivo survival in a preclinical therapy model of patient-derived ALL xenograft ALL. Thus, induction of cell death by new generation small molecule SMAC-mimetics provides a promising novel strategy for targeted therapy of high-risk acute lymphoblastic leukemia and involvement of TNF-a signaling in BV6-sensitive patients points to its potential use as biomarker indicating effective cell death sensitization. Disclosures: No relevant conflicts of interest to declare.

2014 ◽  
Vol 1 (Suppl 1) ◽  
pp. A22
Author(s):  
Melanie Schirmer ◽  
Manon Queudeville ◽  
Luca Trentin ◽  
Sarah Eckhoff ◽  
Lüder Meyer ◽  
...  

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1416-1416
Author(s):  
Felix Seyfried ◽  
Felix Stirnweiß ◽  
Stefan Köhrer ◽  
Klaus-Michael Debatin ◽  
Lüder Hinrich Meyer

Abstract Deregulated cell death and survival pathways contribute to leukemogenesis and treatment failure of B-cell precursor acute lymphoblastic leukemia (BCP-ALL) patients. The intrinsic apoptosis pathway is regulated at the mitochondrial level by different pro- and anti-apoptotic molecules. Members of the BCL-2 family are key regulators of mitochondrial apoptosis signaling. Pro-apoptotic BH3-only proteins like BIM and BID activate pro-death proteins such as BAX and BAK leading to cell death. Anti-apoptotic BCL-2 family members including BCL-2, BCL-XL and MCL-1 bind to and sequester pro-apoptotic molecules, prevent activation of pro-death proteins and counter-regulate apoptosis induction. Small molecule inhibitors have been developed that block binding to anti-apoptotic molecules like BCL-2, leading to release of pro-apoptotic proteins and cell death induction. In particular, the BCL-2-specific inhibitor venetoclax (VEN) has demonstrated substantial anti-cancer activity and became an approved drug for the treatment of CLL patients. Investigating different, individual BCP-ALL samples, we and others recently identified heterogeneous sensitivities for VEN, suggesting that BCP-ALL cells might also depend on other pro-survival BCL-2 family proteins including MCL-1, leading to VEN insensitivity and resistance. A novel BH3-mimetic, S63845, that selectively targets MCL-1 has been reported. Here, we assessed the activity of S63845 and addressed a potential synergism of simultaneous blockage of BCL-2 and MCL-1 by VEN and S63845 (S) in BCP-ALL. The activity of the MCL-1 inhibitor was analyzed in a panel of BCP-ALL cell lines (N=6) and a series of primary, patient-derived BCP-ALL primograft samples (N=27) determining half-maximal effective concentrations (EC50) upon exposure to increasing concentrations of S and analysis of cell death induction. We observed heterogeneous sensitivities to S with EC50 values ranging from 16 nM to almost 10 µM. Protein expression of MCL-1 and other BCL-2 family members BCL-2, BCL-XL and BCL-W was assessed by western blot analysis and quantified, however neither association of MCL-1 levels nor expression of the other regulators and S sensitivity was found in cell lines and primograft leukemias. Moreover, we also compared sensitivities for both inhibitors but found independent activities of S and VEN in individual ALL samples. Next, we addressed the role of MCL-1 for VEN sensitivity and generated two MCL-1 knock out BCP-ALL cell lines by CRISPR/Cas9 gene editing. In both lines, clearly increased VEN sensitivities were observed upon depletion of MCL-1, indicating that MCL-1 is contributing to activity of the BCL-2 inhibitor VEN. Based on these findings, we investigated the effects of pharmacological MCL-1 inhibition for VEN sensitivity and incubated all 6 cell lines with VEN and S at increasing concentrations and observed clear synergistic effects upon combined BCL-2 and MCL-1 inhibition indicated by combination indices (CI) below 0.1. Moreover, we investigated 7 primograft BCP-ALL samples and found that MCL-1 inhibition by S clearly synergized with VEN activity (CI < 0.3). To investigate the anti-leukemia activity of co-targeting BCL-2 and MCL-1 in vivo in a pre-clinical setting, a high-risk leukemia derived from an infant, MLL/ENL rearranged pro-B ALL case was transplanted onto NOD/SCID mice. Upon ALL manifestation (presence of >5% human blasts in blood), recipients were treated with either VEN, S, the combination of both, or vehicle for 10 days. After treatment, leukemia loads were analyzed showing significantly reduced loads in the co-treated group as compared to vehicle, VEN or S alone in spleen, bone marrow, and central nervous system (p-values < 0.05), indicating synergistic activity of co-inhibition of BCL-2 and MCL-1 in vivo. Taken together, our data show heterogeneous sensitivity of individual BCP-ALL samples to MCL-1 inhibition by S, which is not associated with MCL-1 protein expression levels or VEN sensitivity. Both, genetic depletion and inhibition of MCL-1 by S synergizes with VEN leading to increased anti-leukemia activity in vitro and ex vivo. Importantly, co-targeting BCL-2 and MCL-1 significantly reduced leukemia infiltration in spleen, BM and CNS in a pre-clinical model of high-risk BCP-ALL, warranting further evaluation and possible clinical application of targeting MCL-1 alone and in combination with BCL-2 inhibition. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4020-4020
Author(s):  
Salih Demir ◽  
Fan Wang ◽  
Franziska Gehringer ◽  
Clarissa Weitzer ◽  
Klaus-Michael Debatin ◽  
...  

Abstract Acute lymphoblastic leukemia (ALL) is the most common pediatric and adolescent malignancy. Although current treatment provides five-year event-free survival, in up to 20% conventional chemotherapy fails resulting in relapse with inferior prognosis. FOXO1 is a member of the forkhead family of transcription factors, which is preferably expressed in B-cells with high expression at the early B-cell stage. FOXOs are involved in several cellular processes including cell death and proliferation, anti-cancer drug resistance and protection from oxidative stress. Since FOXO1 can enhance tumor growth and potentiate metastasis, we aimed to investigate the effects of FOXO1 inactivation on B-cell precursor (BCP)-ALL, including preclinical in vivo evaluation. FOXO1 expression levels were compared among 497 cancer samples using the Genevestigator online software. Expression of FOXO1 in BCP-ALL was significantly higher than in any of the other cancer types. Next, we investigated FOXO1 expression and subcellular localization in 3 BCP-ALL cell lines by cellular fractionation and fluorescent microscopy. Both methods showed localization of FOXO1 in the nucleus, indicating transcriptionally active FOXO1 in BCP-ALL. In order to study the potential anti-tumor effect of FOXO1 repression, we investigated genetically modified, FOXO1 deficient BCP-ALL cell lines (n=5) and observed no cell death induction in control transduced cells, in contrast to a clear reduction of cell viability of up to 80% upon FOXO1 knock-down, clearly indicating dependency of BCP-ALL cells on FOXO1. Moreover, lentiviral mediated FOXO1 knockdown did not induce cell death in the Hodgkin's lymphoma cell line cHL, suggesting a BCP-ALL specific importance for FOXO1. Based on these results indicating the importance of FOXO1 expression for BCP-ALL maintenance, we investigated the feasibility of pharmacological interference with FOXO1. Exposure of 7 BCP-ALL, 4 T-ALL, 3 B-cell NHL, 2 DLBCL and 3 cHL cell lines to the small molecular weight FOXO1 inhibitor AS1842856 showed effectivity in BCP-ALL lines, reflected by significantly higher half maximal inhibitory concentrations (IC50) by MTT test. The most sensitive cell line was the BCP-ALL line RS4;11, while the cHL cell line SUP-HD1 showed insensitivity for FOXO1 inhibition (IC50: 3 nM and 26 µM), again indicating that BCP-ALL is particularly dependent on FOXO1 activity. Caspase 3 cleavage detected upon exposure to AS1842856 showed induction of apoptosis as mechanism of cell death. Furthermore, we evaluated the sensitivity of primary BCP-ALL primograft samples (n=9) exposing the ALL cells to increasing pharmacologically relevant concentrations of AS1842856. The inhibitor increased cell death as measured by flow cytometry (FSC/SSC criteria) in all of the samples tested in a time and dose dependent manner. Importantly, FOXO1 inhibition also showed activity on high risk leukemias including MLL-rearranged and early or second-relapse cases. Moreover, we investigated the in vivo effectivity of AS1842856. Two different patient derived leukemias were transplanted onto NOD/SCID mice and upon leukemia manifestation vehicle or AS1842856 was administered for a time of 11 days. At the end of the experiment, all mice were sacrificed and tumor loads were quantified in spleen, bone marrow and central nervous system (CNS). Importantly, tumor loads of all compartments and spleen sizes were significantly reduced in AS1842856 treated animals (p=0.028, U-test). Moreover, in an early-relapse sample leukemia-free survival upon AS1842856 treatment was evaluated. Mice were treated by vehicle or AS1842856 (n=10/group) during 11 days. Leukemia-free survival was significantly prolonged in mice which received AS1842856 (p=0.003, Log-rank test). Taken together, we show that the active form of FOXO1 is highly expressed in BCP-ALL cells as compared to other cancers, and that viability of BCP-ALL cells is regulated by FOXO1 activity. Importantly, silencing or pharmacological inhibition of FOXO1 induces cell death in BCP-ALL primogafts including high risk cases, both ex vivo and preclinically in vivo. Thus, targeting FOXO1 provides a promising novel strategy for therapeutic intervention in these high-risk subtypes of BCP-ALL. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
1994 ◽  
Vol 83 (7) ◽  
pp. 1731-1737 ◽  
Author(s):  
A Manabe ◽  
E Coustan-Smith ◽  
M Kumagai ◽  
FG Behm ◽  
SC Raimondi ◽  
...  

Abstract We investigated the effects of interleukin-4 (IL-4) on the survival of leukemic and normal B-cell progenitors cultured on bone marrow stroma. IL-4 (at 100 U/mL) was cytotoxic in 16 of 21 cases of B-lineage acute lymphoblastic leukemia, causing reductions in CD19+ cell numbers that ranged from 50% to greater than 99% (median 83.5%) of those in parallel cultures not exposed to the cytokine. All nine cases with the t(9;22)(q34;q11) or the t(4;11)(q21;q23), chromosomal features that are often associated with multidrug resistance and a fatal outcome, were susceptible to IL-4 toxicity. IL-4 cytotoxicity resulted from induction of programmed cell death (apoptosis); there was no evidence of cell killing mediated by T, natural killer, or stromal cells. IL-4 cytotoxicity extended to a proportion of normal B-cell progenitors. After 7 days of culture with IL-4 at 100 U/mL, fewer CD19+, CD34+ normal lymphoblasts (the most immature subset) survived: in five experiments the mean (+/- SEM) reduction in cell recoveries caused by IL-4 was 60.0% +/- 6.0%. By contrast, reductions in recovery of more differentiated bone marrow B cells (CD19+, CD34-, surface Ig+) were low (6.6% +/- 2.2%; P < .001 by t-test). Our findings indicate that IL-4 is cytotoxic for human B-cell precursors and support clinical testing of IL-4 in cases of high-risk lymphoblastic leukemia resistant to conventional therapy.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1880-1880
Author(s):  
Georg Seifert ◽  
Patrick Jesse ◽  
Aram Prokop ◽  
Tobias Reindl ◽  
Stephan Lobitz ◽  
...  

Abstract Mistletoe (Viscum album) is one of the most used alternative cancer therapies applied as monotherapy or in combination with conventional therapies. Anti-tumor effects of mistletoe (MT) extracts were related to cytostatic and immunomodulatory effects observed in vitro. Aqueous MT extracts contain the three mistletoe lectins I, II and III as one predominant group of biologically active agents. The MT lectins inhibit protein biosynthesis by inactivating the 60S ribosomal subunit. Mistletoe lectin-I (ML-I) is one important apoptosis inducing compound. It is a heterodimer that consists of a cytotoxic A-chain (ribosome inactivating protein, RIP type 1) linked by a carbohydrate binding B-chain for cellular lectin uptake. However, although MT is widely used, there is a lack of scientific preclinical and clinical data. Here, we describe for the first time efficacy and mechanism of MT extracts against lymphoblastic leukemia in vitro and in vivo. For this purpose, we first investigated both the cytotoxic effect and mechanism of action of two standardized aqueous MT extracts (MT obtained from fir trees (MT-A); MT obtained from pine trees (MT-P)) and isolated ML-I, in three human acute lymphoblastic leukemia (ALL) cell lines (NALM-6, sup-B-15 and REH). MT-A, MT-P and ML-I clearly inhibited cell proliferation as determined by LDH reslease assays at very low concentrations (ML-I LD50 from 0,05 ng/ml to 10 ng/ml depending on the host tree) with MT-P being the most cytotoxic extract. The mechanism of cell death was determined by DNA-fragmentation assays. These indicated dose dependent induction of apoptosis as the main mechanism of cell death. Finally, we evaluated the efficacy of MT-A and MT-P in an in vivo SCID-model of pre-B ALL (NALM-6). For this purpose, mice (n=8/group) were injected i.v. with 1 × 106NALM6 cells and treated by intraperitoneal injections four times per week for 3 weeks (day 1–4; 7–11; 14–18) at varying doses (1, 5 and 50 mg/Kg (plant weight/body weight)). Mice (n=8) treated with PBS and cyclophosphamide (100 mg/kg, once on day 1) were used as negative and positive controls, respectively. Toxicity, peripheral blood counts, bodyweight and survival was determined over time. Interestingly, both MT extracts in all tested concentrations significantly improved survival (up to 55,4 days) in contrast to controls (34,6 days). Furthermore, no hematologic side effects were observed from this treatment as indicated by completely stable blood counts. Also the body weight of treated animals remained stable over time indicating a complete absence of systemic toxicity in the selected dose range. In summary, we demonstrate for the first time efficacy and mechanism of MT extracts against ALL in vitro and in vivo and hereby provide an important base line for the design of clinical trials with these compounds.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2542-2542
Author(s):  
Christoph Le Viseur ◽  
Marc Hotfilder ◽  
Annegret Rosemann ◽  
Ronald Stam ◽  
Andre Schrauder ◽  
...  

Abstract Current data on the leukemic stem cell (LSC) compartment in childhood acute lymphoblastic leukemia (ALL) are conflicting. The traditional hypothesis supposed that childhood ALL originates in a lymphoid progenitor cell and this is assumed to be consistent with the overall good treatment responses in pediatric patients. In accordance with this hypothesis, our previous studies failed to detect involvement of immature CD34+CD19− progenitor cells in ALL/t(12;21) (Hotfilder et al., Blood 2002) while high-risk ALL/t(9;22) and t(4;11) appears to originate in a more primitive CD34+CD19− cell (Hotfilder et al., Cancer Res 2005). In order to characterize the leukemia-initiating cell in vivo, we established a mouse xenograft model by serial intrafemoral transplantation of NOD/scid mice with flow sorted subpopulations from childhood ALL. Samples were taken from the bone marrow of children with ALL/t(12;21) (n=1), t(4;11) (n=3) and t(11;19) (n=1) and B-cell precursor ALL without a marker translocation (n=2). Primary transplantations were performed with freshly thawed unsorted cells, followed by secondary, tertiary and quaternary transplantations with flow sorted populations. Human leukemic engraftment was defined by a proportion of >5% human CD45+ cells in the murine bone marrow that simultaneously express CD34 and/or CD19. From the bone marrow of leukemic mice, we isolated different leukemic populations and successfully re-transplanted 2×103 − 1×105 CD34+CD19− cells, 2×104 − 6×106 CD34+CD19+ lymphoid progenitors and 3×104 − 2×106 more differentiated CD34−CD19+ blasts onto secondary, tertiary and quaternary mice (average purity after flow sorting: >96%). So far, we detected leukemic engraftment in 60 of 161 (37%) transplanted mice (with many mice - having only recently been transplanted - still alive). These include 7 of 36 (19%) mice engrafted with CD34+CD19− cells, 33 of 72 (46%) mice engrafted with CD34+CD19+ cells and 20 of 53 (38%) mice engrafted with CD34−CD19+ cells. With as few as 2 × 103 CD34+CD19− cells being sufficient to re-initiate the leukemia, this intrafemoral ALL-NOD/scid mouse model represents a very sensitive functional assay for candidate LSC in childhood ALL. We have initiated limiting dilution experiments with the different subpopulations to quantify LSC frequency in the different compartments and to exclude that low levels of contaminating blasts with an immunophenotype different from the main transplanted cell population blurred the results. We are also currently investigating whether there is heterogeneity in the CD34+CD19− compartment in respect to standard and high-risk ALL. Altogether, our data indicate that all three subpopulations, CD34+CD19−, CD34+CD19+ and CD34−CD19+ cells, may have the capacity to transfer the leukemia onto NOD/scid mice and that lymphatic LSC may not loose their self-renewal potential with differentiation.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1809-1809
Author(s):  
Hisashi Harada ◽  
Nastaran Heidari ◽  
Mark Hicks

Abstract Abstract 1809 Glucocorticoids (GC) are common components in many chemotherapeutic protocols for lymphoid/myeloid malignancies, including acute lymphoblastic leukemia (ALL). However, patients often develop resistance to GC on relapse. Resistance to GC in ALL can be associated with defects in apoptosis machinery, but not in the GC receptor. Thus, targeting downstream molecules may lead to the development of new therapeutic strategies. GC-induced apoptosis is through the intrinsic mitochondria-dependent pathway. The BCL-2 family proteins are central regulatory proteins in this pathway. We hypothesized that targeting anti-apoptotic MCL-1 might be effective among the BCL-2 family proteins, since (1) we recognized that treatment with dexamethasone (Dex) in CCRF-CEM or Molt-4 T-ALL cells slightly induce MCL-1 and the expression level of MCL-1 is higher in Dex-resistant ALL cells compared with that in Dex-sensitive cells; (2) recent studies have demonstrated that increased expression of MCL-1 associates with GC resistance. In support of our hypothesis, down-regulation of MCL-1 by shRNA enhances Dex-induced cell death. We then pharmacologically inactivate MCL-1 function by GX15-070 (obatoclax), a BH3 mimetic small molecule that targets anti-apoptotic BCL-2 family proteins including BCL-2, BCL-XL, and MCL-1. Treatment with GX15-070 in both Dex-sensitive and -resistant ALL cells shows effective growth inhibition and cell death. GX15-070 induces caspase-3 cleavage and increases Annexin V-positive population, indicative of apoptosis. Before the onset of apoptosis, GX15-070 induces LC3 conversion as well as p62 degradation, both of which are autophagic cell death markers. A pro-apoptotic molecule BAK is released from BAK/MCL-1 complex following GX15-070 treatment. Consistently, down-regulation of BAK reduces caspase-3 cleavage and cell death, but does not alter LC3 conversion. In contrast, down-regulation of ATG5, an autophagy regulator, decreases LC3 conversion and cell death, but does not alter caspase-3 cleavage, suggesting that apoptosis and autophagy induced by GX15-070 are independently regulated. Down-regulation of Beclin-1, which is capable of crosstalk between apoptosis and autophagy, affects GX15-070-induced cell death through apoptosis but not autophagy. Taken together, GX15-070 treatment in ALL could be an alternative regimen to overcome glucocorticoid resistance by inducing BAK-dependent apoptosis and ATG5-dependent autophagy. Enhanced anti-apoptotic BCL-2 family protein expression has been observed in several types of tumors. Targeting these proteins is therefore an attractive strategy for restoring the apoptosis process in tumor cells. Among the small molecule BCL-2 inhibitors, ABT-737 and its analog ABT-263 are the leading compounds currently in clinical development. However, these molecules have an affinity only with BCL-2 and BCL-XL, but not with MCL-1. Thus, ABT-737 can not be effective as a single agent therapeutic for ALL when MCL-1 is overexpressed. In contrast, GX15-070 can overcome the resistance conferred by high level of MCL-1. Our results suggest that GX15-070 could be useful as a single agent therapeutic against ALL and that the activity/expression of anti-apoptotic proteins could be a biomarker to determine the treatment strategy to ALL patients. (Supported by NIH R01CA134473 and the William Lawrence and Blanche Hughes Foundation) Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (17) ◽  
pp. 3510-3518 ◽  
Author(s):  
Shannon L. Maude ◽  
Sarah K. Tasian ◽  
Tiffaney Vincent ◽  
Junior W. Hall ◽  
Cecilia Sheen ◽  
...  

Abstract CRLF2 rearrangements, JAK1/2 point mutations, and JAK2 fusion genes have been identified in Philadelphia chromosome (Ph)–like acute lymphoblastic leukemia (ALL), a recently described subtype of pediatric high-risk B-precursor ALL (B-ALL) which exhibits a gene expression profile similar to Ph-positive ALL and has a poor prognosis. Hyperactive JAK/STAT and PI3K/mammalian target of rapamycin (mTOR) signaling is common in this high-risk subset. We, therefore, investigated the efficacy of the JAK inhibitor ruxolitinib and the mTOR inhibitor rapamycin in xenograft models of 8 pediatric B-ALL cases with and without CRLF2 and JAK genomic lesions. Ruxolitinib treatment yielded significantly lower peripheral blast counts compared with vehicle (P < .05) in 6 of 8 human leukemia xenografts and lower splenic blast counts (P < .05) in 8 of 8 samples. Enhanced responses to ruxolitinib were observed in samples harboring JAK-activating lesions and higher levels of STAT5 phosphorylation. Rapamycin controlled leukemia burden in all 8 B-ALL samples. Survival analysis of 2 representative B-ALL xenografts demonstrated prolonged survival with rapamycin treatment compared with vehicle (P < .01). These data demonstrate preclinical in vivo efficacy of ruxolitinib and rapamycin in this high-risk B-ALL subtype, for which novel treatments are urgently needed, and highlight the therapeutic potential of targeted kinase inhibition in Ph-like ALL.


2013 ◽  
Vol 12 (11) ◽  
pp. 2367-2377 ◽  
Author(s):  
Sandra Christoph ◽  
Deborah DeRyckere ◽  
Jennifer Schlegel ◽  
J. Kimble Frazer ◽  
Lance A. Batchelor ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document